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photovoltages. It is dificult to reconcile this with the
opinion expressed in reference 3 that all individual
elements contributing to the total photovoltage are
lined up in one direction.

From Figs. 2, 4, and 7 we see that the negative and
positive peaks can occur separately. This suggests that
they may be due to independent mechanisms. For the
positive peak, processes occurring in the bulk of the
crystal are likely to be of major importance. The
negative peak, occurring in the region of very high
optical absorption, may be mostly governed by surface
properties. It is also significant that whenever a crystal
shows an abnormally large photovoltage both the nega-
tive and positive peaks are of the same order of magni-
tude. This shows that the mechanism responsible for
the larger-than-band-gap voltages must be operative
both in the bulk and at or near the surface.

In conclusion we should like to point out that the
measurement of the anomalous photovoltaic eGect can

become a useful tool in the study of crystalline disorder
in ZnS. Even at the present stage we can determine
from the shape of the I„curve the predominant crystal
structure and the presence of stacking faults. In order
to put the correlation between disorder and photo-
voltaic eGect on a more quantitative basis a much
deeper understanding of both is necessary. %e hope to
continue these studies.
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The equation giving the current density as a functional of the vector potential for an impurity supercon-
ductor derived by Mattis and Bardeen is used to compute the temperature dependence of the penetration
depth of impure superconductors. Results of calculations for different values of the ratio of the coherence
distance to the mean free path and also for diff'erent values of the ratio of the coherence distance to the
London penetration depth are given. The results are applied to tin as an example, and appreciable deviations
from the D —(7'/I', )'g & temperature dependence of the penetration depth are found for all values of the
mean free path.

'QIPPARD'S' experiments on penetration depths in
tin-indium alloys show that there is a marked in-

crease in penetration depth with decrease in the mean
free path, 3, from impurity scattering. Largely on the
basis of this work, Pippard suggested that the London
equation for the current density in terms of the vector
potential,

be replaced by the nonlocal relation

j(r) =
4 eA(T)gs ~

p RR A(r') J(R,T)e ~l'
dr', (2)

E4

where R= r—r', A(T) is the London parameter, and $o

is the coherence distance. In both cases the gauge is to
be chosen so that divj =0. In (1), this implies divA=O,
and this is also true of (2) for most cases of practical
interest. Pippard suggested that the kernel be taken as
J(R,T) =exp( —R/go). To account for the fact that the

' A. B.Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).

penetration depth, ), of even impure specimens seems to
follow the empirical law

he also suggested that Ps and A increase with l in a
similar manner.

The theory of superconductivity of Bardeen, Cooper,
and Schriefer, ' as modified by Mattis and Bardeen' to
take impurity scattering into account, gives a form
similar to (2), but with gs a temperature-independent
parameter and J(R,T) a relatively slowly varying func-
tion of temperature. The temperature dependence of the
penetration depth then comes almost entirely from a
variation of A with T. It is of interest to compare pre-
dictions based on the B.C.S. theory with experiment,
particularly in view of the fact that the relative inde-
pendence of coherence distance with temperature divers
qualitatively from Pippard's suggestion.

' Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957),
referred to as B.C.S.

e D. C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958).
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We 6nd that for all values of I, the theory gives a
dependence similar to (3) near T„with some departure
at low temperatures. 4 When theoretical values of )t(T)
are plotted as a function of the parameter y= (1—t') -*',

a straight line is obtained for large y, but there is some
bending below the line for y&1.5.' The di8erence be-
tween the slope for large y and the intercept at y=1 is
small, of the order of 10%.

The result of Mattis and Bardeen reduces at zero
frequency to a form similar to (2), with the kernel

J(R,T) given by

2A(T) «' t." 1—2f(eo) 1—2f(E)
J(R,T) =

~«(0)A(0) ~ o

sin(2ns)
X de, (4)

where tr=R/Itsp. We use the same notation as B.C.S., iil
which e0 is the temperature-dependent energy parameter
and f the ordinary Fermi function. The penetration
depth is de6ned by

Carrying out the q integration, letting N=cos0, and
using (5), we get

6sos r" t'" r 'l1 —2f(ep) 1—2f(E)
E(q) =

c'goA(0)«(0) &p "p i E

sin(2ne)
(1 st') e'—ott"e t'dstdRde. (1())

Let b= e/ei et= sqttvp bp= «/st a= 1/q/, and define

g(b) by

1

g(b) =q ~ ~ sin(bRq)(1 sts)e—nt'e' +"dstdR (11.)
~ 0 —1

Evaluation of the integral gives

b' (1+b)'+a'
g(b) =2b ln——

2 . (1—b)'+a'

1+a' ' (1+b)'+a'
ln

2 . (1—b)'+a'

H (x)dx/H (0). 2
+2ab are tan~

~

—rr . (12)
1—b' —a'

It is convenient to use the Fourier transform of the
That branch of the arc tangent between 0 and m must be
taken. We need to 6nd

j(r) = (2sr) '* I dqe'&'j(q).

Define E(q) by

j(q) = —(~/4 )E(q)a(q), (7)

To derive E(q), use (4) and (7) to get

E(q) =
3 Ts427f'

sin 8 sin p
c'&(T)go 4o jo o

Xe'o ""J(RT)dqd8dR. (4))

4 J. Bardeen, Proeeedslgs of the Eemerlsrtgh Ortrtes &em-oriel
Conference on Joe-Tensperatgre Physics, I.eiden, IIoLlund, 1958'
(Physics 24, 5—27 (1958)).' A similar departure from the empirical law has been observed
by A. L. Schawlow (to be published), contrary to results of
Pippard and co-workers.

'G. E. H. Refer and Es H. 5ondheimer, Proc. Roy. Soc.
(London) M'9S, 336 (1948).

where a(q) is the Fourier component of the vector
potential. Once E(q) is known, the penetration depth
may be found from the general solution given by
Pippard' and based on corresponding equations derived

by Reuter and Sondheimer for the anomalous skin
effect. ' For random scattering, we have

00 —1

) =~ j" in[1+q-sE(q)]dq
0

si(b'+boo) &

b' ((1+b) s+a s) 1+a' (1+b)'+a'
X

E (1 —b)'+a') 2 (1—b)s+ as

( 2a ) db
+2ab arc tan)

~

—w —. (13)
E1—b' —as) b

The product of the first term in each curly bracket is
integrated directly and gives

[1-2f(ep) jsra/«.

The other terms will be integrated in various limits and
values of E(q) valid in the intermediate region will be
found by graphical interpolation. Consider the region
where ql&)1 and «(0)srqb/2so))1. In this region we
neglect all terms of higher order than u or b0 compared
to 1. The first term in curly bracket one of Eq. (13),
multiplied by the second term of curly bracket two,
gives a contribution

[1—
2f (eo)1[ssr' —sraj/eo

The second term in bracket one multiplied by the sum
of the erst two terms of bracket two is integrated by the
same m'ethod as used by B.'C.S. %'e rieted the further



PENETRATION DEPTH IN I M PURE SUPERCONDUCTORS 1211

restriction that rsprqgp»1. The result is

—(4/e, ) ln[qiiieo/eo(0)].

TAnLE I. Values of X(T)/Xz, (T) as a function of the ratio
(p/P, z(T) for various values of

2l/primp

T.he upper half of the table
is for t~ 0, the lower half for t= 1.

2a
arc tan1

1

—pr

(1—b' —a' &

=0 for b&1,
(17)

for b(1.

The sum of the first two terms in bracket one multiplied

by the third term of bracket two is integrated by use of
the approximation

+2l/~)p
gp/&i(~)Q

0.0 1.00
0.2 1.06
2.0 1.29
7.3 1.62

20 2.06
50 2.68

100 3.36

2.5 1.0 0.5 0.25 0.125
' 0.0625

2.56
2.60
2.71
2.87
3.14
3.62
4.15

3.45
3.46
3.52
3.63
3.84
4.20

' 4.61

1.14 1.32 1.57 2.11
1.21 1.37 1.60 2.14
1.43 1.58 1.80 2.27
1.75 1.87 2.09 2.45
2.20 2.30 2.50 2.77
2.83 2.89 3.08 3.26
3.40 3.47 3.60 3.78

The corrections to this approximation are negligible.
The result is

—2apr[1 —2f(eo) j/eo.

Adding all the contributions, we get, for qD)1 and
prq$p/2»1,

0.0
0',2
2'.0
7.3

20.0
50.0:

100

1.00
1.05
1.24
1.53
1.91
2.46
2.97

1.07
1.11
1.30
1.57
1.95
2.50
3.00

1.20 1.36 1.78 2.19 2.91
1.24 1.40 1.81 2.22 2.93
1.41 1.55 1.92 2.32 3.01
1.66 1.81 2.10 2.48 3.11
2.03 2.16 2.40 2.76 3.27
2.56 2.66 2.86 3.18 3.59
3.07 3.15 3.34 3.66 4.05

3' 6p

E(q) =
gc AA'vp

16ep
1—2f(eo) — ln(prqgp)

& q~&o

L1—2f(«)j (19)
mal

This reduces to the result of B.C.S. as l ~~.
Consider the opposite limit of ql(&1. The value of

g(b) then is

g (b) =4b/3 (a'+ b')

and they give a contribution to the integral of

p, ep(G) primp —4sqP, pep(0)Pr)p

f'P, ep(0)pr)p) '
~ P (2ps+1)

1

'
1

—(~(2m+1))'
n=p 2l )

. (25)

Summing all the contributions and using, r near T= T„
We need to find

as+ bs

4 t' 1—2f (ep) 1—2f(8) db

3~a .o Z

we get for ql(&1
(21)

3l

h./h. r =0.20» sP s (26)

At T=O we get for ql(&1
E(q) =

Xz,'(T)0 40prP, op(0.)gp

L1—(~b/2l)'j'
X

3 3$pP, op(0)

(p.eo(0)prpo) 4 p, eo(0)pap
tan1

) 3

)&arc tan

E(q) =
prinz, '(0)go pr 1

2 [(ago/2l)' —1ji

(primp)
' f

t, 2l)
(22)

(P o(0) 8oi'
xp (2~+1)

1

nm E 2l )

—e(2&+1)s

Q K Qx» +1 1

—1
1 2l E 2l )

A simple form for (27), valid only when l/po((1, gotten
by simple integration of (21), is

1pr 2l 1 ( l )x -+»1 1. (28)
14 p, „(0)p,

(23)isprqlP,

The second term in the curly bracket of (21) is integrated
by contour integration with the path chosen along the x
axes from —po to + po and a semicircle of infinite radius
in the upper half s plane. Poles are located at

b=sa and b=spr'(2ps+1)/P. et, rp=o, 1, 2,'oo, (24)

The values of E(q) in the intermediate region of q are
found by graphical interpolation of the above results.

' A more accurate value for the nuznerical coeffi'cient in (26)
has r'ecent4y beeri foehn'cl top be 0;21.

2l
where the upper form holds for pr$p/2l(1 and the lower
form for prfo/2l) 1. At T= T, the first term in the curly Xz,'(T)P,ep(0)0.20prgo

bracket of (21) gives
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50-

g 45-

O 40—

35

2llrr(p Ijl8 21&rr fe = I/8 21/rr(e = I/4 qualitative agreement between experiment and theory,
which is all that can be expected in view of the simpli6-
cations made in the theory and the appreciable un-
certainties in the experimental data.

The penetration depth for smaller values of the ratio
2l/rr$s than those shown in Table I is found by forming
the E(q) values of (22) and (28) in the limit l/to~ 0.
Assuming also that l/)ir. (T)«1, corresponding to the
London limit, one gets'

and

»(T) (6P.es(0)/f)"
) (T)=,

Ls —(2+/~'P. «(0)b)»(~b/f) )I

at T= T,. (31)

For finite small values of 2f/e. $s one makes a plot of the
ratio of the exact penetration depth as given by Table l

Fio. 1. Calculated values of X(I) for Sn vs (1 I4) I for vari—ous
values of 2I/s. fs.

The penetration depth is found by numerical integration
of (8). The results of this integration are shown in
Table I for various values of the parameter 21/rrgs.

The results show that the ratio P, (T)/)ti, (T) is almost the
same at t=0 as at t= j., and therefore results for
intermediate temperatures may be found by inter-
polating between the values at t= 0 and t= 1.

To find the temperature dependence of the penetra-
tion depth for a specific metal, we need to know Ar. (0)
and $s for that metal. For tin, values of Xi, (0) and es

have been estimated from experimental data. ' The value
of es is given by the B.C.S. theory as

0s .18Ans/kT, . (29)

For tin, )tr, (0)=3.5X10 ' cm and ps=7.3)II.(0). The
temperature dependence of the penetration depth for
tin is plotted in Fig. 1, with the abscissa being (1—f') I.
The results of Fig. 1 are rather insensitive to the exact
interpolation procedure used in Table I. Figure 1 shows
appreciable deviations for all values of 2l/vries from the
straight line described by (3).

A comparison of the experimental data with our
theoretical results is shown in Fig. 2. There is good

s f. F. Faber and A. B. Pippard, Proc. Roy. Soc. (London)
A231, 336 (1955).

6—
40
O

I t I I I l f I I
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l08), cm~

Pro. 2. Comparison between experiment and theory for Sn.
X is plotted vs l at t =0.6. The arrows at the right refer to the value
at l= ~.

to the limiting value of the penetration depth given by
(30) or (31) as a function of 2l/7rps. Such a plot ap-
proaches the asymptotic value 1.00 as 2E/vries approaches
zero and gives accurate values of the penetration depth
for small values of 2l/rrPs.
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