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Decay of Hyperons anfI Mesons from the Universal Fermi Interaction*
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The decay of the hyperon, charged pion, and X meson except X 3 is investigated on the basis of the
universal P —A Fermi interaction together with the idea of the Gell-Mann tetrahedron, by treating the
virtual baryon-antibaryon pair effect in a phenomenological way. It is shown that the decay rate of X~2
calculated by the parameters adjusted to the decay of ~+, X»+, and X,3+ is in agreement with experiment,
thus suggesting a possible consistent picture of the model.

1. INTRODUCTION

' "T has been shown that the universal Fermi interac-
~ ~ tion with V—A coupling scheme is remarkably
successful in the weak processes mainly involving the
nucleons and leptons. ' The attempt to cover the wider
area involving strange particles leads to the concept
of the Gell-Mann tetrahedron. ' Assuming that all
weak processes are generated by the four-fermion
interaction, we notice that the decay diagram of
various reactions can be reduced to a small number of
"structure elements" composed of the baryon-anti-
baryon loop with strongly coupled mesons (see Sec. 2).

This reminds us of the role of beta- and gamma-ray
spectroscopy in the study of nuclear structure. When
information of nuclear structure is desired from the
data of P and p decay, it has been found profitable to
separate out the known factors due to Fermi or electro-
magnetic interaction and phase space and then "extract"
the quantity directly connected with the unknown
nuclear matrix element, which in turn leads to classi-
fication into groups for systematics of nuclear structure.
The situation seems quite parallel for the decay of the
elementary particles, where the "structure element"
is the analog of the nuclear matrix element. The fact
that there exists no reliable way of calculating the
strongly interacting processes may correspond to the
fact that there exists no absolutely exact way of
computing the nuclear matrix element.

It seems interesting, therefore, to separate out the
known characteristics of the Fermi interaction and the
kinematical factors from the decay rate and pick up
the quantity which represents the contribution of the
dynamics of the strong interactions.

The purpose of the present paper is to investigate
whether the universal V—A Fermi interaction with
the tetrahedron idea can explain decay processes at
least qualitatively. In fact, the lifetimes of m, A, Z, and
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are found to be expressed by a single, almost constant
parameter, as it should be under reasonable approxima-
tion; and the transition probabilities of E„3+, E,3+,

and E 2+ are described by another two parameters.
There is no essential disagreement with the experiment
within the framework of the present analysis. However,
the difficulties connected with the m-e decay and
leptonic decays of hyperons, and the branching ratio
of the hyperon decay have not been touched.

2. TRANSITION RATE OF DECAY PROCESSES

According to the idea of the universal Fermi interac-
tion and the tetrahedron concept, all weak interactions
are ascribed to the prescribed four-fermion interaction,
with unique coupling constant and unique coupling
scheme V—A, and no other weak coupling such as the
direct boson-fermion interaction is introduced. The
charged pions and E mesons are coupled strongly to
the group of all possible baryon-antibaryon pairs
provided only that isotopic spin, strangeness, and
charge are conserved. These two groups and. (Iuv),

(ev) are coupled by weak interactions. Since the
tetrahedron has no obvious counterpart for the neutral
pairs, we simply assume that the group of the neutral
pairs admissible by the dissociation of E, m, X have
the weak interaction between the group. We do not
assume any particular isotropic spin dependence for
the weak interaction.

The Hamiltonian density of the weak interaction
reads then

(1—vs)v,
II=V2y

W.al&UDl E K2 )
(1—Vs)V.

XI 4 4~ l (21)
v2

where f is the universal coupling constant 1.4X10 "
erg cm' and (AB) (CD) denote the prescribed fermion
pall s.

The strong interaction of the pion and E meson to
the baryons are assumed to be charge independent,

SM. Gell-Mann, Phys. Rev. 111, 362 (1958); a generalized
weak boson-fermion interaction is discussed by M. Sugawara,
Phys. Rev. (to be published).
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and moreover, for the sake of definiteness, the global
pion baryon interaction4 is adopted. The E meson
is assumed to have spin zero and the nomenclature
scalar or pseudoscalar E meson should be understood
in accordance with the hypothesis of global symmetry.
For purpose of numerical estimates the pion-nucleon
coupling constant in symmetric ps(ps) theory is taken
to be g'/4s = 15.

The decay processes which involve at least one strong
interaction are represented in Figs. 1, 2, and 3 by the
6eld-theoretic decay diagram in the lowest order. The
term "structure" refers to the black-box loop due to
a baryon-antibaryon pair. In fact, upon ignoring the
higher order graphs which have strong interactions
between loops and/or external lines, the black-box
loop can involve arbitrary numbers of pion and E-meson
lines inside. The decay processes consist only of combi-
nations of the small number of "structure elements"
shown in Fig. 4 plus the usual Fermi vertex, since the
structure element is independent of the momenta and
masses of the outgoing fermions.

(o) C» (b) Cx (c) Cx»

FIG. 4. Structure' elements of decay processes. The dot on
the loop denotes the Fermi in:.'eraction.

—Mos„&2(2s')oC 84(s—k —P),
(2$o)' QV

(2.2)

A. Two-Body Decay with Simple Structure

This process is characterized by the decay diagram
of Fig. 1(a), and includes reactions m-~ ~p++ v,
Ao ~ p+or, Z+ ~ vl,+~+ ~Ao+~—,Evs+ ~ p++ v

Let us consider as an example of the case of pion
decay. For reasons of Lorentz invariance we may
conveniently write down the expression of the black-box
loop in the form

(a) (b)

7T

r

PIG. 1. Decay diagrams with simple structure.

where s, k, and p are the four-momenta of the pion,
muon, and neutrino, respectively, U is the volume of
quantization, Mo is the nucleon mass, and C is a
dimensionless phenomenological parameter which rep-
resents the contribution of the loop. It is important
to realize that C is independent of the masses and the
momenta of the external fermion lines regardless of any
perturbation approximation. The numerical factor
W2(2~)' is explicitly separated from C only in order
to make comparison with perturbation calculations
simple. The decay rate can be written

(b)

FIG. 2. Decay diagrams of E 2+.

g 2 f' mv)
w(~+~ p++v) = (fMo')'—

kr (2s)4 &Moi

(m '—m'y'
! m. !C.(7r+ —+ p++ v)!'. (2.3)

m.'

Similarly, the decay rate of the hyperon reads

(a) (b)

g.' 1 ~M+Mo y
'

!w(l ill+~) = (fMo )—
4~ (2s)' 0 Mo

pM —Mo+m. y
-'*

pM —M, —m. q
-'*

(c)

FIG. 3. Decay diagrams of E' &+.

4 M. Gell-Mann, Phys. Rev. 106, 1296 (1957).

(M+Mo+m. q
l )M+Mo m. q

l—
X i &

»

XM!C (I' —+X+m)!', (2.4)

where M is the hyperon mass, and I' is either A. or
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Z. The decay rate of ™reads

w(. ~As+or )

g
' 1 (M'+M) '

=uM;)—
4' (2')' ( Mo

(M' —M+m. ~
& (M' —M—m. q

&

)& M'

the ratio of the partial decay rate reads

w(m+-+ t{++v):w(Ao-+ p+s —
)

:w(Z~-+ I+a.+):w( —+Ao+e )

( m„q ' (m.'—m„'q '
=2! !!' ! m.

EMo& E m' )

(M'+M+m. q ~ (M'+M —m. ~
I

)I I(

xM'! C.(=--~A'+~-)!', (2.5)

where M and M' are the A mass and mass, respec-
tively. Finally there results the expression

g{r 2 ( m„)
w(E»+~&++v)=(M foe)s

4' (2e.)4 (Mo~

(mx —m„s )
X!

"
Imx! Cj{(E s+~t++v') I' (26)

m

(Ma+Mo+m, ) & (M{{+Mo m—) '
xl

Ma J E Mg )

: (the same with M{,—+ Mq)

(Mv+Maq'(M- M—a+ mq ~ (Ma M& m—.~
l—

) ( M-. i

(M-. +Ma+m ) '- (Mg+M{{—m q &

ME i E Ma )
= 1:O.ISX10'0 94X 10'0.38X10'.

Inserting now the experimental values on the while the experimental ratio reads
left-hand side, we find

1:0.60X1o':1.72X1o': ~

!C.(m+ —+ t{++v)! =0.20,

!C„(Ao~ P+s.—)!=0.42,

!C.(Z~~ {s+~+)1=0.27,

(gxlg-)! Cx(E.s+~ t "+v)!=o 053

(2.7)

The C 's are fairly constant as expected. The simplest
way to interpret the difference between C and Cz is
that the strong-coupling constant of the E-meson to
the baryon is about, say, 4~5 smaller than the pion-
baryon coupling constant. This is in qualitative
accordance with the E-meson coupling constant
determined by the preliminary data of the photo-
production of E mesons in hydrogen~ and the scattering
of X mesons. ' Another comment which can be made
in perturbation approximation is that Cz is roughly
proportional to the difference of the masses of the
baryons which appear in the virtual baryon-antibaryon
pair for a scalar E meson, while it is roughly propor-
tional to the sum of the masses for a pseudoscalar
E meson (see appendix).

In the approximation that C is an unique constant
for all processes, namely neglecting the virtual pion
interaction between the loop and the external lines,

5 Silverman, Wilson, and Woodward, Phys. Rev. 108, 501
(1957).' P. T. Matthews and A. Salem, Phys. Rev. 110, 569 (1958).

B. Three-Body Decay with Simple Structure

The process is featured by the decay diagram of
Fig. 1(b), which includes the reactions E»+ —+v++v
+mo and E,s+ —+ e++v+e'. Again for reason of Lorentz
invariance the black-box loop reads'

gir g~ ( 1
I
v2(2~)'L~(~.+p.)+Gs.)

(2so)* (2to)' (gV
X54(s—k —p —t), (2.9)

where s, k, p, and t are the four-momenta of the E-meson,
muon (or electron), neutrino, and pion, respectively;
v2 (2~)' is just a numerical factor separated from F and
G. The quantities Ii and G are in general relativistically
invariant functions of the four-momenta, but dimension-
less and of the same phase. We assume, however,
that Ii and G are constant; in fact in lowest order pertur-
bation theory Ii and G are found to be constants which
depend on the masses of the E meson, pion, and baryons
of the loop but are itsdepe{tder{t of the masses and momenta
of the leptons within the accuracy of 10% or so. In
other words, the structure element C~ is characterized
by two constants Ii and G in this approximation. The
integral over the final state can be done analytically,

' F. Zachariasen, Phys. Rev. 110, 1481 (1958).
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=L(1—no) (]—P')) &—(no+P') inL(1 —no) &+ (1—P') &)

+2nP»Ln(1 —P')'+P(1 —n')')

+l( —p)'l. ( '—p'),

Io= p(x —n') (x—p')) &dx
2

=-'L1—-'(n'+P'))L(1 —n') (1—P'))'
—-'(n' —P)' »L(1—n')'+ (1—P')')

1

I,= ~ xL(x—n')(x —p'))&dx
J 2

+-'(n' —p') ln(n' p')—

= oL(1—n')(1 —P'))'+l(n'+P')Io,

I2= x'L(x —n') (x—p'))&dx

=lL(1—')(1—P'))i+-'(-'+P )I.—'- P I.

yielding the decay rate

w(Ego + p +p+ol )
gag g

' 1 (m~) ' frm„)
(fMo')' —

I I
m~ F

4or 4n 2(2~)' (Mo) l Em~)

X$—nPI o+(1+2nP)I x
—(2+nP)Io+Ii)

( m„$ o

+4FGI I D 1 2IO+Il)
&mrs

+G $ nPI x+—(1+2nP)Io —(2+nP)Ig+Io) ',

(2.10)
where

n= (m +m„)/m =0.491,
p= (m —m„)/m =0.064,

I' L(*—n') (x—p'))'I—2= dS
x'

= —L(1--') (1—P'))'+»nL(1 —-')1+(1—P')')
n2+ p2

l L (1—p')'+p(1 —'):)
(n-p)'

+ ln(n' —p'),

I' [(x—n') (x—p'))1I g= dx

TABLE I. The numerical values of the functions I„
in (2.10) and (2.11).

0.931 0.54'l

Ip

0.363 0.263 0.205 0.0238

where

I= (1/24) —~y'+-'p' —(1/24) p' —p' in',
y= m /m~=0. 2'l8.

w(E,o+) 2 38G'

w(E o+) 0.18F'+0.78FG+1.89G'
(2.12)

The branching ratio of E,3+ to E„3+ is of order of 1
regardless of the details of the dynamics provided Ii
and G are quantities of the same order. This value for
the branching ratio is not inconsistent with the present
experimental data.

Adjusting this branching ratio to the experimental
value' 1, we obtain

F/G= —4.9 or 0.56, (2.13)

while inserting the experimental decay rate to the
left-hand side of (2.11) we get

(g~/g-) I GI =o o33 (2.14)

C. DeCay Of X.2+

The decay diagrams of the process E &+~7r++oro
are shown in Fig. 2. Fortunately, the diagram of
Fig. 2(b) does not contribute to this process in our
approximation, since the 6nal two-pion state necessarily
has total isotopic spin 2 because of statistics, while
the virtual baryon-antibaryon pair can only have the
total isotopic spin 0 or 1. The last statement is trivial
if one adopts Gell-Mann's I'—Z formalism for global
symmetry. ' The argument fails for E 2' decay, where
the two pions can be in the state of total isotopic spin 0.

Hence we are able to check the consistency of the
idea by calculating the decay rate of E 2+ from the
diagram of Fig. 2(a), where the structure elements are
only C and Cz and both have been already determined
to 6t the experimental data. The decay rate reads

The numerical values of the function I are given in
Table I.

The ratio of the partial decay rate becomes

g~ pg'y' 4 (m&y'= ( Mo')' —
I mx

4r &4n) (2a) (Mo)w(E, o+ ~ e++v+oro)

Similarly for E.&+ the decay rate is, omitting the term
of the order (m./m~)' 10 '

2

g~' g.' 1 (m~q '
= (fMo ) —

) ~
mrrG'I, (2.11)

4or 47r (2a)o EMo)

m )o m. q' '
X 1—41 I G+2FI I [G-[', (2»)

Em~& I ma)
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and predicts

ttt(E 2+) =1.6X10' sec ' and 3.2X10a sec ' (2.16)

for Ii/G= —4.9 and 0.56, respectively, taking iC I

=0.25 and iGi =(g /grc)0. 033. The first number is
in agreement with the experimental value 2.09)&10'
sec ', if one allows for the crudeness of the approxima-
tions. The ratio of the decay rates of E 2+ and E,3+ is
independent of ga'/4m, and can be written

predicted is in agreement with the experimental value
(Sec. 2, C).

We have no way of testing the decays of the E 3+

and neutral E mesons within the framework of this
treatment.

We are tempted to say in conclusion that the
universal Fermi interaction with V—A coupling
together with Gell-Mann's tetrahedron have the
capability of explaining, at least, the decay of hyperons
and charged mesons at large.

tt (E.2+) g.' 2 1' Mo i '

~(11,3+) 4~ ~ Emir)
APPENDIX

(1—4p') '

X
E(1/24) —-'~'+ a~' —(1/24)~' —u'»~ j

(P) "9

X I+2p'i —
i

i. G) M f M2+)t2 )
(2,17) bar, o«

C.==4.4 and 86,

For the purpose of reference, we give in this Appendix
the results of a lowest order perturbation calculation of
the dynamical quantities C, Cz, F, and G.

The constant C of the x-p decay is calculated from
the diagram of Fig. 1(a), and yieldss

for F/G= —4.9 and 0.56, respectively, while the experi-
mental ratio is 6.1. In fact in lowest order perturbation
theory J'/G(0, and

i
J'i) iGi, with reasonable cutoff

momentum.

3. SUMMARY AND DISCUSSION

The decay rates of pions, hyperons, and E»+ are
expressed by a single phenomenological parameter.
If the higher order corrections due to the strong
interaction between the virtual loop and the external
lines are omitted, these phenomenological parameters
characterizing each reaction are expected to be constant
independent of the decay mode. It is found that this
is the case within a factor of 2. Also, if the E-meson-
baryon coupling constant is assumed to be about ~ of
the pion-baryon coupling constant, then we have a
consistent picture of the pseudoscalar E meson as
far as E»+ decay is concerned. The small variation of
this quasi-constant may be attributed either to the
effect of higher order corrections so far omitted or to
some sort of isotopic spin dependence of the weak
interaction anticipated by the isotopic spin selection
rules (Sec. 2, A).

The decays of E,3+, and E»+ are characterized by
two phenomenological parameters which are roughly
constant, say, within a factor of order unity. The ratio
of the decay rate of E,3+ and E»+ is found to be of
order of 1, and is actually insensitive to the details
of the dynamics. This is consistent with experiment.
Unfortunately, we cannot test the reliability of the
constancy of these parameters because no more
reactions of the same sort are available (Sec. 2, 8).

In our approximation, the decay rate of E 2+ is
expressed by the phenomenological parameters found
previously and serves as a consistency check of the
whole picture and the approximation. The decay rate

L4(M2+V) —m 2]-:
sin '

. 2 (M'+9) '*

(4M' —m.') i
t m. i

sin 'i i, (A.1)
mx EMj

where X is the Feynman cutoff momentum, and e is an
isotopic spin factor whose value is given in Table II,

TABLE II. The factor e in (A.1).

Vertex

(Pa~+)
(Z+Ao +)
(pe-7r+)
(z+zo~+)
ZoZ —~+)

(~~0~—~+)

v2

1

1

1

v2

P &0.23fp. (A.2)

The constant C& in the decay K»+-+ p++v is more
complicated because the masses of the baryon-anti-
baryon pairs in the closed loops are always different.
We notice that C& is approximately proportional to
the mass difference of baryons for a scalar E meson,

R. J. Finkelstein I,nd M. Rgderman, Phys. Rev. 76, 145g
(1949).

and it depends on the type of baryon-antibaryon pairs
in the loop. We neglect the mass difference between
A. and Z throughout this paper. As the summation
over baryons is additive, in order to fit the experimental
lifetime of the pion, the cutoff momentum becomes
unreasonably small, namely
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and to the sum of the masses for a pseudoscalar E meson. We obtain

(M'~M)2q f
M' —M2~ I

M'
Cx= P .

I
(M'~M)l & —

! I
&+

baryons 8Ms l l mrr ) l mar' ) lM'+X')

(M2 —M')' **

+I & — !»I !+ 2 (M'+M') —mrrs-
l mrcs ) l3P+X2) mrs mx2

(mx+ (M' —M2)/mrs )
sin '

2M'

(mx —(M' —M')/mrs) 2
+sin 'I

2M ) mA.

mrs+ (M' —M')/mls

2 (M"+)%,2) &

(M2—M'2)-»
2 (M'+ M'+2X2) m—xs

2

mx —(M' 3P)/m—rr )
! +(M'~M)

2(M2+X2) & ) mrs

&M'+~'~ )
!
—M2 in I+) '»I

lM 2+) ) lM'+) ') lM'+) ')

where ~ is given in Table III, M is the mass of the
baryon having the lower absolute value of strangeness,
and M' is the mass of the baryon having the higher
absolute value of strangeness in the combinations
given in Table III. The upper sign in (A.3) is for a

FIG. 5. Decay diagram of
IC„3+ and E,,3+.

K

m'4

p.
' or e

TABLE III. The factor s in (A.3). The explicit expressions of F and 6 in this approxima-
tion read

Vertex

(pAsE+)
(eZ E+)
(pxsE+)
(As-„- E+)-
(Z+Ms, 0++)
(Zs=--E+)

1
v2

1

1

K2
—1

(M' —M')'

(3P+X'q—ln!
l M' )

(M'+X2) (M'+X2%2MM')

(M' —M')'

e M'(M'&2M) ( M2 )p= in]
baryons 4 & lM'2)

) 2(M'+X2)
I

~M'+Xsq
!ln!

(M 2—M2)sl l M2+) 2)

) 2(M2 2M'2 )%2) 3) 2+, +
(M' —M') 2 (M' —M')

(A.4)

2 (M'+)I.2) (M'+X2& MM')

(M' —M')'

scalar E meson, and the lower sign is for a pseudoscalar
E meson. For the sake of simplicity we take the
coupling constants of the E meson to the baryons to
be equal, though the mass diGerence among baryons
is taken into account.

e 2M'(M'WM) jr Msy
For the constants Ii and G, terms involving the pion G= P — ln!

E-meson mass are consistently neglected with baryons 4 — (M™)
respect to the baryon mass. However, because of a
fortuitous cancellation this approximation for Ii and G
is estimated to be reliable within 10%. l M')

TABLE IV. The factor s in (A.4) andri (A.S). The numbers 1, 2,
and 3 specify the types of baryons appearing in the closed loop
in the manner shown in Fig. 5. The upper and lower sign refer to
a scalar and a pseudoscalar E-meson, respectively.

) 2(M'2+g2)2 (M'2+) 2)
!inI

(M'2 —M2)2

1 xo zo z-
2zo cd z-
3p pe

MoHM

z+ xo zo

p p n z+ zo

p p I z+
zo xo z-

1 1 —V2 V2 —1 1 ~1 ~1 ~v2 ~%2 W1

X2(3P—2M' —
)%.2) 3X2

(A.S)
2(M' —M') .(M' —M')'

M

where e is tabulated in Table IV, M is the mass of the
baryons labeled 1 and 2, and 3f' is that of the baryon
labeled 3 in Fig. S.


