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Theoretical Total-Energy Distribution of Field-Emitted Electrons*
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The Fowler-Nordheim equation is derived in terms of total electron energy so as to obtain the total-energy
distribution of field-emitted electrons. At O'K the new distribution width is less than —, of that obtained
from the previous "normal-energy" theory. A surprising mirror-image symmetry is observed between the
zero-temperature total-energy field emission and the zero-field normal-energy thermionic emission distri-
butions. The total-energy distribution is also derived for the zero-field thermionic case and this is found
to be the mirror image of the normal-energy zero-temperature field emission distribution.

The new distribution applies to problems involving the total energy of electrons before and after emission.

INTRODUCTION

SENSITIVE test of the validity of any model

~ ~ ~

for the emission of electrons is the energy
distribution measurement. Information about the origin
of emitted electrons and the energy dependence of
electron emission probability can also be expected from
this source.

In view of these facts steps were undertaken to
improve the resolution of the Geld-emission retarding-
potential analyzer with the hope of using the improved
tube in the study of the electron energy band structure
in conductors and semiconductors. The improved tube,
discussed in the following paper, revealed a much

narrower energy distribution than predicted by the
"normal-energy" distribution theory. Further analysis
indicated that the improved analyzer measures total
electron energy rather than the energy associated with

the component of velocity normal to the emitting
surface. For this reason the Fowler-Nordheim equation
is derived in this paper in such a way as to preserve the
distribution in total energy of field-emitted electrons.
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The s part of energy is de6ned by the equations
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DERIVATION OF THE TOTAL-ENERGY DISTRIBUTION
OF FIELD-EMITTED ELECTRONS

I. Fawler-Nardheim Madel"
According to the Fowler-Nordheim model, electrons

arrive at the surface of a metal according to Fermi-
Dirac statistics and penetrate the potential hump in
front of the surface with a probability which is predicted
by a solution of the Schrodinger equation.

Figure 1 shows the one-dimensional potential energy
of an electron near the metal surface at z=0. without
field, the potential energy of an electron far outside
the metal surface is chosen to be zero. V(s) is then'

Fro. 1. One-dimensional potential energy V(z) of an electron
near a metal surface as given by Eqs. (1) and (2).

~ This research was supported by the U. S. Air Force, through
the Ofhce of Scienti6c Research of the Air Research and Develop-
ment Command.

In the usual Fowler-Nordheim derivation" a supply
function 1V(W)dW equal to the number of electrons
with the s part of their energy within the range 8' to
W+dW incident on the surface per second per area is
multiplied by a barrier penetration probability D(W)
to obtain the number of electrons within the range 8'
to W+dW that emerge from the metal per second per
unit area. In this paper the number in the range W to
W+dW emerging per second per unit area, E(W)dW,
will be called the normal-energy distribution. The
Fowler-Nordheim equation is obtained by integrating
P(W)dW over all W.

'R. H. Fowler and L. Nordheim, Proc. Roy. Soc. (London)
A119, 173 (1928).' L. Nordheim, Proc. Roy. Soc. (London) A121, 626 (1928).

asee for example R. H. Good and E. W. MQller, Hundbgch
der Physi% (Springer-Verlag, Berlin, 1956), Vol. 21, p. 181.

4E. L. Murphy and R. H. Good, Jr., Phys. Rev. 102, 1464
(1956).
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dE= energy distribution in Fermi-Dirac electron
gas with energy measured relative to an
electron at rest at 00. (14)N(W, E)dWdE=—number of electrons with energy

within the range E to E+dE whose
z part of the energy lies in the range
W to W+dW, incident upon the
surface z=O per area per time.

4v (2m) &(E—V) &dE
n, (E)dE=

k' exp[(E—f')/kTj+1
(15)

(5)

In the present derivation of the Fowler-Nordheim where
equation the above dednitions hold, and in addition
the following: e(E)

D(W) =probability that an electron with
energy W will penetrate the
barrier.

P (W,E)dWdE =N (W,E)D(W)d WdE
=number of electrons in the given

energy ranges penetrating the
barrier.

P(E)dE= JwP(W, E)dWdE
= total-energy distribution.

(6)

where i' is the Fermi energy. The supply function is
obtained by substituting (15) into (13):

N(W, E)dWdE=— (16)
k' exp[(E—f')/kTJ+ 1

III. Transmission CoefBcient D(W)

The transmission coefficient D(W) is the one used in
the normal-energy derivation and is discussed in
reference 3. For W«U, „and for emission in range
W i, it can be shown' that

j =efP(E)dE
=electric current per unit area
=Fowler-Nordheim equation.

II. Calculation of Supply Function N(W, E)dWdE

where
D(W)—exp[ —c+ (W—i )/d j,

4(2~')~
c= v((eV') ~/y),

3Aep

(17)

(18)

Let m(E)=number of electrons per unit volume
within the metal between E and E+dE. In Fermi-
Dirac statistics the number of electrons with energy E
is uniform in solid angle co. The number of electrons
with energy between E and E+dE incident between 8

and 8+d8 and between g and P+dp on the unit surface
at z= 0 per unit time is

iv) cos8
N(a), E)d(odE=e(E)dE sin8d8dg

= (number arriving at 8 per solid angle)

X (differential solid angle). (10)

2(2~)'~(("P)'/e)

g = —f'= work function;

t(y) and v(y) are slowly varying functions. '

IV. Calculation of P(E)dE

It follows from Eqs. (7) and (8) that

p
—W~

P (E)dE= N(W, E)D(W) d WdE,

(19)

(20)

(21)

where

~
v

~

=magnitude of electron velocity
= [2(E—V)/mj'*;

8=angle between the electron velocity vector
and the normal to the surface;

p= azimuthal angle.

From Eqs. (3), (4), and (11), we have

—dS'
~

v
~

cos8 sin8d8=
[2m(E—V)]&

(12)

4~md
P(E)dE=

h'

(
exp/ —c--

f

d)
eEjd

X dE. (22)
exp[(E—|')/k Th+ 1

where the original limits of integration from 0 to vr/2

have been transformed to the range from 8'=E to
—8'. When 8'= —S" the integrand is essentially
zero and the integration is facilitated by setting the
—W, limit equal to —~. Substituting (16) and (17)
into (21) and integrating on W, one obtains

e(E)dWdE—
N (W,E)dWdE =

2[2m(E —V)]~
(13)

Substituting (12) in (10) and integrating on p, we get
Equation (22) is the total-energy distribution for field-

emitted electrons. The energy-dependent portion of
this function is the product of a field- and work function-
dependent barrier penetration probability and the
Fermi-Dirac distribution function.
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Frc. 2. Total- and normal-energy distributions for Geld emitted electrons. The 300'K curve is arbitrarily normalized.

V. Fowler-Nordheim Equation

The emission current density is found by substituting
(22) into (9):

=mn/sinmn, Eq. (24) becomes

esP2

g~kyt2((e'E) :/y)-
j=e I'(E)dE=

4+mde
exp] —c——

I

E d) Xexp
3AeIi

—4(2ttt)'y' rrkT/d
(("E)'/~) . . (25)

sin (~kT/d)

eE/d

x I'

& „exp[(E—I)/kT]+1

After some manipulation this can be put in standard
form. ' The solution, good only when d) kT, is

4mmde t'
expI —c——

I

d)

akTF (kT/d) 1'(1—kT/d)
(24)

g(1—k T/d)

Grobner nnd Hofreiter, 1ntegraltafelrt (Springer-Verlag, Berlin,
1950), Part II, p. 53, formula 9.' Harold Jeffreys, Methods of Mathematical Physics (Cambridge
University Press, Cambridge, 1956), p. 464.

where a=expQ/kT). After transforming from gamma
functions to factorials and recalling that' u!(—n!)

Equation (25) is the standard Fowler-Nordheim equa-
tion in the higher temperature approximation and is
limited to the region where kT&d.

FURTHER DISCUSSION OF THE TOTAL-ENERGY
DISTRIBUTION

Figure 2 shows total-energy distribution curves for
three diferent temperatures and typical conditions of
F=45)(10' v/cm and &=4.40 ev. The normal-energy
distribution is plotted for comparison. The steeply
rising edge of the zero-temperature curve depicts the
beginning of the Fermi sea at the Fermi energy. The
exponential drop at lower energies is due to the decrease
of barrier penetration probability. The zero-tempera-
ture total-energy distribution is seen to have a half-
width of 0.14 ev as opposed to the 0.48 ev half-width
of the normal-energy curve. The maximum value of
the total-energy distribution decreases rapidly with
temperature whereas the maximum value of the normal-
energy distribution remains constant over a wide
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FrG. 3. Comparison of
the total- and normal-
energy distributions for
Geld and thermionically
emitted electrons. The
diagonal mirror-image
symmetry of the curves
extends even to the
equal range of values
for d and kT.
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0 (0) =0.693d. (27)

An expression for the half-width at higher tempera-
tures is too complex to be useful.

COMPARISON OF THE TOTAL-ENERGY DISTRIBU-
TION AND THE NORMAL-ENERGY DISTRIBUTION

1. Tota/-Erlergy Distribution

(a) The total-energy distribution represents the dis-
tribution in total energy of all the electrons brought to
a single potential anywhere outside of the metal.

(b) It reveals details in the supply function, for
example the top of the Fermi sea in field emission, but
smears out details of the barrier.

(c) It permits a clear mental picture of energy
distribution as a product of the well-known Fermi-
Dirac distribution function and an exponentially de-
creasing penetration probability.

(d) Its half-width at low temperatures is only about
—', of the half-width of the normal-energy distribution.

temperature range. The 300'K curve is arbitrarily
normalized.

It is easily shown that the energy at which the
maximum in the total-energy distribution occurs is

E, =i kT ln(d/kT ——1), (26)

which reduces to E, =t when T=O'K.
The half-width of the total-energy distribution at

zero temperature is

special cases such as planar geometry the distribution
is preserved far from the emitting surface.

(b) It reveals details in the potential barrier at the
surface of the metal, for example the peak of the barrier
in thermionic emission (see following section), but
smears out details in the supply function.

P(E)dE=
4rrm ( E+t't—

E exp
~ ~

dE (thermionic). (28)
E er

Integration of Eq. (28) over all energies from zero to
infinity gives the Richardson-Dushman equation.

The half-width of this distribution is found to be
2.45kT and the maximum in the distribution occurs at
&max= &&

TABULATION OF NORMAL-ENERGY DISTRIBUTION
FUNCTIONS FOR FIELD AND THERMIONIC

EMISSION'4

For thermionic emission,

TOTAL-ENERGY DISTRIBUTION FOR THERMIONIC
ELECTRONS

The same supply function (16) applies to thermionic
and field emission. In the zero-field approximation a
transmission coefficient of zero is assumed for electrons
with normal energy less than zero and unity for elec-
trons with normal energy greater than zero. Proceeding
as in the field-emission case, th.e total-energy distri-
bution is seen to be

Z. Xornza/-Energy Distribution

(a) The normal-energy distribution represents the
distribution in energy associated with the normal
component of velocity during the emission process. In

4mmkT
P(W)dW= e&~~ e ~~~ dW. (29)

For field emission in the higher temperature approxi-
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Work function range
Field range
Temperature range
Range of both d and kT
Range of half-widths

4.50
20' 106
1000'
0.09
0.062

to
to
to
to
to

6.00
60X 106
3000'
0.26
0.180

ev
v/cm
K
ev
ev

mation, '
4~mkT lr W t q—

I'(W)dW= exp) —c+
uT )

W+—1 ~

)&in 1+exp( ~
dW. (30)

kT

For field emission in the zero-temperature approxi-
mation',

E(W)dW =
h'

exp
~

—c—— (e~'~(i W)d—W
di

for W(f,

TABLE I. Range of values of half-width for typical field, work
function, and temperature ranges for the total-energy field
emission and normal-energy thermionic emission energy distri-
butions.

in the normal-energy thermionic distribution whereas
the top of the Fermi sea is depicted in the total-energy
field emission distribution.

The total-energy distribution is most useful in
matters pertaining to

(1) the distribution in total energy of electrons
removed in the emission process —for example, Notting-
ham heating and cooling and depletion of the Fermi sea;

(2) electron ballistics and electron optics problems
where spherical geometry suggests emphasis of total-
energy considerations; some vacuum tube noise prob-
lems~;

(3) field-emission energy distribution measurement
as discussed in the following paper.

The normal-energy distribution is most useful in
matters pertaining to

(1) analysis of quantum-mechanical barrier pene-
tration problems;

(2) electron ballistics and electron optics problems
where planar geometry suggests emphasis of normal-
energy considerations. '

=0 In the following paper the measured total-energy
distributions in the field-emission case are compared

COMPARISON OF TOTAL- AND NORMAL-ENERGY with the above theory
DISTRIBUTIONS FOR FIELD AND THERMIONIC

EMISSION
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'For example, R. W. Degrasse and G. Wade [Inst. Radio
Engrs. 44, No. 8, 1048 (1956)] have predicted a large inherent
noise for a field emission cathode on the basis of the relatively wide
normal-energy distribution. However, the appropriate distribution
to be considered is the narrow total-energy distribution which
brings the field cathode on an equal footing with the thermionic
cathode.

s H. Shelton, Phys. Rev. 107, 1553 (1957).


