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Many-Body Problem in Quantum Statistical Mechanics. I. General ForiIIulation
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A formulation is given whereby the grand partition function of a many-body system satisfying Bose-
Einstein or Fermi-Dirac statistics is expressed in terms of certain U functions defined for the same system with
Boltzmann statistics. It is then shown that these U functions can be evaluated in successive approximations
in terms of a binary kernel B which can be computed from a solution of the two-body problem. The approach
to the limit of infinite volume is studied. The example of a hard sphere interaction is discussed in some detail.

I. INTRODUCTION

'HK present series of papers is devoted to a method
of treating the many-body problem in quantum-

statistical mechanics. Much of this work was performed
in the summer and the fall of 1956 and has been
reported' in abbreviated versions before.

From the general formulations of statistical mechanics
it is known that the thermodynamical properties of a
system can be obtained from its partition function.
However, the actual task of evaluating the partition
function from the atomic or molecular interactions is
both complicated and dificult. In classical statistical
mechanics, for a system in the gaseous phase, the
problem has been reduced to a series of quadratures
through the work of Mayer and others. ' In quantum
mechanics, the enormous difhculty of solving the
N-body eigenvalue problem (N&3), allows so far only
for a systematic method3 of computing the second
virial coefficient, and for computations' of the quantum
corrections to the classical results. For a discussion of
phenomena at very low temperatures (e.g. , the problem
of Bose-Einstein transition and the problem of the
many-body ground-state energy) where quantum eGects
are dominant, these known methods' are not applicable.

The purpose of this and the subsequent papers is to
develop a systematic method that is suitable to treat
problems in which quantum eGects are important. The
general procedure followed is to first separate out the

effect of the statistics (i.e., Bose-Einstein statistics or
Fermi-Dirac statistics) of the quantum-mechanical
problem and to express the grand partition function in
terms of certain U functions defined in terms of the
quantum-mechanical problem with Boltzmann sta-
tistics. Such a separation of the effect of statistics is
formulated in general in this paper and will be further
developed in later papers. It is particularly useful in
treating the phenomena of Bose-Einstein condensation.

The second step is to formulate a method whereby
these U functions can be computed from a solution of
the two-body problem. In eGect, the computation of U
is through an expansion, loosely speaking, in powers of
a function, called the binary kernel, which is obtainable
from a solution of the two-body problem. The method
is applicable in cases where the two-body interaction
may contain a singular repulsive core.

For the gaseous phase the formulation in this paper
yields a recipe, much like Mayer's method in classical
statistical mechanics, for computing the equation of
state through a series of quadratures. The method can
also be used to calculate the ground-state energy, to
obtain the limiting forms of thermodynamical functions
at very low temperatures and to study the problem of
Bose-Einstein transition. These topics will be discussed
in later papers.

2. SOME DEFINITIONS

We consider an A'-particle Hamiltonian

N

Htr= —p V,z+p V(r;—r,),

where for simplicity units are chosen so that 5=1 and
mass of the particles= —,'. Three- and more-particle
interactions are not considered, although their inclusion
would not introduce real complications in much of the
following discussions.

To be speci6c, the E particles are considered to move
in a cubic box of dimensions L)&L)&L with penodie
boundary conditions. We use the symbol Q=L' for the
volume of the box.

We now discuss separately the cases when the
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particles satisfy Boltzmann, Bose-Einstein, and Fermi-
Dirac statistics.

A. Boltzmann Statistics

We follow the standard treatment and introduce the
operator

grating over rl, r2, one can show" that

Zn—= 2 P'!) 'Q~s"
N=O

=exp P s'(t!) '
&1, ,llU~I1, l&d"r (I 7)

"n

where

W~—=exp( —PPa),

P=(~T) '.

We shall also use the thermal wavelength

X= (4m p)1.

(I.2)

(I.3)

For the sake of completeness we give a proof of this
formula in Appendix A.

According to the principles of statistical mechanics,
the equilibrium pressure p and density p of the system
are given by

The matrix elements of 8'N in coordinate representation
ls and

—=limQ 'incan,
KT

p=limQ '(8 ingnjB inz).
(1',2'" tV'I W&I1,2 tV&

=Q, P;(1',2'. 1P)lb;*(1,2 1V) exp( —PE,). (I.4)
Using (I.7) one obtains

Here

1—:r~—= (a~,y~, s~), etc. , 1'=—rg'=—(ag', yg'zg'), etc. ,
—=lim P b)(Q)s',
Kg 0—+oo l=l

and 1t;(r ), E; are the normalized eigenfunctions and
eigenvalues of H~ with periodic bourldory conditions in
a cubic box of volume Q. The summation in (I.4)
extends over all eigenfunctions 1b;. It is useful to notice
that the exchange of any pair r, r; with r, ', r, leaves
O'N unchanged.

The partition function is

where

p=lim Q tb((Q)s',
0~co l,=l

b~(Q) =(l!Q) ' '

&1, ,/I U~l i, ,l&d"r. (I.10)

0= 1)

Q~=P exp( —PE;)

= "(1,2. "XIW~I1,2" X&d»r. (I.S)

To obtain the logarithm of the grand partition function
in a simple form we follow a procedure first introduced
by Ursell2 and by Mayer' for classical statistical
mechanics and by' Kahn and Uhlenbeck for quantum-
statistical mechanics. One defines U& functions by

It is important to remember that the 8' and U
functions are defined for fixed Q. The question of
whether b~(Q) approaches a limit as Q —+ ~ will be
discussed in Sec. 5.

B. Bose-Einstein (i.e., Symmetrical) Statistics

For symmetrical statistics, the corresponding func-
tion O'N~. is

(1~ 2' N'IW~sl12 ' ' cV&

—=X! Q P;(1',2', ,cV')

Xf,*(1,2, ,1V) exp (—PE;). (I.11)

g,s 1 g~s (12,. ,XIWNsl1, 2, . . . ,Ã&d'
~n

Putting rl ——rl', r2 ——r2' in these equations and inte-

sym. P

&1' 2'I W~
I 1,»—=&1'I U~

I
1&&2'I U~ I »

+&1',2'I U~ I 1,», We define

&1'»' 3'I W~
I
1 2,3&—=&1'I U~

I
1&(2'I U~l 2)(3'I U~

I
3&

+&1'IU~li&&2', 3'I U2I2 3&

+&2'
I U~ I

»&1' 3'
I U2I1,3&

+(3'
I
U

I
3&(1' 2'I U

I
1 2) We also define U&~ functions in complete analogy with

+(1',2'3'I Usl 1,2,3), etc. (I.6)

' B. Kahn and G. E. Uhleiibeck, Physica 5, 399 (1938).

(1',2'I Wm'I1, 2&=—(1'I Ug I
1&(2'I Ups l2&

+(1',2'I U~sl1, 2), etc. (I.12)
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The grand partition function is

g s—P (~ [)
—1Q ssN

00

=exp P(/I) 's' (1, ,/IUi l1, ,l)d"r (I.13)

which is proved in the same way that (I.7) was proved.
One obtains then again (I.9) with bi replaced by bie,

where

bi (0)=(/!0) 'JI(1, ,/I Ui I1, ,/)d~'r (.I.14)

C. Fermi-Dirac (i.e., Antisymmetrical) Statistics

For antisymmetrical statistics one has

(1 2 . ,E IW~" l12 1V&

4'(1',2' P")
antisym. p

XiP,*(1,2, ,N) exp( —PE,). (I.15)

Equations (I.12), (I.13), and (I.14) remain the same
in form if one replaces all superscripts S (for sym-
metrical statistics) by A (for antisymmetrical sta-
tistics).

In the following we list some simple examples to
illustrate these definitions:

Encamp/e 1:
&1'I wil »=(1'I wi'I »=(1'I wi'I »=(1'I Uil »

=pi, 0—' exp[ik. (r,—r, ') —Pk'], (I.16)

where the summation extends over k=2mL '(/, nz, e)
with /, m, m=0 and & integers. In the limit 0 —+ ~,

and

i'd=2
—&0—'[exp(ik, .ri+iki, r,)

+exp(iki, ri+ik, r2)], (k,Ski).

Substituting these into (I.11), one obtains

(1',2'
f
Wpe

f
1,2)= (1'

f
Wi

f
1)(2'

f
Wi

f
2)

+(2'
f
Wi

I
1)(1'

I
Wi

f
2).

Comparison with (I.12) shows therefore that for free
particles

(1',2'IU 'I1,2)=(2'IW
I
1)(1'IW I2). (I.21)

Similarly one finds

(1',O'I U,"I1,2)= —(2'IW I1)(1'IWil2). (I.22)

3. U ~AND U~INTERMSOF U

In the last section we wrote down the main formulas
in the Ursell-Mayer-Kahn-Uhlenbeck treatment of the
equations of state. To calculate the coefficients b&, b&~,

and b~ one first calculates the functions Uq, U~, and
U&~. Now the functions U&~ and U&~ are considerably
more complicated than Ui. [We saw, e.g. , in (I.20)
and (I.21) that for free particles, U2, Ua vanish,
but not U2e and U~".]In this section we shall formulate
explicit rules by which U& and U~ can be computed
once the functions U~ are known.

Such rules exist because the U's are defined in terms
of the W's, and the W's as defined in (I.4), (I.11), and
(I.15) are related through the equations

(1', ' ',AT
I
W~el1 ', iV&

,ZV'I W~ f1. ..V&, (I.23)

(1'I U,
I
1)—+ (8~')—' d'k exp[ik. (r,—r, ') —Pk']

=X- exp[—(r,—r, ')2/(4P)]. (I.17)

One easily computes b~ ..

(0) b, s(0) b,a(0) =Qj, 0 ' exp( —Pk'). (I.18)

,/i/'I w~~
I
f, ,iv&

Zp' ~p'+(1 ' ' 'P
I WNI 1, ' ' ',A), (I 24)

P =any one of lV I operators that permute

the variables ri', r~', ., r~', (I.25)

In the limit 0 —+ ~, one obtains

bi(0) ~X '.
Eral/e Z:

(I.19)
6~ ——1 for even permutations P',

(I.26)
6~ = —1 for odd permutations P'.

For free particles it is clear from the definition (I.4)
that

(1,. . .,g I
W~ I1, . . . ,AT&

(&'I wil A'&

Hence one obtains from (I.6)

U2=0, U3=0, etc.

Encamp/e 3:
For Bose-Einstein statistics, the wave functions for

tw'o free particles are

l/=0-' exp[ik ri+ik r,],

Equations (I.23) and (I.24) are proved in Appendix B.
Starting from Ui one can construct Wi from (I.6).

Equation (I.23) then enables one to compute W, e

which in turn leads to a computation of U~8 through
(I.12). The details of these procedures appear in
Appendix C. Here we only state the results as:

Elle A.—To calculate U~~ we first distribute the l
integers 1, 2, .l into m groups each containing e
integers, with P m n=/ Such a groupi. ng may be
represented as follows:

f(a)(b) )((cd)(ef)" )((g») } .
, (1.27)

where a, b, c, are t,he various integers. In the erst
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curly bracket there a,re m& mund brackets with one
integer in each (m~ ——0, 1, 2 ), and in the second
curly bracket there are m2 round brackets with two
integers in each (m2 ——0, 1, 2. ), etc. Within each
round bracket the integers are arranged in ascending
order. Within each curly bracket the round brackets
are arranged such that their erst integers follow an
ascending sequence.

We then form the sum

&(&a'IU~la&&h'IU~lb& )
&&(&c' b'IU-lcd&&e', f'lU2l. f&

where a', 6', c', b', e', f', is any permutation of
the coordinates 1', 2' /'. The summation in (I.28)
extends over all such permutations of 1', 2'- l' which
satisfy the condition [see examples (1) and (3) belowj
that upon putting r;=r (all i), the summand cannot
be written as a product of two factors, one of which
depends only on some, but not all, of the coordinates
r&, r&, r&, while the other depends only on the rest
of these coordinates. We then sum up all expressions
(I.28) over the different groupings (I.27). This total
sum is equal to U~~.

RNle B.—To calculate U&~ we proceed in exactly the
same way as rule A, with only the following change:
we replace (I.28) by

2 ~(&a'IU, la&&h'IU, Ib& ")
X((c',b'IU Icd)' ) ' (I 29)

where

I'a b cd6=+1 if the permutation l l
is even,a~c

r;= r (all i) the erst and third factors together depend
only on r2, r3, and r5 while the other two together only
on I'y, I'4, f6, f7, and I'8 ~

Example 4:

It is easy to see that for the case of Bose-Einstein
statistics the combination

(1',
=—P . I"(1',".,/'lU,

l 1,",/) (1.30)

always occurs instead of U& alone. By introducing (I.30)
one could simplify the formulas for U&~. Developments
along these lines have been pursued and led to calcu-
lations of the transition point in a Bose-Einstein gas
with interactions. These developments will be presented
in a later paper.

Examp/e 5:
Similarly, for the case of Fermi-Dirac statistics, the

combination

&1', ", /le, 'l ,1",&/

—:P p Cp 8'&1', ,/'l Ug
l 1, ,l) (I.31)

always occurs instead of U& alone.

Example 6:
For free particles, using (I.20), one sees that U~e is

equal to a sum of products of I U& functions. It is easy
to prove that there are (/ 1)! ter—ms in the sum.
Equation (I.14) therefore leads to

b,e(0)

6= —1 if it is odd.

The meaning of these rules is actually quite simple
even though their statements appear to be so long.
We quote a few examples.

=l '~' i" &1IU&I2&&2IU&I3&&3I U&14&' ' '(/IU&11)d '~

=l '0 ' trace (U~)'.

Now by (I.16) the momentum representation of U~ is

(I.32)(k'
l Ui

l k) = bkk' exp( —Pk')

b(e (0)= l '0 ' Q k exp( —/Pk').

bP(0) -+/ '(8w') ' '

exp( —/Pk')d'k=X 'l & (I 33)

Example I:
U2'= &2'

l Ui l
1&&1'

l
Ul

l 2)

+&1,2 lU, l1,2&+&2,1 l U, l 1,2&.

The term (1'l U~j 1)(2'l U~(2& is not included because As 0 —+ 0D,

when

it splits into two factors, one of which depends only
on r&, the other only on r2.

Example Z:

U"=—(2'lU l1)(1'lU l2)
+(1',2'l U2l1, 2)—(2', 1'l U2l1, 2).

Example 3:
A term like

which agrees with well-known results. One obtains
similarly

b&"(0) —+ (—1)'—9.—'l—i. (I.34)

4, U) IN TERMS OF THE BINARY KERNEL

The functions V~ will be expressed in this section in

terms of a function 8, called the binary kernel, which

is calculable from a solution of the two-particle problem.
We treat W~, U~ as operators and write

is not to be included in Use because upon putting '/fr~(P) =exp( PFI~), —(I,35)
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Here we have explicitly indicated the P dependence of
Wsr. Writing H~ T——sr+V~, where Trr and V~ are,
respectively, the operators for the kinetic and potential
energies, one notices that

W '(P) =—exp( —PTN) =II w(P; i),

where

eI(P) =

Wz(P) =

2'

w(P; i)—=exp(PV', 0). (I.36) 2
2'

The explicit form of w(P;1)=(1'~ WrI1) is given by
(I.16). Thus WN'(P) is a product of S operators each
of which operates on the coordinates of one particle.
If t/' is finite, one can expand 8"~ into an exponential
series in powers of V:

pP

W~(P) =W~ (P0)+ ' W~0(P P')( —V~)W—~0(P')~P'

pP pP'

+ dP' dP" W~'(P P') (—V~)—

XWx'(P' —P")(—Ver) Ws'(P")+ . (I.37)

W3(P) =

I 2
I' 2

I 2 3
I 2

l 2 3
I' 2' 3'

+ 0 ~ ~

I' 2 3

I 2 3

I 2 3

I 2 3
I/ 2/ 3/

l 2 3

If V is +00 for some configurations, this series ceases
to be meaningful. For the time being we regard V as
6nite everywhere, and shall allow for the possibility of
V going to + 00 after some rearrangements of terms to
be discussed later.

It is of great convenience to represent the sum in
(I.37) by diagrams. We shall represent War(P) as a
sum of operators, each corresponding to a diferent
diagram which consists of X vertical lines i7 connecting
the points i with i (i=1, , E). The points i are all
on the same horizontal base level. All the vertical lines
ii' are of the same length P and are linked by some
horizontal links, iso two of which are crt the same height

(i.e., the vertical distances between the horizontal base
level and different links are different).

In Fig. 1 we give some examples of the diagrams for
W~, W2, and TV3. To specify a diagram, one does not
specify the exact heights of the horizontal links (since
they are to be integrated over), only the vertical
sequence in which they are drawn. Thus, for example,
in Fig. 1 the sixth and the seventh diagrams for Ws(P)
are counted as diferent diagrams.

Yo obtain the operator that corresponds to a diagram,
one proceeds as follows:

A line segment of length y along the vertical line iz'
stands for the operator w(7; i)= exp(yV;0). A horizontal
link between ii' and jj' represents the operator
—V(r, —r;)dP' where P' is the height of the link above
the base line. Multiplying all the operators represented
by all the vertical line segments and by the horizontal
links, and integrating over the heights P' of the various
horizontal links, one obtains the operator represented
by the diagram. Two important further rules must be
followed.

+ 1 ~ ~

Pro. 1. Diagram representation of TV' as a power series in V.
IV3 has altogether 9 diagrams with 2 horizontal links, 27 diagrams
with 3 horizontal links, etc. The operators that correspond to
these diagrams are given by Eqs. (I.38), (I.39), and (I.40).

(a) The order in which the operators stand must be
such that those representing line elements lower down
in the diagram stand to the right of those representing
line elements higher up in the diagram.

(b) The limits of integration of the heights P' of the
horizontal links are defined by the coriditions that
P~P'~0, and that the relative height of any two links
remain of the same sign within the limits of integration
as in the diagram.

Explicitly, the diagram for Wt(P) in Fig. 1 corre-
sponds to the operator

Wr(P) =w(P; 1). (1.38)

X(—V»)w(P';1)w(P';2)dP'+ dP' dP"
0 0

Xw(P —P'; 1)w(P—P', 2) (—V»)w(P' —P"; 1)

Xw(P' P";2)(—Vts)w—(P"; 1)w(P"; 2)+ . . (I.39)

Similarly, the Grst three diagrams for Ws(P) in Fig. 1
correspond, respectively, to the first three terms in the

The erst three diagrams for Ws(P) in Fig. 1 correspond
to, respectively, the first three terms in the sum

W (P) = (P; 1) (P; 2)+ ~ (P P'; 1) (P—P—'; 2)
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I
' 2' I' 2' I 2,

'

+ 1 ~ 0

2 I 2
I 2 3 I'

I

2 3 I 2 3

03 (P)

3 I 2 3

+ l/

2 3 I 2

+1 ~ ~

+ 0 ~ ~

I 2

FrG. 2. Diagram representation of U~ as a power series in V.
U3 has altogether 6 diagrams with 2 horizontal links and 24
diagrams with 3 horizontal links, etc. [See Eq. (I.42).]

In fact, one sees in general that

U~(P) =P(all different "connected diagrams" with

the parameter P and with 1V particles). (I.42)

A comparison of (I.41) and (I.42) shows that the
diagrams that contribute to W~(P) but not to U~(P)
are the unconnected ones which are grouped in the
Ursell expansion (I.6) into products of Ui with values
of /(E. We shall see in the next section and in Appendix
E that the connectedness of the diagrams in U~(P)
also determines the behavior of U~(P) as the positions
of the particles become far distant from each other.

It is convenient to give an explicit operator form for
Us. Using (I.6) and (I.35), we find

Us(P) =exp( —PHs) —exp(+PVi') exp(+PVs'). (I.43)

following sum:

Ws(P) =tr (P; 1)tt (P; 2)tr (P; 3)+ I tie(P P', 1)—
0

I 2 3

I 2 3

2 3' I' 2' 3' I' 2' 3' I' 2' 3

I 2 3 I 2 3 I 2 3 I 2 3

X~(P—P', 2) (—Vi2)~(P'; 1)~(P', 2)dP' w(P; 3)
+ 0 ~ ~

pP

+w(P;1)
~

w(P —P', 2)m(P —P', 3)(—Vss)
0

Xw(P'; 2)w(P'; 3)dP' + . . (I.40)

In terms of these diagrams, Eq. (1.37) becomes

I 2 3

2 3

I' 2 3'

I 2 3

2/ 3 I/ 2/ 3/

I 2 3
I' 2' 3'

+ 1 ' ~

W"(P) = g(all diferent diagrams with the

parameter P and with 1V particles). (I.41)

+

I 2 3
2 3

I 2 3

+ e ~ ~

As is clear from the examples illustrated above, some
of these diagrams may have unconnected parts. The
unconnected parts of a diagram represent commuting
operators whose product is the operator corresponding
to the whole diagram.

Let us de6ne a "connected diagram" to be one in
which all parts are connected through the vertical lines
and the horizontal links. By comparing Eq. (I.6) with
Eqs. (I.39) and (I.40) (or with their corresponding
diagrams in Fig. 1), one finds that Us is the sum of all
"connected diagrams" in Wz(P) and Us is the sum of
all "connected diagrams" in Ws(P). This property is
illustrated in Fig. 2.

+ +

I 2 3

FrG. 4. Examples of diagrams which contain 8 as
part of their structure.

We shall now define the binary kernel B(P; 1,2):
B(P; 1,2)=—(—Viz) Ws(P) = (—Vis) exp( PHi) —(I.44).
From (I.43) one obtains, by differentiating with respect
to P,

'Us(P)
B(P; 1,2) = —(Vi'+Vs') Us(P). (I.45)

8(p;l,2) = + +
2 I 2 I 2

I/ 2/

+ 0 ~ ~

I 2

FIG. 3. Diagram representation of B.

It is important to notice that by using the solutions
of the two-body problem (in a box 0) one can compute
exp( —PHs). Equations (I.43) and (I.45) then lead to a
computation of Us(P) and B(P;1,2). Furthermore,
these two equations do not contain t/" explicitly.
Therefore, the explicit form of B(P; 1,2) can be evalu-
ated even if V=+~ for some spatial configurations
of r~ and r2. The example of hard spheres will be given
in a later section.
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Substituting the diagrams for N~2 in Fig. i into
(I.44), one is led to the representation of B in terms of
the diagrams of Fig. 3. The top horizontal links in the
last four diagrams represent factors (—Vrs). With this
definition it is clear that any group of graphs with a
part that has the same form as these diagrams can be
summed to yield a factor B. In Fig. 4 we give two such
examples.

We have seen before that U~ is equal to a sum of
connected diagrams. The sum can be rearranged and
grouped together in the same manner as the two
examples in Fig. 4. One then obtains V~ as a sum of
diagrams in which only 8 appears with no isolated
horizontal links. In Fig. 5 we express Uz(P), Us(P), etc.
in terms of sums of such diagrams.

From these diagrams the explicit form of V~ in terms
of the binary kernel 8 can be readily written down:

2/

U2(P) =

I 2
)/ 2/ 3/ )/ P/ 3/

I 2 3

2 3

g + "g + g5
I 2 3

+ t ~ ~

d~e d~e
US(P) = a

~+bc
+ a +b~c

I 2 3 I 2
)
l 2/ 3/ )

l 2l 3/

P

Us(P)= dP'w(P P';1—)w(P P'; 2)—B(P'; 1,2), (I.46)
U4(pj =

)/ 2/ 3/ 4/ I' 2'3/4/

+ 0 ~ ~

P P'

Us(P) = dP' dP" w(P P"; 1)w—(P P', 2)—

X (P P'; 3)B—(P' P"; 2,3—)B(P";1,2) (P";3)

+ dP' dP" w(P P'; 1)w(—P—P'; 2)
~P "O

Xw(P P";3)B(P—' P"; 1,2)B(P—";2,3)w(P"; 1)

+four other terms of order B'

+terms of higher orders in B. (I.47)

pP pP' pP"
U4(P) = dP' dP" dP"' w(P P'; 1)—

J,

234 t 234 I 234
PIG. 5. Diagram representation of U& in terms of the binary

kernel B In rhese di.agrams there is no horizontal link (which
corresponds to V). The vertical lines are all connected through
structures representing B.The operators that correspond to these
diagrams are given by Eqs. (I.46)—(I.48).

terms of increasingly higher order effects of such a
perturbation. The convergence of such expansions is
not clearly understood by the authors. It is, however,
hoped that for interactions for which three-particle
bound states do not exist these expansions do converge.

Equations (I.46)—(I.48) are operator equations. For
illustration we give the explicit matrix element of,
say, Us(P) between the states (1',2', 3'I and I1,2,3) in
the coordinate representation. From (I.47) we obtain

U (P)=

x (P—P"', 2) (P—P";3) (P—P';4)

XB(P' P"; 1,4)B(P—" P"'; 3,4)—
XB(P'";2,3)w(P"; 1)w(P"', 4)

+95 other terms of order B'

+terms of higher order in B. (I.48)

(I.49)

(rt rs rs
I
Usl rt rs rs&

pP
dP

I

4p
dP Jr d dsrsd rcdsrgd r,

x(rt'I ~t(P —P") Ir.&(rs'I ~t(P —P')
I «)

X(rs I ~$(P—P') Ir,)(rd r, lB(P'—P") Irb, r,&

X(r,rb
I
B(P")

I
rrirz&(r

I
II r(P")

I
rs&

In (I.47) the first and the second operator on the
right™hand side represent, respectively, the first and the
second diagram in the corresponding sum for U3 in
Fig. 5, and the 6rst operator on the right-hand side of
(I.48) represents the corresponding first diagram for
U4 in Fig. 5.

These equations express U& for l& 3 as a sum of
integrals of products of z and B. Now 8 vanishes for
free particles. It characterizes the perturbation on 8'2
due to the interactions. The expansion in Fig. 5 and in
(I.47), (1.48), (I.49) for Uq are thus exp'ansions in

tP
+ dP' dP" ' d'r,

Xd'r (rt'
I
~r (P—P')1«&(rs'I ~t &P

—P') Ir.&

x(r, 'I mt(P —P") Ir.&(«, r.
l
B(P'—P") Ir., rb&

X(r„.,
l
B(P")

I
r„r,)(..l

W, (P")
I
r,)+.". (I.5O)

where the hrst two terms again correspond to the first
two diagrams for U~ in Fig. 5. The five corners in each
of these two diagrams are denoted by a, b, c, d', and e.
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In (I.50) we denote the spatial coordinates of these 6ve
corners by r, rb, r, and the heights of the horizontal
lines ab, de by P" and P', respectively.

b&(Q) = (i!) (O,r—s,rs ' ' 'ri
~
Ujn

~

0 ls fs ~ .ri&

Xdsrsd'rs. dsri (I..51).

Similarly one has identical equations for b&~ and b&~

with Uina and Uin~ replacing Uin. In (I.51) the region
of integration of r2, rs, .r~ is the box

—',1.&s;&—srl. ; i&2; (Q=L').
(I.52)

It will be demonstrated in Appendix E that as 0~ ,
the matrix elements of all the 8'~g, V~g, 8'~g, etc.,
operators for fixed r~, r2, . - r~ and r~', r2', . . .r~'
approach the matrix elements of the corresponding
operators at 0= ~. Furthermore, it will also be demon-
strated there that from (I.51) one obtains, as Q —& oo,

bi(Q) ~ bi( ")
—= (f!) ' (O,rs, rs, ri~ Ui (O,rs, ri)

Xds&20~3

bi (Q) ~bi (~)

S. THE LIMIT Q~~. MOMENTUM
REPRESENTATION

The results of the last three sections hold for arbi-
trary but finite values of Q. If one starts with the
Hamiltonian (I.1), but without the periodicity bound-
ary condition, one is dealing' with the case 0= ~. One
can then still define the functions 8'~, 8'~, and W~
by (I.4), (I.11), and (I.15). Also the de6nitions (1.6),
(I.12) for the Ui, Uis, and Ui" functions are unchanged.
All the discussions and results of Secs. 3 and 4 apply
to the case 0= ~ as well as to the case of Rnite Q.
However, the discussions in Sec. 2 concerning the
partition function, the grand partition function, and
the thermodynamical behavior of the system cannot
apply to a system with Q= ~ (for which the partition
function is clearly ~).

To emphasize the dependence on 0 we shall in the
rest of this section add the inferior indices 0 and to
indicate the cases of finite 0 and infinite 0, respectively.

One can rewrite (I.10) in the form Lto be proved in
Appendix Dj:

A(Q) ~ b A((g) )

—= (l!) '
(O,rs, rs, ri~ Ui„"~0,rs, ri)

Xd ~2d ~3'

the bmits of integration being —~ to ~. The V~
functions for 0= ~ are therefore useful for calculating
the limits of b~, b~, and b~" as 0~ ~.

To summarize the results of these sections: One has
a program' of computing the limits bi(oo), bi8(~), arid
bi~(~) using exclusively quantities defined for Q= ~.
The method is usable even if the two-body interaction
V(r) is equal to +~ for some values of r. The quantities
to be computed in successive steps in the program are:
6rst, 82 by solving the two-body problem; second,
8„ through (I.43) and (I.45); third, Ui„ through
(I.46)—(I.49); fourth, Ui„8 and Ui„~ through the rules
A and 8 of Sec. 3; and last, bi(~), bis(oo), and b,"(~)
through (I.53).

In carrying out this program it is sometimes con-
venient to use the momentum representation. One
notices 6rst that (I.43), (I.45), and (I.46)—(I.49) as
operator equations are of course valid in any repre-
sentation. As to rules A and 8 in Sec. 3, if one under-
stands 1, 2, . to mean ki, ks, the rules remain
valid and in fact give the momentum representation of
V&~ and V&~ in terms of those of V&. Consequently
(I.43), (I.45)—(I.49), and rules A and 8 are applicable
to both coordinate and momentum representations,
and to the case of 0= finite and 0= ~.

To compute bi(~) etc. from the matrix elements
of V~ in momentum representation, one writes

(kl ks ' ' 'kl
~
Uiao(kl ks '.ki)

—=b'(E k.—Z k.')(ki' ki'~Ni~ki. .ki),

(ki', ks ''ki lUg~slki, ks ki)
=—bs(p k —p k ')(k, '. .ki'~uis~kr . ki&, (I.54)

(ki', ks' .ki'~ «.'~ki, ks. . .«&
=5'(P k.—P k.')(k, ' ki'~ ui"

~
k„k(&.

The presence of the 5 function is a consequence of the
conservation of momentum for the Hamiltonian (I.1).
The functions I& etc. are de6ned through (I.54) only
for those values of k, ' and k which satisfy P k '

=Q k . Now for Q= ao

(ki ki~rr. r/)=(8% ) 'i'exp —P ik r

Hence

—= (i!) ' (O,rs, rs, r&~ Ui„8~0,rs, rs, ri)

Xd f2d f3 CPf ~

(I.53)
(ri' . -rg'[Ug„[r, ri&=g (ki' . ki'JUi ski. . .ki&

Xd"k'd"k(8ss) —' exp(i P k.' r.' i P k. r—).
7 This approach to the problem at 0= ~ is along the lines of

Dirac's representation theory [P. A. M. Dirac, The Prilcipies of
QNoltlei 3Iechoaics (Oxford University Press, Oxford, 1947)g.
An alternative way of defining the lV& functions for 0= ~
appears in Appendix K.

The question of whether

lim Z h((a)s'= Z b)(~)z'

is not discussed here. However, see C. N. Yang and T. D. Lee,
Phys. Rev. 87, 404 (1952).
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Using (I.53) and (I.54), one obtains The last term can be written as

b&(oo) = (l!Sxs) ' (k, . k~~ u~~kt. k~)ds%. (I 55) p 2(vr) ' dk(rr') '(Rs~(r')(Rs~e(r)
Jo

Similarly,

k)s(~) = (1!gers)-' (kt k(~ sets
~
kt k()ds'k

1st

Xexp( —2pk')p Y( (8',y')Yt *(8,y)

=P (21+1)(2rr'rr') 'P~(cos)

b("(m) = (l!Sx')—' (k, .k)~ N)~
~
kt k()d"k. (I 56)

6. BINARY KERNEL B FOR HARD-
SPHERE INTERACTION

where

To calculate 8 for 0= ~ and for a central potential
and

V, one first introduces center-of-mass and relative
coordinates:

d'
~~(t) = (8—1)',

2'l! dP

cosa=(rr') 'r r'.

R=-', (rt+rs), r=rt rs— (I.57)

The Jacobian of the transformation is equal to unity.
Spherical coordinates r, 8, P will be introduced to replace
the vector r. Now

Hs V ts V——ss—+V(r—)=Hg+H „,
where

Hp ——,'V~' ——and H„=—2V„'+V(r). (I.5S)

Let the normalized bound state solution in the center-
of-masssystem of the two particles beg;(r) (i=1, 2, )
so that

H,P, (r) =&A'(r)

To complete the calculation of 8'2 it is also necessary
to compute the operator exp( —PH~)=exp(+rsPV'~').
The eigenvalues and eigenfunctions of V~' are —E'
and (87rs) 'exp(iK. R). Hence

(R'
~
exP(rsPP~') ( R)

=(gs.s) ' dsg expL —-'PK'+iK (R'—R)$

=Brit-s expL —(R'—R)'/(2P) $.

Collecting all terms we thus obtain a general formula
for the coordinate representation of 8'2 for the case
0= 00 and V= central potential:

(I 59) (rt, rs
~
exP( —PHs)

~
r&, rs)

= gilt —' expL —(rt'+rs' —r, —r,)'/(SP))
J I i!"(r) I'd" =1.

Also let the continuum solutions be ps~ which satisfy

and

!lsd =(2~ ')'r '64'(r)Yi (8A),

HAi =2k@a,

(R~~ —+ sin(kr ——',hr+Bs~) as r ~ eo. (I.60)

The spherical harmonics I"~ are here defined so that

X P;4,(")4,*(r) -p( —pZ, )

+Pg(2l+1) (2~'rr') 'E~(cose)

X dk64[(r') 64&*(r) exp (—2Pk') . (I.64)

Jo
sin8d8 [ Yg~(sdg=1.

Jo

The normalization condition (I.60) insuress that

) Ps. (.„.*(r)gs)„(r)dsr=5(, )8„, 5(k' —k). (I.61)

Therefore

(r'~ exp( —PH)
~
r) =2' 4'(r')4'*(r) exp( —P&')

F00

+Z dkO. .(")S. *()-p(—2Pk'). (I62)
o

s Jn the sense of the transformation theory of Dirac (see
reference 7).

To obtain U2 one subtracts from this the corresponding
expression for free particles. In other words, if one
replaces (R&&(r')(R&&*(r) in (I.64) by

(Rs((r')(Rsg*(r) —
t 64)(r') 64)*(r)ff..., (I.65)

one obtains the coordinate representation of U~.
For the hard-sphere interaction,

V(rt —r&) =+~ for
I r&—r,

~
go,

V(rr —rs)=0 for ~rr —r, ~)a;
there are no bound states. Now in the integral in (I.64)
the exponential factor limits the important values of k
to &X '. If (u/X)«1, for these small wave numbers
the eGect of the hard sphere is masked by the centrifugal
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The integration over k is straightforward. One obtains

(r~', rs'
j Us j rg, rs)

= (2~}I,'rr') —' expL —(r&'+r, ' r, —r2)—'/(SP) j
expL —(r+r')'/(SP) j—expL —(r+r' —2a) '/ (SP)j

X~ for r) a, r') a, (I.66)
expj:—(r+r')'/(SP)3

—expL —(r—r')' /( SP) j otherwise.

We recall that r= jr&—rsj, r'= jr&' —rs'j. To go into
the momentum representation, we use

and
X(ri, rs'j Usj ra, rs)d'rid'red'r~'d'rs',

(rjk)= (Ss-')—& exp(ik. r).

The computation is tedious but straightforward. One
first integrates over the center-of-mass coordinates R
and R'. Then one integrates over the angles of r and
r'. After the transformation

r+r'= $, r r'=g,—
one integrates over $ or over q and obta, ins 6nally

(kg', ks'
j Us

j kg, ks)
= L4r'kk'(k' —k")$-'P (kg'+ks' —kg —ks)

X{Lsin(k+k') a]Lk exp( —PE) —k' exp( —PE')]
—Lsin(k —k') ajLk exp( —PE)+k' exp( —PE')j
+7» &2Lcos(k+k')a —cos(k —k')aj
XLkM'(v2P&k) exp( —PE)

—k'M(V2P'k') exp( —PE')$}, (I.67)
where

k=-', jkg —k2j, E=kp+kss,
k'=-',

j k, '—ks' j, E'= kg"+ks",
and

pg

M(y) =
) exp(x')dx.

0

(I.68)

For large y,

~(X)=Lexp(X')3L(2X) '+(4S')-'+" 3 (I.69)

asymptotically. One notices that the factor Lkk'(k'
—k")j ' does not introduce any singularities in (I.67)

force in all states l&0. In fact, e.g. , the phase shift for
/= 1 is 8~~——',(ka)'= —s (a/X)'. Neglecting such small
contributions of the order of (a/X)' one obtains only
the contribution from the S state (i.e., 1=0 state), for
which (I.65) becomes

sin(kr' —ka) sin(kr —ka) —sinkr' sinkr

=-,' cos(kr'+kr) —-', cos(kr'+kr 2ka)—

for r'& a and r& a,
and

si—nkr' sinkr= 2 cos(kr'+kr) —s cos(kr' kr)—

for r'& a or r (a.

because the other factors vanish at 4= k', and at k=0
and k'=0. We can now use (I.45) to compute the
binary function B. In momentum representation (I.45)
assumes the form

8
(ky', ks'j B

j ky, ks) =—(kl', k2'
j
Us j ky, ks)

8
yE'(k, ',k, '

j
Us

j ky, ks).

Using (I.67), one obtains (contributions due to S
states only)

(k,',ks'
j
B

j kg, ks) = —(m'kk')-'8'(k, '+k, '—k,—k,)
XLsin(k'a))Lexp( —PE)]{kcoska —~ ' sinka

XL2Hf (~2P*'k) —(2P)
'
*exp(2Pk )]}

—(4s-'kk') '5(P)P(kg+ks —k, '—ks')

XL(k—k') ' sin(k —k')a
—(k+k') ' sin(k+k')aj. (I.70)

The erst term in (I.70) is obtained by a straightforward
differentiation of (I.67) with respect to P. The presence
of the second term is due to the condition that at P=0,
by definition (I.43), Us=0. The explicit expressions
(I.66) and (I.67) do not approach zero as P —+0+.
Hence they are valid only for P)0, and at B=0+ a
step function in P must be added. Taking the derivative
of such a step function with respect to P gives rise to a
5(P) function which constitutes the second term in

(I.70). At low temperatures, k& (X) ', the contribution
of the second term is (a/X)'.

We notice that as k —+ De, exp( —PE) varies as
exp( —2Pk'). Using (I.69) one sees that, for P)0,
8 k ' sinka which damps down very rapidly for large
k.

For a= 0, 8=0 as it should. Expanding 8 according
to powers of a, one obtains B=B~+B,+,where

B,= —am
—'P(kj+ks —k~' —ks') exp( —PE),

B,=a.—lasP (k+k, —k, '—k, ')Lexp( —PE)) (I.71)
XL2kM(v2P'k) —(2P) '* exp(2Pk') j.

The first order term, Bi, may be put in the form

Bg —Ups' exp(+P——VP+PVss),
where

Ups' ——Sm aP (rg —r,).
In this form, it is closely related to the pseudopotential"
discussed in the literature.

The binary kernel in coordinate representation can be
obtained from (I.45) and (I.66). It is

(ry, rs
j
B j ry, rs)

= —2}I, '{expL—(r&'+rs' —r~ —rs)'/(SP) j}
X{a '~(»' —a)}(1—a» ') expL —(»—a)'/(SP) j

for r&a,
= "a(P) L

—4vrrr' j '8 (r r')—
XPL-', (r&'+rs' —r&—rs)] for r ~ a. (I.72)

where r= jr~ —rsj, r'= jr~' —rs'j.
+ K. Hnang and C. N. Yang, Phys. Rev. 105, /67 (t957};

Lee, Huang, and Yang, Phys. Rev, 106, 1135 (1957).
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APPENDIX A

To prove (I.7) we first observe that a general term
in Eq. (I.6) for W~ is a product of mi Ui functions,
ms Uo functions, etc. , where Q /m~ ——1V. Such a term
gives a contribution

IIi[/!~/bi(f/)] '

to Q~. Now in W~ there are, for fixed mi, mi,
1V!~i(/!) 'm~!] ' such terms. Their total contribution
to Q~(1V!)—' is thus

One thus obtains

[Qs'bi(Q)] &,

N 9'/ l m)!

where the summation, Pm&', over mi is subject to the
condition that P /mt, =/V. The subsequent sum P~,
over S, is equivalent to a removal of this condition on
the summation over mE. Thus

m/=0, » ". t m)!

which leads directly to (I.7).
One may question the mathematical rigor of the

above derivation. To make it rigorous we observe that
for a fixed 0,

(a) all Q~ are positive, and
(b) Q~ vanishes for suSciently large values of 1V, if

the interaction V has a hard repulsive core. gn is thus
a polynomial in s with no zeros on the positive real
axis. Its logarithm is therefore an analytic function
near the origin and all along the positive real axis.
Near the origin this logarithm can be expanded. as a
Taylor's series. It is then easy to see that this Taylor's
series is exactly the curly bracket in (I.7). Furthermore,
since log/a is analytic along the positive real: axis in
the complex s plane, (I.7) is valid for all positive values
of s, if one understands the curly bracket to mean the
analytic continuation of the power series within.

APPENDIX B

To prove (I.23) and (I.24): The eigenfunctions of
H~ can be classified according to the . irreducible

APPENDIX C

To prove rule A: Each term of the right-hand side
of (I.6) is characterized by a grouping of the form
(I.27) of the coordinates 1, 2, /. Application of the
operation P p P' to both sides of (I.6) therefore
naturally leads on the right-hand side to a summation
S of the form (I.28), but without the condition stated
in the paper for (I.28). The left-hand side is, by (I.23),
equal to {1', /'~WP~1, . l). One thus proves that
(1', /'~ W&s~ 1, l) is equal to the sum of all 8 over
the different groupings (I.27).

One then substitutes the above result for the left-
hand side of (I.12). Solving the resultant equations for
U», U2, U3, in succession, one obtains rule A by
induction.

APPENDIX D

Equation (I.51) is intuitively quite obvious. It is a
consequence of the fact that for Axed r», integration of
U~ over the other r's gives a result independent of r».
To fill in the logical steps, we consider the equation
H~=EP as an eigenvalue problem in 31V-dimensional

space, within the basic cube

—'L& x;& ——'L, —L& s;& ——'L,
—,'L&y;& —-,'L, (i=1,2, 1V),

(I.73)

with periodic boundary conditions in each of the 3E
dimensions. An eigenfunction 1/ can be continued out-
side of the cube to all space as a periodic 'function.
Extending the definition of the operator H~ in a periodic
way to all space, one has H&nP=FP everyuhere. The
explicit form of H~g is

H~n —P V '+ P P ——V(r —re+mL), (I.74)
» ss)P Ill

where m= (m„m„,m, ) has & integers as components.
[For simplicity we assume here that V(r) =0 for

t
r

~
&ro where ro= range and is ((-,'L.]Within the basic

"R.P. Feynman, Phys. Rev. 91, 1291 (1953).

representations of the permutation group of Ã objects.
If !/, (1',2', 1V') belongs to an irreducible represen-
tation D, then P'f, (1' 1V') also belongs to the same
representation D. Hence Pp P'f, (1' 1V') belongs to
D. But Qi PP;(1" 1V') is symmetrical. Hence if D is
not the symmetrical representation, Pi PP; (1' /V ')

0. On the other hand, if D is the symmetrical repre-
sentation, then

Q p PP;(1' 1V') =1V!P;(1' 1V').

Using the definitions (I.4) and (I.11), one obtains
immediately (I.23). The proof of (I.24) is similar.

Formula (I.23) was first used by Feynman" in his
treatment of the Bose condensation problem by path
integrals.
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cube (I.73), (I.'/4) is the same as (I.1) except for
regions near such edges as, e.g. ,

$1 7 $1 $27 ~1 ~2 X[+P(ri' —ri+mL) j. (I.79)

Definition (I.1) should be amended to become every-
where identical to (I.74) inside the basic cube. Other-
wise the discussion would become more clumsy.

Equation (I.4) can then be regarded as defining Wioii

for arbitrary values of r1', r&', r1, .r&. It is a
function Periodic in each of the 6Ã linear diniensions

with a period L. Furthermore, since the potential energy
in (I.74) depends only on the relative coordinates, and
not on the coordinates of the center of mass of the E
particles, all eigenfunctions can be chosen to be eigen-
states of the total momentum so that

|p (ri+g; r3+g; r~+g) =f (ri, ri, rx) exp(iK ().

[It is important to realize that the periodicity
condition does not invalidate this statement. ) One
then concludes from (I.4) that

(ri'+5, r3'+4, .
l W~iil ri+5, r3+4, ) (I.75)

is indeperident of (.
It is clear from the structure of (I.6) that, like Wira,

U&z also has a 6E-dimensional periodicity in coordinate
space, and also is invariant under a simultaneous
displacement of all 2X vector coordinates r ' and r by
the same displacement g. From these two properties
of U&& it is easy to see that

~(ri, r3 ' ' 'lil LJial ri, r3, ri)d'r3&r3 ' 'd'ri

over the box (I.52) is independent of ri. Equation (I.51)
then follows from (I 1.0).

APPENDIX E

To establish (I.53) we notice that Wi„, when regarded
as a function of p and ri', ri', ri', with ri, ri, ri
as parameters, satisfies

8—Wi„——[—Q V "+Q V(r '—re'))Wi„, (I.76)
Bp a&P

and

wi„
l e 3——&3(ri' —ri)P(r3' —ri) 5'(r ' iri). (I.—77).

These two equations can also be used to define 5'&&.

Equations (I.76) and (I."/8) may be regarded as
"diffusion equations" (with p=time) while (I.77) and
(I.79) serve as the initial conditions. One then sees
that 8'g„and S'~o differ for two reasons:

(i) The potential energy in (I.78) is difFerent from
that in (I.76). The former includes a sum

P V(r '—re'+mL),

while the latter contains only the term m= 0. However,
the terms with m&0 may be regarded as the "images"
of this term, and are ineffective except for separations
lr. ' —rp'l )L.

(ii) The initial condition (I.79) gives Wiii at P=O as
a sum of many P' functions in the 3l-dimensional space
r1', r2', r~', forming a periodic lattice with period I
in each linear dimension. On the other hand, (I.77)
gives Wi at P=O as a single 8' function.

While diffusion is a process that goes with arbitrary
speed, the larger speeds have progressively smaller
probability. For finite and fixed values of r1, r2, r~

(which determine the positions of the P' functions in
the initial conditions), and at a fixed p and fixed
r1', r2', . r~', the two differences between lV~g and 8"~„
described above become unimportant as I —+ ~.
Therefore Wia —+ Wi„. By (I.23) and (I.24), the same
holds for Wiiie and Wia". From (I.6) and (I.12) one
easily proves that also U~g —+ U~„7 U~g —+ U~„7 and
U A~U A

In fact, for a given potential V it is possible to
evaluate the diGerence between 8 gg and 8'~„ in terms
of 8„.%e shall illustrate such a computation for the
case of hard sphere interactions.

For simplicity let us first consider the case l=2. In
this case, B„and L/3„(consequently, also W3„) are
given explicitly by (I.72) and (I.66). To express Woii
and U2G, in terms of these functions, we introduce a
8'2 function which satisfies the differential equation

a—W3'= —Q V "+Q V(ri' —ri'+mL) W3', (I.80)

but with the initial condition
These two equations can also be used to define 8'~„.
Now we adopt the definition of W~ii over a/l space
introduced in Appendix D. 8 gg satisfies

w3'l e=o=& (ri' —ri)& (r3' —r3).

It is easy to see that 8'2& is related to 8 2' by

(I.81)

1333&-))Wia, (I.78)

(r ',r 'l W el r,r )
= p (ri'+miL, r3'+moLl W3'lri, ri). (I.82)
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Although 8 2' satis6. es a different differential equation'"
from W2„, they both satisfy the same initial condition.
By going through a series of arguments similar to those
used in Sec. 4, we can express 8 2' in terms of 8'2„
and 8„:
(r,',r, ' j

W2'
j rg, r2) = (rg', r2'

j Wl„j rg, r2)

becomes
W2o ——W2'+OLexp (—LP/4P) ],

and (I.83) becomes

W2' = W2o+OLexp (—L'/2P)].

Thus we have

(I.84)

(I.85)

+ P (rg' —mL, r2'
j U2„j rg —mL, r2)

m&0

+ P P dp' d'r, "der,"
m&m' m'aJ 0 aJ

X&r~' —m7- r2'j ~~(P—P') jr~"—~, r2")

X(rx"—m'L, rn"
j & (P') j rg —m'L, r2)

pP pP'
apl gplI ga» Ily» II+» lit

~~m m ~m" m"~, ~0

Xd'r2"'(r~' —mL, r2'
j U2„(P—P')

j
r~"—mL, r2")

X(r II mlL r II
j g (Pt Pll)

j r
III m/L r III)

X(r)"'—m"L, r,'" j B„(P")j r)—m"L, r2)+ ~ .
(I.83)

Equations (I.82) and (I.83) express precisely the
physical effects discussed in (i) and (ii) above. Together
these two equations give the explicit form of 8"2g in
terms of the binary function 8„.

By using (I.72) and (I.66) it can be shown that for
axed positions of r~, r2 and r~', r2' as L~ ~, (I.82)

W2g~ 8'2„as Q —+ . (I.86)

By using (I.82) and (I.83) we can also express b2(Q)
explicitly in terms of 8„. It is easy to see that
limo~„b2(Q) is given by (I.53).

We remark that

W2o= W2 +Oj exp( L'/4p) j (I.87)

is due to the familiar property of diffusion equations:
i.e., the probability for a particle to travel a distance L
in a time "P" is proportional to expL —L'/(4P) j.
Consequently, (I.87) is not limited to the case of hard
spheres. It is valid for any potential with a finite range.

In an entirely similar manner one can express the
difference between 8 ~o and W~„ in terms of B„and
show explicitly that (I.53) is correct for any /~ 2. The
main points in the proof are the following trvo facts.
First, the integrand in (I.51) approaches that in (I.53)
as L —+ ~. Second, in the region of integration dehned
by (I.52), the integrand in (I.51) is peaked at the
center. It becomes exponentially small far away from
the center, as can be seen by arguments similar to the
above arguments for the case /= 2. The limit as 0~
of the integral (I.51) is thus equal to the integral of
the limit of the integrand over all space.


