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The performance of a photoconductor is analyzed, via the concept of the steady-state Fermi level, and
shown to be limited by the injection of space charge. Using the gain-bandwidth product G/ro as a measure
of performance, it is found that G/rp=M/T where r, is the dielectric relaxation time under operating
conditions, and M =Kg/Kr, with eKz the total charge on the anode and eKr the total volume charge,
free plus trapped, effectively in thermal contact with the free charge. Generally M&1 is achieved only
concomitantly with space-charge-limited currents varying steeply with voltage. An important exception
is the case where recombination centers control the onset of injected space charge.

I. INTRODUCTION

'HE performance of a photoconductor is generally
determined by the properties of its localized

defect states —their density, their locations in energy
in the forbidden gap, and their cross sections for capture
of free carriers. These properties, which are of quite
general interest in the physics of solids, are not easily
accessible by direct measurement. On the other hand,
the performance of a photoconductor is macroscopically
characterized by the measurement of such simple
observables as (i) the ratio of the current of photo-
electrons through the photoconductor to the current of
photons incident upon it, (ii) the time required, at a
fixed applied. voltage, for the photocurrent to rise or
decay to a steady-state value following a change in the
incident light intensity, and (iii) the resistance and
capaci. tance of the photoconductor under operating
conditions. '

The 6rst of these observables defines the gain of the
photoconductor, and the second the speed of response,
or its reciprocal, the band width. The product of the
pair of observables in (iii) is the RC time constant or
"the dielectric relaxation time under operating condi-
tions. " ' A particular combination of these observables,
namely the gain-band width product, has proven
especially valuable in characterizing the performance
of a photoconductor.

It is the purpose of this paper to investigate the
relationships of the macroscopic observables to the
properties of the defect states' of the photoconductor.

It will be shown that space-charge-limited currents
play a decisive role in these relati. onships. Also the
analysis will bring out the considerable usefulness of
the concept of the steady-state Fermi level for the
study of photoconductivity.

In earlier work' ' it was shown that the density of
free carriers could be increased by application of a
su%ciently high voltage (space-charge-limited currents)
in the same crystal in which the carrier density was
increased by optical excitation. The increased carrier
densities in both cases were described, in a purely
formal way, by a steady-state Fermi level Ep lying
closer to the band edge than the thermal-equilibrium
Fermi level Ep. If e is the free carrier density under
excitation conditions, the corresponding steady-state
Fermi level Ep is formally defined by

e=lV, exp/(Ey E,)/k—Tj,
where S, is the effective density of states in the energy
band under consideration. The significant question is
whether the steady-state Fermi level properly describes
the altered occupancy of the discrete states in the
forbidden energy gap. For a shift in Fermi level caused
solely by the voltage-induced injection of excess carriers
of one sign, one should clearly expect the answer to be
"yes" and to be independent of the capture cross
sections of the discrete states. ' On the other hand, when
the Fermi level is shifted by optical excitation alone
the occupancy of only part of the discrete states is
properly described by the steady-state Fermi level,
namely those states that can be considered to be in
thermal equilibrium with the free carriers. The occu-
pancy of the other states will be dominated by the
kinetics of the recombination processes. The distinction

' R. W. Smith, Phys. Rev. 97, 1525 (1955).' R. W. Smith and A. Rose, Phys. Rev. 97, 1531 (1955).' A. Rose, Phys. Rev. 97, 1538 (1955).' M. A. Lampert, Phys. Rev. 103, 1648 (1956).
7 Here we are assuming that the free carriers are not signi6cantly

heated by the applied Beld. If they are, and the capture cross
sections are velocity-sensitive, then the Fermi-Dirac occupation
function is altered in functional form from its thermal-equilibrium
form. The results presented here would not, in any case, be
drastically altered by this effect except at 6elds sufBciently high
to cause collision ionization.
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' In the range of space-charge-limited currents, the I V(current--
voltage} characteristic is nonlinear, and it is necessary to define
the "resistance R under operating conditions. " Throughout this
report we take R= U/I. Because of the injected space charge, R
may be orders of magnitude smaller than the ordinary bulk
resistance measured in the Ohm's-law range of voltages. On the
other hand, the capacitance C, under conditions of injected
space charge, does not differ substantially from the "geometric"
capacitance measured in the Ohm's-law range of voltages (for
proof of this see reference 6), and therefore may be taken as this
latter quantity. We call the quantity RC "the dielectric relaxation
time under operating conditions" since it has the same meaning
as is ordinarily understood in the Ohm's-law range of voltages.' This paper concerns itself only with volume-distributed defect
states. The possible special effects of defect states in the neighbor-
hood of the contact are examined in the following paper: M. A.
Lampert and A. Rose, Phys. Rev. 113, 1236 (1959).
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between thermally and kinetically controlled occupan-
ciess is an essential factor in the determination of the
gain-band width product for a photoconductor. Con-
versely, measurements of the gain-band width product
can give information about the fraction of discrete
states in thermal equilibrium with the conduction
band. The correlation of independent measurements of
space-charge-limited currents and of photoconductivity
is a particularly potent means to disentangle the
kinetically occupied (recombination) centers from the
thermally occupied (trapping) centers. Such know-
ledge is needed to interpret other nonequilibrium
measurements such as phosphorescent decay and glow-
curve data.

The performance of photoconductors has recently
been analyzed under restricted conditions by Stock-
mann, ' Rose," and Redington. " Stocknamn' showed
that for the special conditions: neutral contact, trap-
free material, and photocurrents less than the dark
current, the maximum gain-band, width product is
given by the reciprocal of the dielectric relaxation time.
The term "neutral contact" is used here to describe a
contact for which the bands at the metal-semiconductor
interface remain Rat. Stockmann's conclusion is still
valid when shallow traps are introduced. The neutral
contact is, however, a restrictive condition. Most sensi-
tive photoconductors have ohmic contacts, that is,
contacts that can freely supply electrons to the volume
of the photoconductor. The bending of bands at an
ohmic contact is .opposite to that customarily assumed
for a blocking contact.

Rose" obtained the same relation as Stockmann's
for the conditions: ohmic contact, arbitrary distribu-
tions of traps, and photocurrents less than the dark
current. An implicit assumption in his analysis was that
the recombination centers be located well below the
dark Fermi level. As will be discussed later in this
paper, if the recombination centers are located near
the dark Fermi level, the gain-band width product
need not be restricted to the value obtained by Rose
and Stockmann. A further correction on the Rose
paper is that the advent of space-charge-limited cur-
rents does not necessarily cause the gain to decrease.
The gain is more likely to increase linearly with applied
voltage or, in the case of large space-charge-limited
currents, to remain constant.

Redington" analyzed photoconductor performance
under the conditions: ohmic contact, shallow traps,
and large photocurrents —and reached conclusions
similar to Rose."

The present paper extends these earlier analyses to
include arbitrary light levels and arbitrary trap
distributions. Under certain conditions an important

A. Rose, Phys. Rev. 97, 322 (1955).' F. Stockmann, Z. Physik 147, 544 (1957).
"A. Rose, Helv. Phys. Acta BO, 242 (1957)."R. W. Redington, J. Appl. Phys. 29, 189 (1958).

correction, expressed in the factor M of Eq. (5), is
made on the earlier results. The analysis is carried out
for a one-carrier model, namely electron conduction, for
the sake of definiteness. The results are equally valid
for hole conduction. In either case it is assumed that
the contacts are injecting for the majority carrier, that
is, capable of supplying space-charge-limited currents
to the photoconductor. Further, it is assumed that the
minority carriers are mostly trapped in recombination
centers and therefore do not themselves make a
signi6cant contribution to the photocurrent. Possible
eGects of the electric field on the number and distribu-
tion of minority carriers are neglected. "

In the following section the gain-band width product
is expressed in terms of inherent properties of the
photoconductor. The resulting formula, Eq. (5), is
then applied, in Sec. III, to several different cases by
way of illustration. Some questions bearing on response
time are examined in the appendix.

For convenience a list of symbols is given at the end
of the paper.

Before proceeding to the detailed analysis, the
authors wish to emphasize two aspects of this work.
On the one hand, this report endeavors to correlate
and explain a large body of currently available experi-
mental data pointing toward photoconductive gain-
band width products which approach zero for highly
insulating materials. On the other hand, it is shown that
this is not a universal phenomenon, that with special
distributions of traps or recombination centers the
gain-bandwidth product can be high even at high
resistivity. Some precision has been sacri6ced in order
to clarify the major ideas. A precise, rigorous analysis
of photoconductivity embodying its known complexities
would be entirely too unwieldy —buried in the details
would be the underlying, common features which are
of real interest. With this in mind, the authors do not
consider it important, for example, in the discussion of
response time, to distinguish between a factor of 2 or
e=2.718 ~ . Accordingly, the results stated are under-
stood to be valid only to within a factor of approxi-
mately two.

'~ Actually, at su%ciently high fields drastic effects may be
expected. Thus if the positive contact is blocking for the minority
carriers, high fields will extract the minority carriers before they
are captured by recombination centers. For sensitive photo-
conductors, this process can be looked upon, at least qualitatively,
as effectively reducing the number of incident photons, since
those minority carriers that are drawn out before being captured
in a recombination center have negligible influence on the photo-
current. If the positive contact is injecting for the minority
carrier, high fields may be expected to produce double-injection,
breakdown-like currents, such as observed by Smith in CdS and
Tyler in Ge LR. W. Smith, Phys. Rev. 105, 900 (1957}and W. W.
Tyler, Phys. Rev. 96, 226 (1954)g. In this connection it has often
been observed that a contact which is blocking at low fields may
be "broken down" at su%ciently high fields and then serve as an
injecting contact.
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re= (Kr/K)ri, . (2)

ro is the response time, K is the total number of free
electrons, and K& is a quantity determined by the
dynamical relationships between free and trapped
charge. Actually, we find it convenient to regard the
relation (2) as the formal definition of Kr.

For the sake of definiteness we shall consider the
response time defined with reference to photoconductive
decay, namely as the time it takes for the photocurrent
to decay to one-half of its steady-state value after the
light is removed.

The transit time in Eq. (1) is given by

T' =L'/Vtj.

where I. is the spacing between electrodes, t/" the
applied voltage, and p the mobility of free carriers.

rs and T' from Eqs. (2) and (3) are inserted in Eq.
(1) to give

G= re(K/Kr) (Vp/L'). (4)

Equation (4) can be rewritten G/rlj= (Key/L'C)
)& (VC/e Kr) = (1/RC) ( Kz/ Kr), giving finally

G (1/re) = (1/r, )M, with r„=RC and M = K~/ Kr. (5)

K~ is the total number of positive charges on the anode
due to the applied voltage. "E and C are the resistance
and capacitance of the photoconductor Nader the comdi-

tiorts of oPeratioN
It is to be emphasized that Eq. (5) is purely a formal

relationship. It is valid for any homogeneous photo-

"A. Rose, RCA Rev. 12, 362 (1951).
'4 The mean life is defined by the relation ri=aK/F, where

6& is the steady-state increment in & produced by the incident
photon current F. Hence, for the case that the incident light
just doubles K, one has AK= K, and Eq. (2) can also be written
ro= Kr/F.

"Even without applied voltage there will be positive charge
on the anode if there is an ohmic contact for electrons at the
anode. This anode charge is the positive component of the dipole
layer needed to match the insulator to the anode material.
Throughout this report &~ refers to the additional positive charges
on the anode due to an applied voltage.

II. GAIN-BAND WIDTH PRODUCT

The current-gain of a photoconductor is"

G= AI/eP= ri/T';

AI is the steady-state photocurrent, i.e., the change in
current from its "dark" value, produced by light. The
dark current can be either the thermal equilibirum value
or a much higher value corresponding to space-charge
currents. F is the incident current of photons (i.e., the
number of excitations per second), ri is the mean life
of a free carrier, and T' is the transit time of a free
carrier between cathode and anode.

The rise, or decay, time of photocurrents is, in general,
greater than the mean life of a free carrier owing to the
need to fill, or empty, trapping states that are in
thermal equilibrium with the free carriers. This fact is
noted formally by the relation"

exp(-

(E -Eg)
Ei (n, , )

Ep p (&(E) PER UNIT ENERGY)

1

Ea (a& )

WEIGHTING
FUNCTiON

FIG. 1. Weighting function for calculation of z. E, is the
conduction-band energy minimum, E„ the valence-band energy
maximum. Ez is the steady-state I'ermi level. E& and E& are the
energy levels of discrete traps, of total numbers && and K2, re-
spectively. There is a continuous distribution of traps, of total
number K(E) per unit energy at E, between levels Eo and Zr. .

conductor having a uniform cross section and for all
voltages, excluding only fields that give rise to collision
ionization. The virtue of Eq. (5) is that its entire
physical content lies in the interpretation of the factor
3f or, in particular, K&. Even if formally possible, it
would be of dubious value to give a general, physical
characterization of Xp valid for all photoconductive
phenomena. This problem is briefly discussed in the
appendix where, for example, the difficulties associated
with such complex phenomena as supralinearity are
pointed out. However, for relatively simple photo-
conductive phenomena (see the appendix), Kr can be
be precisely characterized as being equal to X plus
the total number of trapped. electrons which are
"electively in thermal equilibrium" with the free
carriers. Referring to Fig. 1, the latter number is
computed as follows. Traps of total number K(E) per
unit energy and located in energy near Ep contribute
to Kr the number K(EF)kT. Traps of total number

X~, located at energy E~&Ep contribute to Kz the
number Ki exp)(Ei —Ei)/kT j.This is the same as the
number of electrons in K~. Traps of total number K~
located at energy E~&Eg contribute to Kp the number
Ks exp((Es —Ep)/kT j.This is the same as the number
of holes in K2. This prescription for calculating Xz is
obtained simply and directly by calculating the change
in the total number of trapped electrons when the
number of free electrons is doubled. The net result, as
illustrated in Fig. 1, is an exponential weighting function
centered sharply at the Fermi level, so that in the many
cases where the trap distribution in energy varies more
slowly than the Boltzmann factor at the operating
temperature, the significant term is K(EF)kT. In the
evaluation of K& only those traps contribute which
are in thermal contact with the conduction band, that
is, whose electron occupancy is determined by E&.
Recombination centers, whose occupancy is determined
by the kinetics of recombination, do not contribute
to X~.

The importance of injected. , excess carriers (i.e.,
carriers producing space charge in the bulk of the solid)
for photoconductive performance can be seen directly
in the following way. H excess carriers were not injected
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FIG. 2. Dependence of 3f on applied voltage V for diGerent trap distributions. V„ is the voltage at the onset, in the dark, of space-
charge-limited currents. For all cases but (f), DE=1 at V= V„. V „is that voltage at which M attains its maximum value, M
Erp is the thermodynamic-equilibrium Fermi level and Ea the ene-. gy level of the recombination centers. (a) Trap-free case. (b) De-
creasing density of traps (characterized by an effective "temperature" T,); V „' is the voltage at which M drops back to unity (c).
Uniform distribution of traps (of density E~, per unit energy n is the thermal-equilibrium density of free electrons). (d) Increasing
density of traps Lof density iV(E) =1V(Ez) exp((Es —E)/kT, ) per unit energy at Ej. (e) Single, discrete trap level (of density X& at
energy E&&Es, E, is the eff'ective density of states in the conduction band). (f) Recombination centers located close to EF. (pa is the
thermal-equilibrium density of holes in these centers. Ez is the total density of electrons, free plus trapped, at a given light level,
electively in thermal contact with the free electrons. Sz;; is the minimum value of Sz obtained through the injection of space-charge. )

at any voltage, then K& would be independent of spacing. Much of the interest in Eq. (5) would then
voltage and the factor M could be increased without vanish since arbitrarily large gain-band width products,
limit by either an increase in voltage or a decrease in even for insulators, could be obtained by arranging for
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arbitrarily large values of 3I. What makes Eq. (5) of
signi6cance is that for a large variety of trap distribu-
tions the maximum value of M is limited to unity
either absolutely or eGectively. This comes about
precisely because as the voltage is increased, space-
charge-limited currents must set in, and, for a variety of
trap distributions, the number of charges K~ on the
anode can be physically interpreted to be equal to the
number of charges Kp that control the response time.
For practical applications there is particular interest in
those special properties of a photoconductor which
make possible values for M greatly exceeding unity.
Furthermore, measurements of M) 1 may be expected
to give information about the occupancy of defect
states in the crystal.

III. GAIN-BAND WIDTH PRODUCT FOR
PARTICULAR TRAP DISTRIBUTIONS

In this section the voltage dependence of the gain-
band width product is studied for the several repre-
sentative trap distributions shown in Fig. 2 and dis-
cussed in Secs. IJIa-IIIf. The interesting and novel
features of this dependence are contained in the voltage
dependence of the M factor and we therefore focus our
attention on this feature of the problem. The voltage de-
pendence of v, is straightforward. In the Ohm's-law
range of currents there is no dependence at all. In the
space-charge-limited range of currents, 7., decreases with
voltage roughly as the inverse of the current. (Space-
charge-limited current-voltage characteristics have been
discussed in some detail in the literature. ' ')

For all cases discussed below it is assumed that Xz
is simply the sum of the total number of free electrons
K and the total number of trapped electrons electively
in thermal equilibrium with the free carriers. The
prescription for calculating Kp is given in the preceding
section. As to notation, the densities corresponding to
the total numbers K, Kr, X(E)dE, X~,dE, K„X~,
(P~ which appear in the following discussion are
denoted, respectively by n, Er, N(E)dE, lent,,dE, 1V„
1Vg, Pg. Further, I', K', Xr', Kr' denote the values
of the corresponding quantities in thermal equilibrium.
(See the list of symbols at the end of the paper. )

For all cases below, excepting (f), the onset of space-
charge-limited currents is controlled by the trapping
states and not by the recombination centers. This
requires that pz'/2 (E&', pz' being the thermal-
equilibrium density of holes in the recombination
centers, of density Xg. For $~)Xz, this condition is
met by assuming the recombination centers sufficiently
"deep-lying, " i.e., (EF E&)//kT suSciently gre—ater
than unity, where E& is the energy level of the re-
combination centers. In the diagrams of Fig. 2 the light
is shown as exciting electrons directly from the re-
combination centers into the conduction band. This
is, of course, equivalent to the situation where the light
excites free electron-hole pairs directly across the band

gap and the holes are quickly captured by the re-
combination centers.

The various cases, (a)-(f), have several features in
common. At the low voltage end, M(1, the linear
increase of M with voltage is straightforward. The lines
of force of the anode charges end on negative charges
close to the cathode. The increase in anode voltage
does not affect the density of free electrons or the
density of trapped electrons in the volume. Hence, Kz
remains constant while X& increases linearly with
voltage. This continues at least until X~ equals K~,
hence until M=1, providing dielectric break. down does
not intervene.

At the onset of space-charge-limited currents, the
lines of force of the anode charge end on injected free
and trapped electrons distributed throughout the
volume of the photoconductor. In general, with case (f)
excepted, this is the same distribution of free and
trapped charge that would be generated by photo-
excitation alone. That is, let the density of carriers be
doubled in one case by voltage alone and in another
case by light alone. In each case the Fermi level is
raised approximately kT. In the case of voltage alone,
the extra free and trapped electrons are injected from
the cathode and hence are not compensated by positive
charge. In the case of light alone, the same distribution
of extra free and trapped electrons are injected, so to
speak, from deep-lying recombination centers and are
now charge-compensated by the holes left behind in
the centers. Under these conditions M=1 at the onset
of space-charge-limited currents, at the voltage V= V„.
Note that here, and in the following, V„denotes the
voltage threshold for the injection of space charge in
the dark. By the use of a bias light this threshold can
be pushed to higher voltages.

The detailed behavior of M for V& V„depends on
the particular trap distribution, as is evident from
inspection of Fig. 2. Nevertheless certain general
observations can be made. It is seen that M values
exceeding unity can be realized in the range of space-
charge-limited currents, i.e., at voltages V& V„.
However, so long as the same trapping centers control
both the response time and the space-charge-limited
currents, cases (b)-(e) below, M) 1 is realized only
in a range of voltages over which the current-voltage
characteristic, in the absence of a biasing light, is quite
steep. For all cases, at a sufFiciently high voltage
(again, providing dielectric breakdown has not inter-
vened) 1iII returns to unity, and thereafter remains
equal to unity. This is the voltage range over which the
free-carrier density is so large that trapping is negligible:
%~X Xg and 7.0=T). In this range the current is
proportional to the square of the voltage.

Ke now discuss the diferent cases separately.

(a) Trap-Free Photoconductor
It is clear from Fig. 2(a) that the response time of

the photoconductor is equal to the mean life of the free
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electrons —that is, the time required for the light to
excite the extra density of electrons. Since there are no
traps, there are no trapped electrons contributing to
K,z. Xz= X. Therefore the factor M can be written
M= Xg/K.

For this case, clearly, V,.= e X'/C. For V) V„,
excess charge is injected into the crystal. Since all the
excess charge must be free, K= K~. Further the cur-
rent is proportional to the square of the voltage. The
eGect of space-charge-limited currents is to restrict the
maximum value of M, as shown in Fig. 2(a), to unity.
At the same time the gain-band width product increases
linearly with voltage (in the space-charge-limited range)
since the reciprocal of the dielectric relaxation time is
proportional to voltage. The gain itself remains con-
stant since the mean life of a free carrier is inversely
proportional in this model to the density of free carriers.

(b) Decreasing Density of Traps

In Fig. 2(b) the trap density is shown schematically
as decreasing as one departs from the conduction
band. Assuming that the density distribution 1V (E) of
traps in energy does not vary faster than the Boltzmann
factor at the operating temperature, then the major
contribution to LVp comes from the trapping states
with kT of the Fermi level EI;. This is true both for
Ep E~ (low lights) and for Ei)Ep (higher lights).
Therefore 1Vr 1V (EF)k T. Space-charge-limited cur-
rents set in at the voltage V„=ekTX(Ei)/C, and at
this voltage M=1.

Figure 2 (b) shows M increasing beyond unity to T,/T
at higher voltages. This value is obtained by first apply-
ing a voltage in the dark su%i.cient to raise the Fermi
level at least several kT above its dark value. The
excess charge on the anode required to raise the Fermi
level will then be given approximately by the number
of states lying between the initial and final positions of
the Fermi level. Here it is assumed that the trap
distribution can be described by a Boltzmann distribu-
tion with a temperature T„ i.e., that X(E)=1V(E~)
)&exp[(E—Ep)/kT, 7. Therefore the number of states
in question will be approximately kT, X(Ei)= K&.
After applying the voltage, the photoconductor is
exposed to light and the response time is determined,
From the above it is clear that M,„=T,/T, first
reached at the voltage V, =ekT, K(Ei)/C.

M breaks from its plateau (and thereafter rapidly
returns to unity) when the excess free charge density m

equals the excess trapped charge density in effective
thermal contact with the free charges, that is when
E~ is located such that e= 1V, exp)(Ep —E,)/kT7
=kTcV(Ei&). The voltage V,„' at which this takes
place is given by

V . '= {ekT,X(Ep) )kT1V(Eg)/n7T/(T, —T)) &&C
—'.

Throughout the entire region of the M plateau,
the current-voltage characteristic is quite steep':

I~ V&~&+ '~; correspondingly the dielectric relaxation
time drops quite steeply: „~V—

& ~ &1' . If T,&T,
the density of traps 1V(E) varies faster than the
Boltzmann factor. This is the case of "shallow traps, "
discussed by Redington, " for which the maximum
value of M is unity.

(c) Uniform Trap Density

The behavior of M as a function of voltage for a
uniform. distribution of traps in energy, 1V(E)=.V&„

=constant, is generally similar to that for the de-
creasing density of traps just discussed. The chief
diGerence is that, in the space-charge-limited current
range, the approximation previously used for K~ is
no longer valid. That is, the characteristic temperature
T, of a uniform distribution of traps is infinite and
would lead to an infinite value of kT, X(E).

Injection of space-charge takes place at the voltage
V„=ekTXi,/C. For V) V„, M is computed in Fig.
2(c) by taking Kz equal to the total number of traps
between EI: and EI;, where the injection of extra
charge by the applied voltage has raised the Fermi
level from Ep to Ep. The value of X~ is, as before,
equal to the total number of traps within kT of the
steady-state Fermi level E& plus the number of free
carriers. At the onset of space-charge-limited currents
M=1. Further increase in voltage causes the current
to increase exponentially as e ~, where 0. is a function
of the trap density and dimensions of the photo-
conductor. ' Correspondingly r„~e ~. In this range,
K& increases linearly with applied voltage while Kz
remains constant until the number of free carriers equals
the number of traps within kT of the Fermi level. This
takes place at the voltage

V .=eKi,,kT/ln(1Vi, ,kT/e')7/C

Here M takes on its maximum value )Fig. 2(c)7, but
abruptly and within a factor of two in voltage drops
back to unity.

(d) Increasing Density of Traps

The density of trapping states is assumed to increase
as one departs from the conduction band. The chief
diGerence between the behavior of M here and in the
two previous cases, (b) and (c), are: (1) M can achieve
a higher maximum value, and (2) the space-charge-
limited current increases even more steeply with voltage
than in either of the previous two cases.

The maximum value of M, following the reasoning
of Secs. (b) and (c), is given approximately by the
ratio of the density of traps at the thermal equilibrium
Fermi level Ep to the density of traps at the steady-
state Fermi level Ep when the latter is raised. to such a
value that the density of free electrons equals the
density of electrons trapped within kT of Ep. For the
case that the trap distribution can be described by a
Boltzmann distribution with a temperature T„ i.e, ,
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that N(E)=N(Er) expL(Es —E)/kT, ), the value for
M, is given in Fig. 2(d). It occurs at the voltage
V, =ekT, K(Er)/C. The voltage region over which
M& 1 is so narrow as to give this portion of the 3f-curve
the appearance of a spike.

(e) Single, Discrete Tray Level

It is assumed that the traps, of density 1V&, are
located at an energy E&&E+ and that the trapped
electrons are more numerous than the free ones.

The significant difference between this case and the
preceding one is the displacement of the "spike" in the
M-curve along the M=1 plateau to a higher voltage.
The onset of the spike coincides with the Fermi level
Ep passing through the trap level E&. This occurs at
the voltage V~eX~/2C. The top of the spike occurs
at V„eK&/C, M, being given in Fig. 2(e).

So long as Ep&E&, this is simply a shallow-trap
situation. " The M=1 plateau is reached at V„=eX~
XexpL (Es —E.,)/kT j/C.

As with the preceding case, the current-voltage
curve in the region of the M spike is extremely steep—
indeed, so steep as to have the appearance of a break-
down. The dielectric relaxation time is, of course,
correspondingly steep with voltage.

(f) Recombination Centers near
the Fermi Level

In the previous cases (a)-(e), the onset of space-
charge-limited currents coincided with a value of unity
for 3f. This was because the same trapping centers
controlled the response time and the space-charge-
limited currents. Where higher values of M were
obtainable, the accompanying current-voltage char-
acteristic was inevitably very steep, provided the
space-charge-limited current exceeded the photocurrent.
Where a steady bias light produces a photocurrent
exceeding the space-charge-limited current, the current-
voltage characteristic remains ohmic (see Fig. 4,
reference 4). The price paid for this however is sub-
stantially lowered resistivity from the dark value.

If the (empty) recombination centers are numerous
enough to control the onset of space-charge-limited
currents; i.e., if P„s/2)Nr as stated in the introductory
comments to this section, then large M values can be
obtained prior to the onset of space-charge-limited
currents and without the use of bias light. ' This is
illustrated in Fig. 2(f) where the recombination centers
are shown sharply localized near (within kT of) the
dark Fermi level Ep. It is assumed that their density
Vg dominates other states in the neighborhood of Ep.
Space-charge-limited currents set in at voltage V„

' During the course of this work, M values as high as 50 were
observed at low lights by R. W. Smith in single crystals of CdS.
The currents were pure volume currents. Independent measure-
ments by Smith verified that the centers controlling the response
time were different from the centers controlling the onset of
space-charge-limited currents.

=e(Prt'/C, with 6'z' the total number of empty re-
combination centers in the dark ((Prrs= pg'&(volume).
At this voltage M=Pg'/1Vr, where Nr is determined

by where the light excitation has brought the Fermi
level EF. (Here we have assumed that the exciting light
has not appreciably changed pz from prr'. ) At low

lights, M„=pzt'/Nr'. Through an increase in voltage
beyond V„, the Fermi level can be moved further
towards the conduction band, to a position where

Nr =Nr, ,„;„giving 3f,„=prt'/Nr, ~;~. This puts a spike,
similar to the one of Figs. 2(d) and (e), on top of M, .
The spike occurs, as with cases (d) and (e), in the region
of extreme steepness of the current-voltage curve.

From the examination of particular models, it is seen
that values of M exceeding unity are associated with an
injected space charge which exceeds the trapped charge
controlling the response time of thephotoconductor.
Looked at in this way, there are other ways of achieving
M& 1 than by selected energy distribution of traps. For
example, if there are states (other than recombination
centers) that exchange carriers with the conduction
band very slowly, these states will not be counted as
part of Xz since they will not retard the rise or decay
of photocurrents. These states will, however, be
counted among those that must be filled before the
onset of space-charge-limited currents. The filling of
these states under space-charge Qow is a steady-state
phenomenon and does not depend on their capture cross
section, while their filling and emptying during the rise
and decay of photocurrents is a transient phenomenon
and requires a cross section at least as large as that of
the recombination centers.

This possibility may arise in the case of thin films
or needles, where the totaJ. number of trapping states at
or near the surface can exceed the total number in the
volume. This is suggested by the fact, for example, that
high photocurrents usually come from volume-absorbed
light, the sensitivity to strongly absorbed light being
generally smaller by a factor of two or three and some-
times of ten or more. The rise and decay of photo-
currents will be controlled by the volume density of
traps while the onset of space-charge Aow will be
controlled by the volume plus the surface density of
traps. If the total number of surface states is larger
than the total number of volume states (both near the
Fermi level) the value of M can be expected to exceed
unity by the same ratio. '~ The slow exchange of elec-
trons between the conduction band in the volume and
the surface states is likely to be insured by the Dember
field set up when light causes the volume to be more
conducting than the surface.

Another possible source of states effective in space-
charge Qow but not in photoresponse can be associated

"H. B. DeVore has reported /Meeting of the American Insti-
tute of Electrical Engineers, February, 1958 (unpublished)g. M
values approaching 50 at low lights for thin sintered films of
CdSe. It is not yet known whether this result can be assigned to
a favorable energy distribution of recombination states in the
volume or to a large density of surface traps.
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with physical voids in the lattice. Foreign atoms located
in these voids will have a smaller coupling with the
lattice than normal impurity states.

A not altogether trivial means for getting values of
M&1 is to hang an external capacitance across the
photoconductor. The external capacitance increases
both the EC time constant of the photoconductor and
the anode charge Xz by the same factors. The increase
in X~ means, of course, a corresponding increase in M.
While the addition of a capacitance has no bearing on
the physics of the photoconductor, it does serve to
illustrate in simple fashion how the charge that must
be put on the anode to initiate space-charge Qow can be
diGerent from and greater than the trapped charge X~
in thermal equilibrium with the free carriers.

In conclusion, our analysis has established an
intimate connection among space-charge-limited
currents, the steady-state Fermi level and photo-
conductive performance. This connection has been
examined by studying the gain-band width product, and
in particular the ratio M=K~/Kr, as a function of
applied voltage. Because of the connection, separate
measurements of space-charge-limited currents and
photoconductive performance provide a powerful
combination for the study of defect states in solids.
Obviously there are far-reaching device implications in
the gain-band width relation expressed by Eq. (5). .

We hope to report on this aspect of the work elsewhere.
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LIST OF SYMBOLS

%~ is the total number of positive charges on the
anode due to the applied voltage.

Kz, E& are the total number and density, respec-
tively, of volume charges, free plus trapped, e6ectively
in thermal contact with the free charges.

N, is the eGective density of states in the conduction
band.

X, e are the total number and density, respectively,
of free charges.

K(E), X(E) are the total number and density,
respectively, of traps per unit energy at the energy E
for a distribution (in energy) of traps.

X&„X&, are the total number and density, respec-
tively, of traps per unit energy for a uniform distri-
bution {in energy) of traps.

K&, E& are the total number and density, respectively,
of traps at a discrete energy.

Xg, S~ are the total number and density, respec-
tively, of recombination centers.

(Pz, Pz are the total number and density, respec-
tively, of holes in recombination centers.

P~, n~ are the densities of holes and electrons, respec-
tively, in traps.

A superscript "0"on a quantity denotes the thermal-
equilibrium value of that quantity.

ro is the response time.
7.

~ is the free-electron lifetime.
7 „ is the dielectric relaxation time under operating

conditions.

APPENDIX

The response-time parameter K& defined by Eq. (2)
plays an essential role in our evaluation of photo-
conductor performance. Generally we have taken Kz to
be the sum of the total number of free electrons and
the total number of trapped electrons eGectively in
thermal contact with the free electrons. The prescription
for calculating X& was given in Sec. II. Underlying this
interpretation of Xp are two assumptions:

(i) Throughout the response-time period r 0 the
occupancy of the recombination centers by holes does
not change drastically, i.e., by more than a factor of
about two. It follows directly from this assumption that
throughout the period ro the decay of the excited
electrons takes place through the same recombination
centers which control the steady-state lifetime 7-&.

(ii) The probability of capture of free electrons by
traps is substantially greater than the probability of
their capture by recombination centers: 0~&P~)o~zPz,
where 0-

~ and 0-„g are the cross sections for capture of
free electrons by empty traps (density p&) and empty
recombination centers (density pz), respectively.

Neither of the two assumptions is valid for all
conceivable cases of photoconductivity. For example, if
the variation of the steady-state photocurrent with
light intensity is observed to be more rapid than linear,
then it is likely that two physically distinct classes of
recombination centers are involved. In this case con-
ceivably assumption (i) would be violated over some
range of light levels. However, it is more than likely
valid even for this case. Generally assumption (i) may
be regarded as reasonable and probable. Where it is
violated this would be indicated by the complex form
of the decay, even within the first decay period 7o.
Assumption (ii) insures that a free electron will be
emitted and captured by a trap many times before
its life is terminated by capture into a recombination
center, i.e., that the free and trapped electrons maintain
thermal contact during the first decay period. Violation
of assumption (ii), which would make possible M-values
greater than unity, as discussed in the text, would be
revealed not only by a complex decay structure but also

by overshoot in the transient photoconductive rise. The
validity of this assumption c1early depends on the
density of traps, E~. With all other parameters of the
crystal held constant, if E& is reduced, a value wi11 be
reached where (ii) is no longer valid and accordingly
3f)1 at sufficiently high voltage (e.g. , at V= V„).
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With further reduction of E&, the point will 6nally be
reached where the traps play no role in photoconduc-
tivity, i.e., most of the excited electrons are free, and
the maximum value of 3I will be unity (trap-free case).

With assumptions (i) and (ii), a single differential
equation governs the decay:

(A1)

iV, is the effective density of states in the conduction
band, and a statistical weight of two, corresponding to
spin-degeneracy, is assigned to the traps.

Setting dnt/dn=K' and K'+1=K, and regarding K
as a constant, (A1) reduces to Kdn/dt= n/r—~, with
solution e=eo exp( —t/ro), where ro=Kr~. Further-
more,

with

de) N)N n)N p,x'=
de (n+N)' n(n+N)' e+N

p, =N, n, . — (A3)

For deep traps, one has (E» Et)/AT&1 and —e)N,
giving K' p~/n and K (n+p~)/n.

with the trapped and free electrons, m~ and m, respec-
tively, in quasithermal equilibrium; i.e., for example,
for a set of discrete traps of density E& at energy E&,

e q (E& E,q-
ng N——

g~ ), with N=2N, exp] ~. (A2)
&n+N) kT

For shallow traps, one has (E, E»—)/kT&1 and
N)n, giving K' e,/n and K' (n+n&)/n.

For E» =E,, one has N=e, K'=n&/2n= p,/2n
=N, /4n, and K= (e+,'N, )-/n.

These results are essentially our prescription, Sec. II,
for the calculation of Ez.

We have not been concerned with precision in this
discussion. Strictly speaking, E is not a constant, and
the exact result (A3) should be substituted into (A1)
and the resulting diGerential equation solved in the
separate ranges of EI. Although indeed the form of the
decay is sensitive to this change in K' (an exponential
becoming hyperbolic, for example), the response time
7-0, as defined by decay of e to one-half of its initial
value, is not signi6cantly changed by a more accurate
treatment.

Likewise we have regarded pz, the density of holes
in the recombination centers, as constant during the
decay. Actually, pz= iV&+n is not an unlikely relation-
ship in many cases. Here again the form of the decay
would be changed somewhat, but 70 would again be
essentially unchanged.

Finally, in writing Eq. (A1) we have neglected
thermal emission of electrons from the recombination
centers back into the conduction band. This approxi-
mation becomes rapidly valid for recombination states
well within the demarcation levels as discussed in
reference 8. Further, even where the approximation is
not valid, at very low light intensities the current
treatment gives exactly the same results as obtained
above, so long as tt ng/An remains constant throughout
the decay period, where he~=e~ —e~' and Ae=e —rP.


