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The effect of nuclear recoil on the elastic scattering of high-energy electrons or muons by zero-spin nuclei
is studied by adapting the Breit two-particle Hamiltonian to the case that one of the two particles is of 6nite
size, is spinless, and is nonrelativistic, the other being a normal point Dirac particle. A radial and angular
separation of the Dirac equation is still possible. To leading order in the parameter (electron energy)/
(nuclear mass), the effect of the dynamic recoil terms is to rotate the scattering amplitude vectors in the
complex plane without changing their magnitudes, a result which is independent of the shape and size of the
nuclear charge distribution. To this order, the cross section is affected only by the kinematic recoil correc-
tions. The dynamic recoil terms also influence the scattering amplitudes through terms of order (electron
mass)/(nuclear mass). These corrections, owing to large amplification factors in going from phase shifts to
cross section, may be of some signilcance in muon scattering, but are probably of no importance in the
analysis of high-energy electron scattering. The dynamic eft'ect is proportional to nuclear charge and there-
fore nearly as great for heavy as for light nuclei.

I. INTRODUCTION

&~ETAILED calculations of the elastic scattering of
high-energy electrons by nuclei' ' have in the past

usually treated the nucleus as a rigid charge distribution.
Other effects on the scattering, all of which become
increasingly important as the electron energy increases,
are unresolved inelastic scattering to low nuclear ex-
cited states, unresolved inelastic scattering due to
emission of low-energy bremsstrahlung, nuclear polari-
zation eBect, magnetic scattering from nuclear currents,
both direct and exchange, and the dynamic eGect of
nuclear recoil (as well, of course, as the purely kinematic
effect). None of these effects are expected to be very
important for electron energies of several hundred
Mev. ' Their omission from calculations has been par-
tially justified theoretically, " ' and justided also in
practice by the fact that the same static nuclear charge
distribution leads to a good fit to the experimental cross
sections at several diGerent energies.

Because the detailed numerical analysis and the
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determination of parameters of the nuclear charge dis-
tribution have been carried out to such high accuracy,
however, it is possible that even rather small correction
effects may be significant in modifying the conclusions
drawn from electron scattering. Especially this could be
true at the higher energies at which experiments are
now being carried out. '

We have chosen to investigate the eGect of the recoil
of zero-spin nuclei, not because recoil should be the
dominant correction effect, but because recoil can be
treated in an unambiguous way, without reference to
details of the nuclear energy level structure, and with-
out the introduction of any further parameters or form
factors beyond those associated with the static charge
distribution. Inclusion of the recoil effect in the numeri-
cal analysis was also of interest for the extension of the
calculations to the scattering of p mesons by light
nuclei.

We find that the dynamic recoil e8ect influences the
cross section only through terms of order (electron
mass)'/L (nuclear mass) X (electron energy) g, the leading
order terms proportional to (electron energy) j(nuclear
mass) having no effect.

The theory of the nuclear recoil effect for spinless
nuclei is presented in Sec. II. This investigation was
initiated in connection with the calculations of high-
energy electron scattering at I.os Alamos, and the
presentation of the theory in Sec. II is accordingly
slanted toward the numerical calculations, most of the
relevant equations for nonrecoil calculations, as well as
recoil corrections, being included. The eGect of the
recoil correction on the phase shifts and scattering
amplitude is discussed in Sec. III. Some numerical
results are referred to as corroboration of the per-
turbation theory results of this section. We shall speaP
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of the bombarding particles as electrons, but the theory
will apply without modification to muons as well.

B. Breit Hamiltonian for Spread-Out Charge

For two Dirac point particles, the Hamiltonian is
given by'

pl2121 p22222 nl ' pl n2 ' p2+ V+~H (1)

where V is the electrostatic interaction energy and hB
is given by

n l ~ n2 (nl r12) (n2 r12)

~12 (r12)'
(2)gg (point)—

1 2

II. THEORY

A. Summary

Our object is to construct a Hamiltonian describing
the electron-nucleus interaction in the center-of-
momentum frame, and to derive from this Hamiltonian
radial equations suitable for numerical integration. The
Hamiltonian will be accurate to order Ze' and to order
m/M, where 212 is the mass of the electron, and M the
mass of the nucleus. We at first adopt the Gction that
the nucleus is a Dirac particle, and generalize the two-
particle Breit Hamiltonian' to a spread-out charge for
one particle, A nonrelativistic reduction for the nucleus
is then performed, ""and terms involving the nuclear
spin are discarded. A radial and angular separation of
the resulting wave equation is possible, and a change
of dependent variable finally brings the radial equations
into a form close to their form in the absence of recoil.
The scattering problem is solved in the center-of-
momentum frame, and the calculated cross section is
transformed to the laboratory frame.

W(r) = —e r'p(s)ds,

and has the property &'8'=2V. We now define a
quantity U with the dimensions of energy which we
shall call the "pseudopotential":

U(r) =2r ' ' r V2(r)dr.

The last term in (6) may be expressed in terms of
Uand V:

(nl V)(ns V)W(r)=nl nsU

+r '(nl r)(n—s r)(2V 3U). (9—)

Finally, we introduce two "auxiliary potentials, "
V~

and V2, which are simple linear combinations of U
and V:

Vg=2V —U,

V2= 3U—2 V= r(d U/dr) . —
(10)

Ke specialize to the center-of-momentum frame, and
set p~= —p2=—p. Also for convenience we set m~=nz,
ns2=M. The Hamiltonian is then,

H= —p1222 —p2M —nl p+n2 p+ V(r)+AH, (5)

with V(r) given by (4) and AH by (3).
Before performing a nonrelativistic reduction with

respect to particle 2 on the Hamiltonian (5), however,
we reduce the interaction AH to simpler form. AH may
be written

2 Jul'n2V(&) —(ul V) (n2. V)W(r) j, (6)

where W(r) is defined by

In terms of the auxiliary potentials the generalized
Breit interaction term takes on its simplest form,

We let index 1 refer to the electron and index 2 to the
nucleus, and generalize to a finite-sized nucleus by the
transformation el—+—e (e is the magnitude of the
electron charge), and e2~J'pds (p is the nuclear charge
density and ds the volume element). Letting r be the
vector from the center of the nucleus to the electron, s
the vector from the center of the nucleus to any element
of charge in the nucleus, r'=r —s, and r'= )r'(, we
have for the Breit interaction term

&H= ——',Lnl n2V1(r)+r '(nl r) (n2. r) V2(r)). (11)

For a pure Coulomb field (point particles), U= V= Vl
= V2. Note that in the Coulomb field outside a finite-
sized particle, these four potentials are not equal, but
approach equality only at great distance. Figure 1
illustrates the forms of U, V, V~, and V2 for a uniform
charge distribution. They di6er by terms of order
(R/r) 2 outside the nucleus. For all values of r, V is equal
to the weighted average of the auxiliary potentials,
s (3Vl+ Vs) .

aH= ",e (r')-'nl. nsp(s)ds-

+~"(r') '(nl r')(ns. r')p(s)ds, (3)

and for the electrostatic potential

V= —e "(r')—'p(s)ds.

2 G. Breit, Phys. Rev. 34, 553 (1929).
12 L. L. Foldy and S. A. Wouthuyssn, Phys. Rev. 78, 29 (1950).
"Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953). H'= —p1222 —n, p+V(r)+(2M)-'(ns y+aH)2. (12)

C. Nonrelativistic Approximation for the Nucleus

The nonrelativistic reduction with respect to the
nucleus is achieved to first order in 222/M by the method
of Foldy and Wouthuysen. ' " Since the term —psM

(4) in the Hamiltonian goes to a constant nonrelativisti-
cally, we discard it at once, and write for the approxi-
mate Hamiltonian
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Moreover, since we wish to specialize to zero-spin
nuclei, it is understood that all spin-dependent terms
resulting from the expansion of the last term in (12) are
to be discarded. When the quantity (n& p+DH) is

squared, there result terms (a) quadratic in p, (b)
bilinear in p and the auxiliary potentials VI and V2,

and (c) quadratic in the potentials. The last terms,
which are 4(3vi2+V22+2viv2), we discard on the
grounds that they are of second order in the interaction,
whereas the Breit interaction term, AII, is accurate only
to erst order in nZ. As a practical matter, one may also

note that for electron energies in the hundred Mev
region, the discarded terms are also small compared to
the terms linear in y and very small compared to the
term quadratic in p.

With the omission of nuclear spin terms and quad-

ratic potential terms, the Hamiltonian (12) may be

written

H= Pm n—y+—V (r)
+(2M)-'Lp' —-,'n (pVi+V p)

—-', r—'(n r) r. (p Vi+ V2p)
—-'(pv. +V.p) '(n')r-'5, (»)

in which the subscript 1 has been dropped from the
electron matrices n and p. The interaction terms in this
Hamiltonian are exactly what one would arrive at by
taking a symmetrized form of the classical Darwin

interaction, ' suitably generalized for a finite-sized

nucleus.

D. Radial Separation

The wave equation, Hp=Ep, with the Hamiltonian

(13) is separable in the same way as for a central field

without recoil. We use the representation and notation
of Schiff,"

defining

,=r 'n r, and p„=y (r/r)=r 'r. y
ir ', and—

defining

thematrixk�by�

y=n, p„+ir 'n, pk

In the correction term which multiplies (2M) it is per-

missible to substitute the solution of the wave equation
without recoil. Operating on a solution of the equation

without recoil, y' is equivalent to —m'+(V —E)'
in„(dV/dr), and—n y is equivalent to pm+ V—E. —

We therefore obtain the approximate Hamiltonian

H= {Vy(2M)-iL —m'+ (V—E)(U—E—V,—V,)5)1

+{—m+(2M) 'Im(vi+V2)5)P

For eigenstates of k, the radial equations follow from
(H—E)|P=O, with

(1 0, ( 01, &"'F
P=l I, in. =l I, 4=1 I. (1&)

(0 —1] (—1 0) Er 'G)

In the radial equations, it is no longer more convenient
to use the auxiliary potentials V~ and. V2. We re-express
these in terms of U and V

I Eqs. (10)5, and find the
coupled equations

{E+m V——(2M) '(E+m —V)(E—m —Y+2U))F
—{(d/dr)+kr '—(2M) 'fdV/dr

+3(1+k)r 'U —2(1+k)r 'V5)G=O (16)
{E m V—(—2M)—'(E—m —V) (E+m V+2U))—G

+{(d/dr) kr —' (2M—) 'I dv/dr
+3(1 k)r —'U 2(1 —k)r —'V5)F=O

Terms of order V' or UU in these equations are not
accurate, in view of the earlier approximations, and
may be dropped.

These equations are satisfactory for numerical inte-
gration, but are not analytically tractable at large r,
where U—V= —nZr ', because of terms proportional to
r '. However, a simple transformation converts the
equations into a form whose large-r behavior is iden-
tical in form to the Coulomb equations without recoil.
We define new functions ff and g by means of the
transformation

F={1+(2M) 'I U—(1—k)U5}ff',

G= {1+(2M) 'L' V—(1+k) U5) g.

The radial equations for the new functions are

{adam V+M (@V+—(g+m—.) (k 1)U5)p-
f(d/dr)+ kr '5—g= 0,

—

{h —m —V+M—'Lh V—(8—m) (ky1) U5) g
(1g)

+P(d/dr) kr '5F= 0, —-
where

h=E (2M) '(E'—m'). —

Note that 8 is the total energy in the center-of-momen-
tum frame, and 8 is the electron energy in this frame.
The electron energy in the laboratory frame is E&,b ——h

+M '(E' —m')
The final radial equations used in the calculation are

cast in a dimensionless form:

+ I'p.+( ) ' —(l +l — )dr'
it= V/m, I= U/m, e= h/m,

tt =m/M, x= mr(e' —1) '*. (20)

(21)

+{—r i+(2M) iLr iv25}in„pk (14) For convenience in joining to the Coulomb functions,

D
' Pli'l Mag 39 537 (]92pl

we also introduce the further change of variable
» L. I. Sciiiff, Quantum 3Eechanecs (McGraw-Hill Book Com-

pany, Inc. , New York, 1949), p. 322. tR=-,' e+1 —:b, s=-,'(e—1)
—'*p.
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whose regular solutions are"

o P(k) = (e+1) 'Nr. ~(2x)»e '*(p„—iy)
&&~(p.+&v, 2p.+1»x),

os (k) = —(e+1) *'Npa(2x)'»e —'*(k—its')
+~(pl+1+i%~ 2PI+1, 2ix),

(26)

-2
0

Fro. 1. The electrostatic potential, V; the pseudopotential, U,
defined by Eq. (8); and the auxiliary potentials, Vr and Vs, de-
6ned by Eqs. (10), illustrated for a uniform charge distribution.
The horizontal scale is in units of the nuclear radius, R. The
vertical scale is in units of Zos/E.

The radial equations then take the form

k v(x) ev(x)=——61+ 1— +fs +(k—1)ss(x)
x 6+1 -0+1

dy k v(x) cv(x)
1— +fs —(k+1)ss(x)

i

(R.
8$ 6—1

(22)

The recoil effect thus makes itself felt in several ways:
(a) through the transformation Ii +rr, G—+g; (b—)
through the replacement of E by 8; and (c) through the
extra terms multiplying fs in Eqs. (22).

where

d(R/dx = —kx '(R+ (1+ptx ') 8,

dd/dx=kx '8 —(1+Psx ')(R,
(23)

Pt ——«((e—1)/(e+ 1)j-L1+fs(1—k —ke) j,
(24)

ps=~sL(e+ 1)/(e —1)3'L1—p(1+k—ke) j.
Now sett4 (R=s(o.t+os), d= —si(o'r —o's). The equa
tions for 0~ and r2 are

dot/dx= i(1+yx ')o—, x '(k+—iy') o—e,
—

d /d o six(1+yx ')o s x '(k—iy'—)o r,
— —(25)

'4N. F. Mott and H. S. W. Massey, The Theory oj' Atomic
Cofffsiorss (Oxford University Press, London, 1949), second edi-
tion, p. /9.

E. Coulomb Equations

At large r, ss(x)—v(x) = —«(e' —1)'x '. The radius
at which I=~ to suitable accuracy will depend upon the
overall importance of the recoil correction terms, but
will normally be several times the nuclear radius (see
Fig. 1). Outside the nucleus, approximately ~rs —v~/v

,'(R/r)' W-e shaH .mean by the Coulomb region the
radii for which the difference between I and e may be
neglected.

In the Coulomb region, the recoil equations (22) take
on the same form as the nonrecoil equations,

F. Evaluations of Phase Shifts and
Cross Section

The total phase shifts of the functions 8 and b are
the same as for the functions E and G, since asymptoti-
cally, 5—&F, g—&G. It is therefore not necessary to
transform back to E and G. The numerical solutions of
Eqs. (22) may be joined to the known regular solutions
(26) and the corresponding irregular solutions, and the
phase shifts evaluated in the same way as without re-
coil. The solution of the scattering problem likewise
follows in the same way as without recoil. The radial
variable x is equivalent to kr, where k is the wave
number of the electron in the center-of-momentum
frame. In this frame, the formulation of the scattering
problem in terms of an incident distorted plane wave
and outgoing scattered waves is formally equivalent
to the formulation for a rigid scattering center.

At some joining radius, a, the wave functions (R and 8
obtained by integrating Eqs. (22) are joined to the
regular and irregular Coulomb functions (for each
value of k):

fR (~) =C(R"(a)+D(R'(u) .

ff(a) =Cu" (u)+Dff'(o).
(30)

The phase shift, fq, of the regular Coulomb function is
given by

k—iv~' I'( s+1—iv)
PL— (p i)j ( )

ps iy r (ps+—1+i')
exp (2igs) =

where the Ii's are conQuent hypergeometric functions,
and the normalization constant is

N& = II (p +1+i') lel '/21'(2p„+1)
&&('~'—k)"(p,-'~)' (»)

The irregular solutions, .otr( k) and .osr( k), are obtained
by reversing the sign of p„(but not of k) everywhere in
(26) and (27).

These solutions are identical in form to the usual
Coulomb solutions, differing only in the definitions of
the constants y and y'. In this case,

y= —',(Pt+Ps) =«e(e' —1)-'(1—fs/e),
(»)»= s (Ps—Pt) =«("—1) '*l.1—pe+pk(" —1)),

going over to the usual definitions in the case p—+0.
The quantity pI, is de6ned by

p~=+9' —v'+ (va')'2 (29)

The same definition holds in the nonrecoil case, but is
then more simply written as p„=+Lk' —(«)'$'. For
p/0, however, y' —(y„')'0 («)'.
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where 1, corresponding to orbital angular momentum,
is equal to k for k&0, and is equal to —k —i for k(0.
The de6nition of the irregular Coulomb phase shift,
l'&', is obtained from (31) by reversing the sign of p&

everywhere. The difference, 8I„between the total
phase shift, g~, and the regular Coulomb phase shift,
l i„ is given by

tanbi ——sin(t o'—1 o)/( (C/D)+cos(l i,
"—

1 o)7. (32)

Finally, the cross section is defined by o =
( f('+

( g (',
with

f= 0/2')E((I+1)(: p(2'~- )—17
+lLexp (2iiti) —17}Ei(cos8), (33)

g= (K/2i)PL —exp(2' i i)+exp(2igi)7Eii(cos8).

The polarization induced in an unpolarized beam is
given by

&=2(«f Img —«g Imf)/(( f('+ (g('), (34)

and is entirely negligible at energies much greater
than mc'

III. THE EFFECT OF RECOIL

A. Neglect of Electron Mass

Consider the dimensionless equations (22) for S. and
6 in the center-of-momentum frame, and the corre-
sponding equations (22)p for (Rp and dp defined by
setting p, equal to zero. In order to isolate the dynamic
recoil eGect, we let the energy e be the same in both
equations. In addition, as a matter of convenience,
we at first neglect the mass of the electron (o))1).This
permits the derivation of an unusually simple result,
expressed by (38) and (39) below.

From (22) and (22) p it follows that

—(8,6t—61,8)
ds

=pL(u e) (8o&+@o@)+kg(go&—&o&)7 (35)

We choose unit normalization for the asymptotic
solutions 8 and (R: 8 —+cosy, (R —+sing, where
=x+y lnx —ioorl+it; and similar forms for dp and 6tp.

Then (35) may be written

( (~—~) (8,8+x.,6t)

+ koi (8'pe (Rp(R) 7dx. (36)

To 6rst order in p, replace 0 and (R by d& and (Ro on the
right of (36). But from (22) p and (10),

(v u) (do +(R(P)+ku(do —6to )

At large x, xl —+ —nZo, dp'+S. p' —+ 1.Therefore,

gp— g pcZ6~ (38)

00

it —imp
——ppQZop p (Sp +(Rp )—(xvp)dx. (40)

0 dS

For a point nucleus, the second term vanishes, i.e.,
a small energy change has no effect on the Coulomb
phase shifts. For a Rnite nucleus the two terms are of
the same order of magnitude for small (k(, and the
second term vanishes for large (k(.

B. Effect of Finite Electron Mass

If the Gnite mass of the electron is taken into account,
(38) is replaced by

i.e., the total phase shift is changed by the recoil terms
by a constant amount, independent of k and in-
dependent of the shape and size of the charge distri-
bution. In particular therefore for the pure Coulomb
phase shifts, f' fp—= ,'p—o.Z—o, as could be inferred also
directly from (28) and (31). Note in (36) that for the
pure Coulomb field, n=v and the erst term in the
integrand vanishes. For a distributed charge the
contribution of the 6rst term exactly balances the
decrease in the contribution of the second term (see
Fig. 1). From (38) and (33) it follows at once for the
scattering amplitudes that

(f fo)/fo=—(g—go)/go = ipuZ—o (39)

(In the present approximation of neglecting the
electron mass, g=f tanoi8). Therefore to first order in p,
the cross section is unaGected by the dynamic recoil
eGect.

The fact that this erst order result is quite accurate
has been verified by numerical integration of Kqs. (22)
and (22)p for realistic charge distributions. For 420-
Mev electrons incident on C", the theoretical value of
g —go is —8.2)&10 '. The values of the same difference
obtained numerically ranged from —7.9X10 4 for

—82X10 ' «r Ik(~~10 For 420-Mev
electrons incident on Pb"', the theoretical value of
g —go is —6.5X10 '. The values of the same difference
obtained numerically ranged from —6.3X i0 for

1 to —6.5X10' for lkl)~20. This weal k-
dependence of the phase shift difference is barely
significant numerically.

It is of some interest to note that a small energy
change is amenable to the same sort of perturbation
treatment. For example, let op be the (dimensionless)
laboratory energy, and &=co—pro'. Again form the
derivative of dp(R —S.pd as in (35). Then, in analogy
with (38), the combined effect of the kinetic and
dynamic recoil corrections on the phase shift is given by

i=——
( xN(do'+o')7. (37)

2 dS
g —go——~@HZ&—p 6 (yo' —(Rp') vCx) (41)
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to first order innZ. The last term in (41) is of order e '
relative to the leading term, but it is k-dependent and
hence capable of changing the value of the cross section.
The k-dependent part of. g—go for electrons is of order
10 ' (it is 200 times larger for muons). However, in the
zero-mass approximation, 80 —(Ro for given k is equal
to the negative of the same quantity for —k. Conse-
quently, the erst order contribution of the last term in
(41) vanishes. This may be seen as follows. The radial
wave equations (16) are invariant under the simul-
taneous substitutions

This implies

k —k, m —m,

F —+G, G —+ —F.

t&s(m) =r& s(—m). (42)

"Ford, Hill, Hill, and Wills (to be published).

Now, expanding the scattering amplitudes (33) to
order ns, it is readily found that

f=f ( =,+m(af/am) ).=,+
g= tan-', t& f ~

s—cot-', 0 m(8 f/c&m)
~

—p+ ' ' '. (43)

To first order in ns, these contributions cancel com-
pletely in the cross section. The residual contributions
will therefore be of order e ', e 'nZ&u, and (pnZ)+'
relative to the cross section in which electron mass is
neglected. The first of these residual contributions
(e ') is present even if recoil is neglected; the second
(e 'nZp) is an interference between the last term of (41)
and the finite mass contribution without recoil; the
third L(pnZ)+'j arises from the last term of (41) by
itself. For 400-Mev electrons, all of these corrections
seem to be entirely negligible; they are approximately
10 ', 10 ', and 10 " respectively, relative to the zero-
mass, non-recoil result. Of course the delicate cancella-
tions that take place in summing the series to obtain
the first term of (43) may not take place in the later
terms. This may lead to results considerably larger than
just estimated (say 100 or 1000 times larger), but still
entirely negligible. In the numerical calculations re-
ferred to above, a given phase shift change, Ar&/r&, pro-
duced typically a cross-section change, Do/o, of about
10' 6»/t&.

We conclude that for energies and angles which have
been studied so far in electron scattering, the dynamic
recoil correction is probably of no significance. It may
be of significance in the scattering of muons.

Because of the extremely high accuracy required in
the phase shifts, and because of the great cancellations
occurring in the partial-wave sum, the numerical
techniques have not as yet been suKciently reined to
give a quantitatively reliable prediction of these small
recoil effects. Results of the numerical analysis will be
presented later. "

(—n p+V —8)y~+&=0. (45)

To order (1/M) the perturbing Hamiltonian may be
written

II.H'= —(2M) '(V'+VV VW)

+ (2M) '(n p —V+ h) (n p —V—h)

+(s/4M)l:(n. p —V+8), (p VW+VW p)j. (46)

For consistency with the approximations already made,
the first term must be neglected. The second term
vanishes in lowest order perturbation theory because
of the equation satisfied by the unperturbed function.
The last term also appears to vanish in lowest order;
however, neither the operator nor the scattering states
approach zero sufficiently rapidly at large distances to
justify an integration by parts and the hermitian
property of P is not valid. Instead, the matrix element
of the last term may be written

(4M) ' ~V' fyr' &tn(p ~W+~W p)(p +&)ldr. (47)

Clearly the value of this expression can depend only
on the asymptotic forms of the wave functions, which
are

y; &+&~e'"f"+f(k;.r/kr) e'k'/r
(48)

y ' e" '+f*( kr r/kyar)e
—' "/r—

where k; and kr are the initial and final wave number
vectors. Although the integral is still ambiguous, we
may obtain a reasonable interpretation by the follow-
ing procedure. Take the volume of integration to be a
sphere centered about the potential and evaluate the
"D. Ravenhall (private communication).

C. Perturbation Theory Without Partial
Wave Expansion

It is interesting to see how the results of the preceding
subsections can be understood in terms of a pertur-
bation treatment of the complete scattering wave
function. Ravenhall" has pointed out that in Born
approximation the recoil e6ects are purely kinematic.
In the present. discussion we shall go beyond the Born
approximation in that the nonrecoil problem will be
considered exactly and the recoil terms will be treated
as a perturbation.

We may dispense with the term involving the electron
mass. This follows from the fact that a change in sign
of m can be exactly compensated for by a change in
representation of the Dirac matrices. Thus the cross
section cannot contain odd powers of m; the results of
subsection B follow immediately.

It is convenient to rewrite the Hamiltonian (13) as

P= —n p+V+(2M) '(p' —n pU —Vn p
+- L-', ('~W+~W') j). (44)

The unperturbed scattering problem is then given by
the equation
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resulting surface integral by the method of stationary
phase. Neglecting terms which oscillate with R (the
radius of the sphere) or decrease with increasing R, the
result turns out to be

6f= its—ccZef, (49)

in agreement with that obtained by the partial wave
analysis. This also confirms Ravenhall's result that
recoil eGects do not contribute in Born approximation
(note that the first term of H, tt' corresponds to second
Born approximation in the electromagnetic interaction).

IV. CONCLUSIONS

To the extent that the finite mass of the electron or
muon may be neglected, the dynamic recoil effect does
not inQuence the cross section. To this approximation,
recoil is taken into account by calculating with an

energy h =E»b(1—E»b/M), and by transforming
calculated cross sections and angles from the center-of-
momentum frame to the laboratory frame. Considera-
tion of the finite mass of the electron or muon leads to a
dynamic recoil effect on the cross section which is Ao/o.
= (crZ) (nt/M) (rrt/E)y, where y is an amplification factor
(arising from the great cancellations in the partial wave
sum) whose magnitude is very uncertain, but might. be
as great as 104 at the highest energies and greatest
angles where electron scattering data are available.
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Alternative Method for Comparing Pion-Proton Scattering Data with
Dispersion Equations*
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A method for comparing pion-proton scattering experiments with the predictions of the forward angle
scattering dispersion equations is proposed, which allows the usual statistical measure (x ) of the agreement.
A slight discrepancy is found between negative pion-proton data and the theory; however, the over-all
agreement is considered satisfactory. Values of the coupling constant and 5-wave zero-energy scattering
lengths are determined. They are f'=0.08&0.01, e& =0.193&0.050, and us= —0.089~0.048.

1. INTRO')UCTION

INCE the analysis of the pion-nucleon scattering
by use of forward scattering dispersion equations

was made by Puppi and Stanghellini, ' several authors
have discussed the lack of agreement between the

theory and experiments. ' It is desirable to make the
comparison in a way more easily analyzed statistically
than the Puppi-Stanghellini method. One such method

is presented here, ' and the results, which include a
determination of the pion-nucleon coupling constant

*Supported by the U. S. Atomic Energy Commission.
t National Science Foundation Predoctoral Fellow.
/Now at CERN, Geneva, Switzerland; on leave of absence

from the University of Colorado, Boulder, Colorado.
' G. Puppi and A. Stanghellini, Nuovo cimento 5, 1305 (1957).
2 H. J. Schnitzer and G. Salzman, Phys. Rev. 112, 1802 (1958).

This will be referred to as SS. Additional references may be found
in this paper.' H. P. Noyes and D. N. Edwards (to be published) recast the
comparison to facilitate statistical analysis. The analyses differ
in that we use "experimental" cross sections, with no errors
assigned to the integrals, while they use 'theoretical" ones to
evaluate the integrals, with an associated error. They 6nd an f'
for each energy while we require a 6t to all energies with the same
f'

One can write the forward scattering pion-proton
dispersion equations as follows4:

OLD+(1)+D-(1)j~Z~LD+(1) —D-(1)j
k'

t
"dec'o~"'(ro') k'

=D~ (co) — P.V.
47/ ~ 1 k & — 4'

t
"dco' tr ~'(co')

x ~

k co +co
f '—=f+(~), (1~)

coW (1/2M)

where the notation and units are the same as in SS.'
D~(os) is the real part of the sr+-p forward scattering
amplitude in the laboratory system at pion energy co.

Define
& = ZLD+(1)+D-(1)j
(."s= s LD+(1)—D-(1)j. (2)

4 Goldberger, Miyazawa, and Oehme, Phys. Rev. 99, 986 (1955).

and the zero-energy S-wave scattering lengths, are
reported.

2. METHOD OF ANALYSIS


