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EXCitatiOn Of Spin WaVeS in an AntiferrOmagnet by a UnifOriII rf Field*
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It is possible to excite spin waves in an antiferromagnet by a uniform rf Geld, provided that spins on
the surface of the specimen experience anisotropy interactions diferent from those acting on the spins in
the interior. Modes with an odd number of half-wavelengths should be excited in a Qat plate. The condition
for diferent anisotropy interactions is worked out and proves to be a lenient condition. Experiments which
would determine the exchange energy constant and the anisotropy field should be possible using su%,ciently
thin platelets of single crystals having parallel faces.

I. INTRODUCTION

ITTEL' has shown that under certain conditions
exchange and magnetostatic spin waves may be

excited in a ferromagnetic insulator by a uniform rf
field. This excitation is in contrast to the White-Solt
eGect' produced by an inhomogeneous rf 6eld. Recently,
Seavey and Tannenwald' and Jarrett and Waringe

have found these excitations in thin Alms and thin
crystals, respectively. The application of the Kittel
theory to antiferromagnets was suggested by Strandberg
and Douglass, ' and is the subject of this paper.

The local environment in antiferromagnets, as well

as in ferromagnets, of a spin at the surface of a crystal
is markedly different from that in the interior. Ani-

sotropy interactions which would normally vanish in

the interior because of symmetries no longer do so with
the lower symmetry of the surface. It was shown by
Kittel that the eGect of the surface anisotropy is to
pin the surface spins, leading to modes which interact
with a uniform rf 6eld. That is, if one thinks of a line

of length L with the origin at one end, the modes will

have the form sin(psrz/1. ), where p is an integer. The
modes of odd p provide an instantaneous transverse
moment which couples with a uniform rf Geld.

At first glance the situation in antiferromagnets
might appear to be different. There is no net magnetiza-
tion in the antiferromagnet, so that a sin(psrs/L) excita-
tion would not appear to lead to any net moment.
However, as KeGer and Kittel' point out, a linear
combination of two modes exist at resonance. Both
modes have a net transverse magnetization and rotate
in opposite senses. For both resonance modes, the
spins on the two sublattices precess in diGerent sized
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circles, the diGerence in the amplitudes of the precession
leading to the net magnetic moment. The sum of the
moments of the two modes generates an oscillating

'
moment perpendicular to the s' axis. Along a line of
spins, the phases of these oscillating moments will

diGer by an amount determined by the wave number of
the spin wave. Thus, at any instant of time there will

exist a net transverse moment which can interact with
the rf field if and only if an odd number of half-wave-
lengths are excited. If there exists an even number of
half-wavelengths, the instantaneous transverse moment
will sum to zero and there will be no interaction with
the rf field.

II. EVALUATION OF SURFACE ANISOTROPY
STRENGTH

We first examine the question of the strength of the
surface anisotropy required to fix the end spins. On an
atomic model, the equations of motion for the end spin
(trt= 1) and its nearest neighbor (est= 2) in a, line of X
spins along the s axis is

i)Sr/Bt= (2J/te) (SrXSs)+ySrX (H~t l+Hp),
itss/Bt= (2J/ft) (SsXSr+SsXS3) (1)

+VSsX (H~"'+Hp),

where J is the exchange integral, Hp the external
static magnetic field, H&('& the surface anisotropy field
directed along the +s axis for the end spin, and H~t"
the anisotropy field directed along the —s axis for the
second spin (nt=2). We assume for simplicity that Hp

is parallel to H~ u&. We make the usual approximations
for an antiferromagnet' S1'=S, S2'= —S. Defining'
5,+=Sr*+iSro and 5&+——Ss*+iSso our equations of
motion become

itS&+/itt = t (2JS/It) (St++Ss+) iSr+p (&A +Up—)1
85,+/R = i (2JS/k—) (25s++Sr++Ss+)

+iSs+p (H~t" —Hp) (2)

"P.Pincus, Phys. Rev. 113, 769 (1959).
7'This approach was suggested by Nagamiya and de Gennes

(private communication). For the case of a ferromagnet (refer-
ence 1), the corresponding method leads to the equation (aS&+/Bt)
= (2JSjk) it aaSr+/as+ (a'/2) O'Sr+ jas'g ico~Sq+ which, —using (5),
gives for iI/a at s= 0 the value co, (ka}/[a&+cur+co, (ka)'/2]
=co, (ka)/2cor«1. This ratio should replace the values given by
Eqs. (10) through (15) of reference 1.
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eg'= P~eg'*(p) sink~s sin~t,

eg "~greg@(p) slnk~s cos(ot,

es*=P~eii'. *(p) sink~s sin~t,

eii"=p~eii&(p) sink~s cosset,

Sa+= Si++aejSi+/Bs+ (a'/2) O'S,+/its'+ . (3)

This expression is valid at low temperatures and for
(2JS/hy)))H~ &'&. We let ar, = 2JS/h, cui=y(Hg o'+Ho),
(o2=p(Hg&'& —Hp), and find

We expand S2" in a Taylor series in a, where a is the surface anisotropy. Our solutions will be of the form
lattice constant:

BSi+/Bt = ice, (Si++S2+) ia—iSi+,
BS2+/Bt = —ku, L2S2++2Si++aBSi+/ejs

+ (a'/2) O'S,+/ejs'j+uv S +.

Taking as our solutions

Si+= e'"'(ni sinks+pi cosks),
S2+=e'"'(n2 sinks+ p2 cosks),

and inserting these into (4), our equa, tions of motion
become at x=0

p, ((u+(g, —(o,) —(u,pg ——0, (6a)

where k„=pm/L. Th.e equations of motions differ from
(1) as Hz is used here for the internal anisotropy field
and H&=0. We solve the equations of motion for
Ho&0 in the Appendix. The presence of a magnetic
field serves only to bring the resonance into the observ-
able microwave range and unnecessarily complicates
our solution. The equations of motion take the form

Beg'/Bt = —(4JS/h) eg&

—(2JS/h) (P&e& )+~e&~H&, (12a)

Beg"/Bt = (2JS/h) (Qeee*)
+ (4JS/h) e~*+ySH,—yeg*H~, (12b)

Eliminating terms in p2 we find for the ratio pi/n,

ra, I 2pi+ni(ak) —pi(a'/2) k'$+p2 (~+2~,—~2) =0. (6b) eject /@= (4JS/h) eii&

+ (2JS/h) (P~e~") yea"Hg—) (12c)

1 (u, (ak)
(7)

ni 2~, ~.(a—k)'/2+ (~+2~, co2) (—(u+(o, ~,)/id,

In an antiferromagnet oP~&u~~, where co~/y =H~, the
internal anisotropy held; co.~10", and co&~10". If we
assume ka~10 ', then (7) reduces to

Qseii QiiQyee (p) sink~s sine@

=2+~eii'*(p)y„sink„s singlet, (13)

&ea"/Bt = —(2JS/h) (Qge~*)
—(4JS/h) ea* ASH.+yes*—H~. (12d)

The sums go over nearest neighbors only so that

(g) where
y„=cosk„g. (14)

and the ends behave as if they were axed.
We find, using condition (8), that reflection sym- Equation (12b) becomes

metry in the Hamiltonian about the center of the line
(s=L/2) results in

—~P„e~+(p) sin~t sink s
= (4JS/h) P„equi'*y~ sink~s sin&et

+ (4JS/h) P„eg * sin&st sink~s+ySH,
—gag„e~'* sin(ut sink~s. (15)

k= pm/L,

where p is any integer. For p 10, a/L 10 ', we find
ka 10 '. This justifies our assumptions in (8).

We multiply both sides of (15) by sink s and integrate

III. EVALUATION OF THE OSCILLATOR STRENGTH

We now consider the magnitude of the excitation of
the spin wave modes by the uniform rf field H = ho sin+t.
We employ a semiclassical theory of antiferromagnetic
spin waves' and let the s axis be the direction of
sublattice magnetization. We label the sublattices A
and B, and take

—(ueg = (4JS/h) (y~eii'*+ eg")
yH~ e~'*+4ySh—e/mm-, (16)

for nz odd. If m be even, the last term on the right
vanishes and no excitations will take place. Similar
results hold for (12a, c, d) so that

S~= (e~*,e~",S),

Se ——(eii, eg&, —S),
(10)

where S is the classical atomic spin and fg 6&~ 6gg Gap

are the time-varying components of Sz and Sii. We
consider a one-dimensional line of spins and assume
that the end spins are eGectively pinned down by the

eieg"= —(4JS/h) (eg'"+y~ei3'") +greg~ )

ceeg+= (4JS/h) (eg +'r Qi )
ge e~"+4yShe/m—m;

&4eii = (4JS/h) (egg"+p~eA+) re

equi
i

ennea+ = (4JS/h) (eB +rmeA).
+pe

equi"
47She/m~. —

(17)
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We solve (17) for eAo' and find

4Shp

pulsed-field technique might induce transient eGects
which would swamp out any resonance modes. Observa-

[HA+H. (1—V )] tion of this effect may only be possible when the state
o)+H (H +2H) ( / )q' of the art is such that 1—2 mm microwaves will be, (»)

obtainable in the laboratory.
where H, = —4JS/hy. The selection rule for excitation
by a uniform rf field is that m, the number of half-wave-
lengths, must be odd. We see, as in the ferromagnetic
case, that the oscillator strength e&P decreases inversely
with ns. At resonance a comparison can be made
between the amplitude (18) and the corresponding
amplitude for ferromagnetic excitations. For m 1 to
10, and (a/L) 10 4, one obtains HA))H, (1—y ).
Using Eq. (26) of reference 1 we find, noting con=DShn'
+cop coo under these conditions, that
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APPENDIX

eA ferro */eA antiferro = (4VScooho)/(HA4Y Sho)

=Hp/HA 1, (19)
We derive the oscillator strength 6g for Hp~0. In

this case, (17) becomes

where Hp is the applied Geld in the ferromagnetic case.
Hence, the eGect should have the same oscillator
strength in antiferromagnetics as it has in ferro-
magnetics. To calculate the separation of spin wave
modes, we note that at resonance

(co/y)'= H, s (1 y„')+HA (—HA+ 2H, )
=H ' sin'(ffs~a/L)+HA(HA+2H, ); (20)

for a/L~10 4, H, ~10 aPnd HA 10', we have

cpeA'* ———(4JS/h) (eA +y eB'&)

+ rHAeA +QHoeA
—co eA+ = (4JS/h) (eA'*+y„eB'*)

AHA eA'*—yHoeA" —+4m Sho/m7r;
(A1)

coeB"= (4JS/h) (eB"+y~eA&)

QHAeB +'rHoeB
—coeB'&= —(4JS/h) (eB"+y eA'*)

+yHAeBo yH peB'* —4yShp/ff47r—

co/~= (2H„II,)'[1+(H /4HA) proffs'(cc/L)s). (21) We solve for eA'* and find

Thus,

i=pe (H, '/HA&) 4ro(a/L) pff4.

We consider, for example, the case of Cr203 for which
we have accurate values of H~ and H, . From Foner, '
Hg=900 and H, =2)&10 oersteds. This results in a
(2HAH, )' resonance at 1.8 mm. From above, taking
(ci/L) =5X10 ', we find

lcd/y= AH=330 m oersteds.

The line width for the (2HAH, )l resonance is narrow
enough so that it should be possible in thin single
crystals of Cr203 to resolve the spin wave structure.
With thicker crystals, the apparent single line may be
skewed by the spin wave structure.

The high frequencies required to reach resonance in
an antiferromagnet make this eGect experimentally a
more difFicult one to observe than in a ferromagnet. A

Simon Foner, Proceedings of the International Conference on
Magnetism, Grenoble, 1958 (unpublishedl.

eA"= (4ySh /ffspr) (—co'y[HA+H, (1—y„)+Hoj
+v'[HA+H. (1-v ) —Ho jLH.'(1 v')—
+HA(HA+2H, )+Ho' j)
X{cd'—fyHo+y(HA(HA+2H. )

+H'(1 —v-'))'3') ' (A2)

Equation (A2) shows that the resonance is shifted from
the free-field resonance by the factor pHp. Expanding
the denominator of (A2) for fff 10 and HA«H„we
find that resonance occurs at

Cp/7 =~HO+ (2HAH8) '*[1j(He/4HA) 7r'fff'(a/L) Oj, (A3)

which is to be compared with (21). In a resonance
experiment at constant co, we pass through a series of
spin wave resonances at discrete static field intensities
between 0 and co/y. For example, in order to sweep
through the resonances corresponding to a given nz in
Cr&04, one must vary H p from 0 [if co/p= (2HAH, )'*j to
=80ffs' oersteds. As can be seen from (A2), the ampli-
tudes will also vary slightly differently with co than in
(18) but this difference is unimportant.


