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Acoustical Absorption Arising from Molecular Resonance in Solids*
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Resonance phenomena resulting in anomalously high acoustic absorption can occur whenever lattice and
internal molecular vibrational frequencies overlap. Significant effects are predicted at all acoustic frequencies,
without restriction to the resonance region. A method is given for calculating resonance absorption using
available molecular constants. As an illustrative example, the magnitude of resonance absorption has been
calculated for benzene. The predicted absorption is 0.5 cm ' at the 10-Mc/sec frequency, orders of magnitude
larger than have been observed in other single crystals. In order to test this prediction, measurements of
absorption were made on a large single crystal of benzene yielding at 10 Mc/sec, 0.25 cm '. This agreement
between absorption and calculated values is considered adequate, con6rming the phenomenon.

INTRODUCTION

A MOLECULAR crystal exhibits two classes of
thermal oscillations: those in which each molecule

vibrates as a whole about its lattice position; and the
internal vibrations of the atoms comprising the mole-

cule. Although lattice vibrational frequencies are gener-

ally lower than internal vibrations, it is quite possible
that higher lattice vibrational frequencies may overlap
the gravest internal vibrational mode. Because some

coupling always exists between these vibrational modes,
an overlap in frequency results in resonance. One of
the concomitant phenomena in mechanically resonant
systems is the slow transfer of energy. For example,
two weakly coupled pendula exchange oscillations only
if they are close to resonance; but the closer to reso-

nance, the slower the exchange of energy. Similarly,
the rate of energy transfer between lattice and internal
oscillations is slow; and thermal equilibrium is achieved

relatively slowly.
Crystalline substances possessing this resonance

property should exhibit the phenomenon of a time-

dependent speci6c heat. In particular, for a periodic
temperature variation of frequency co, the speci6c heat
will be of the form, c=co+c'/(1+i'/~); the parameter,
I(., is the number of transitions per unit time; its re-

ciprocal is the relaxation time of the process. The
complex character of c expresses the phase lag between

the applied temperature and internal thermal oscilla-

tions; the real part of the specific heat is in phase

with the temperature while the imaginary part lags by
~/2.

A substance having a complex speci6c heat also has

a complex velocity of sound; stated in another way,
the wave number of an acoustical wave will be complex.

Since the imaginary part of the wave number is the

negative of the absorption coefficient, it can be shown

~ This work received support from the Bureau of Ships, Navy
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that absorption is given by'

(c„—c,) c'

2V c„ (c.—c') (~'+")

' See, for example, W. T. Richards, Revs. Modern Phys. 11,
36 (1939).

2 M. Born and K. Huang, Dynamical Theory of CrystaI, Lattices
(Oxford University Press, London, 1954), p. 341.

'R. E. Peierls, Quantum Theory of Solids (Oxford University
Press, London, 1955), p. 40,

4 L.Landau and L. Rumer, Physik Z. Sowjetunion 11, 18 (1937).

where V is the velocity of sound.
Acoustical frequencies are always much smaller than

the transition rate a, hence the magnitude of the
absorption will be inversely proportional to I(:. Referring
again to the two-pendula model, it is apparent that the
weaker the coupling, the slower the rate of energy
exchange. Hence, the acoustical manifestations of this

phenomenon should be most apparent in molecules

having weak coupling between lattice and internal

vibrations.
The coupling of internal and lattice vibrations has

been used by Pauli, Horn, and others to explain the
broadening of optical absorption lines in crystals at
the dispersion frequency' and as an explanation of
thermal conductivity in electrical insulators. However,
the possibility that mode coupling could be strongly
manifested in acoustic absorption appears to have been
overlooked. Landau and his colleagues4 did consider
the case of acoustic absorption resulting from coupling
of the acoustic wave with the lattice vibrations, but
this is a negligible eGect except at extreme ultrasonic
frequencies.

The ensuing discussion gives a method for the
prediction of acoustic absorption in actual molecular
crystals. It is shown that resonance absorption is not a
negligible e8ect in molecular solids but can be orders

of magnitude larger than other absorptive processes;
as a con6rming example, experimental observations on
crystalline benzene are presented.
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where

H'=A( X+)x~4 AXP,x

A = U'v/12+ U"/2d

The omitted terms in the above expansion are insignifi-
cant inasmuch as the atomic displacement is certainly
small compared to the lattice motion. This expression

CALCULATION OF THE RATE OF TRANSITION

Oscillator CoupHng

The coupling of lattice vibrations with internal
oscillations is associated with the nature of intermo-
lecular forces. For example, if these were Hooke's law
forces, lattice vibrations would be strictly harmonic
and no coupling could result. The actual intermolecular
binding forces in molecular crystals are van der Waals'
forces which depart considerably from Hooke's law.
A good approximation for molecular crystals is giveri

by the Lennard-Jones potential, a function having wide
application in the liquid and gaseous state. The binding
energy is thus taken to be

U(r) =—4 L(ro/r)' —(» /r) "3 (2)

The above potential is for two molecules with no
neighbors. The eGect of adding additional neighbors in
the crystal lattice is readily deduced in the following
elementary argument: The potential of a single molecule
with two nearest neighbors all in line at spacing, d, is
simply the summation of two pairs: W(r) = U(r)
+U(2d —r); transforming in terms of a small displace-
ment from equilibrium, 1, this potential becomes

W W,+U „ t 0+ U „ivt-4/12+

The cubic term vanishes since 8' is even. The potential
for displacement perpendicular to the molecular line is

AW= U'| 0/d+ U"l'4/4d'+. . . .

Hence a three-dimensional, simple cubic lattice of six
nearest neighbors with spacing, d, has the potential

hW= (U"+2U'/d) f'+ (U' /12+ U"/2d') f4+. (3)

The first term in each of the brackets corresponds to
displacement along the trimolecular line; the second
term is the transverse oscillation, involving two pairs
of neighbors. Because of symmetry, this expression
remains approximately valid for any direction. Anhar-
monicity results from quartic and higher even-power
terms in f, and hence these are the important terms
which lead to coupling.

Coupling becomes analytically more amenable when
transformed to normal coordinates. Following the
usual procedure, the coordinate t is transformed to a
principal coordinate in which the significant motion
separates into motion of the center of the molecular
mass and motion of the atoms, t =X+x, where X is
the molecular, and x, the atomic coordinate. The
anharmonic coupling potential (neglecting higher than
quartic terms) is then

for the coupling energy obviously represents a consider-
able idealization for a three-dimensional lattice will, in
general, have difI'erent elastic constants for different
crystal directions. Furthermore, the coordinates X and
x are in general not collinear, and some correction
factor between —', and unity should be included. In
spite of these approximations the results indicate that
the accuracy of the calculation is adequate for the
present; the predicted acoustical absorption is a large
eGect, and absorption measurements are rarely precise.

where

aa*p(k)dEp

a(t) = (ih)
—' Hpi' exp(2privpit)dt.

As interpreted here, the internal oscillators make
transitions between the two quantum states, 0 and 1;
the frequency associated with this transition is vp&.

Neglect of transitions to higher states corresponds
classically to neglect of higher powers of x in Eq. (4)
above. The quantity Hp&' is the matrix element of the
transition defined by Hpi'= J $0H'Pidx where Pp and

Pi are the simple harmonic oscillator wave functions
for the states 0 and 1. Vtilizing the expression for the
coupling potential H' from Eq. (4), the quantity a
becomes

~00 pt
a=4AXpp(ih) ' fpfixdx sino(2prvt)

J
'

J
X exp(2privpit)dt, (6)

where X is considered a classical dynamical variable of
the form X=Xp sin(2p. vt). The integration with respect
to time leads to

AXp' 1—exp(2prit) (3v+ vpi)

2ih 3v+ voi

1—exp(2prit) (vpi 3v) 1—exp(2prit) (v+ vpi)

Vpy
—3V v+ vpl

1—exp(2prit) (v —vpi)
Poyixdx. (7)

V—Vpy —M

'For example, see L. Schiff, Qttatttttttt Mechalics (McG'raw-
Hill Book Company, Inc. , New York, 1949), Sec. 29.

Transition Probability

Although the calculation of the relaxation time
between the two oscillators may be considered a
classical one solvable by the usual procedures of
classical mechanics, the procedures of quantum me-
chanics more readily lend themselves to this calculation.
For example, in quantum mechanics the transition
probability per unit time is a familiar perturbation
calculation, given in the form'
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Of the four terms in this equation only the second and
fourth are important, and these only if vpi i and/or
vp~~3v. Thus the rather unusual situation obtains with
resonance occurring whenever a single quantum of the
internal frequency exchanges with either 1 or 3 quanta
of the lattice frequency. If each of the molecular
coordinates, X, in the coupling potential had been
considered independent (XiXsXs instead of X'), then
the resonance would have been restricted to the three
quanta exchange, vpq 3v. Actually in all molecules for
which data exists, vp~ is much larger than the maximum

v, and normal resonance, vp&~v, is probably unimpor-
tant even if the coordinates X are not independent.
This unusual resonance phenomenon may also be
described alternatively in terms of phonon collisions;
in this case collisions between three lattice phonons and
a single internal phonon are required in order that
energy and momentum shall be conserved. ' '

The remaining integration (with respect to the
coordinate x) leads to'

A Xp sill [ol'L(upi 3v)t]
ca*=

4k rr(ppi —3p)

As ordinarily interpreted, Kq. (5) implies resonance
with any single upper state for effecting transition. In
that case, the quantity p(k)dE& in Eq. (5) is ordinarily
defined so that it represents the fraction of lattice states
taken sirlgly (or single lattice phonons) with energy
lying between E& and E&+dE&. However, the above
discussion demonstrates that three lattice states (or
three lattice phonons) are necessary to effect transition.
The distribution function of lattice states, taken in sets
of three in the energy range dEI„ is then [p(k)dEI:]'.
The modified form of Eq. (5) for this case then becomes

A'Xp'
t

1' t sin'[ori(vpi —3v)t]p'(k)dEqo
(9)

4hpnt J (vpi 3p)

The value of the single integral involving the sine
function is small except in the region of resonance so
that its integration limits can be extended from —~
to +no, a familiar definite integral. Integrating once,
yields

f f'
x= (oroAPX Pk/12rr) ~ po(k)dpo0

which leaves only the problem of evaluating the energy
density, p(k).

' E. Bauer, J. Chem. Phys. 26, 1440 (1957).
7 The simple harmonic oscillator wave functions are

go= (n/x)& exp( nx'/2), —
Pg= (n/gr)&2(n)&x exp( —nx'/2),

where n= 4or moivoi/h.

In the Debye theory of specific heats, the distribution
of lattice vibrations is taken to be dlV= (3/v 0)v'dv

=p(k)dEs or p(k)=3v'/kv ', where the parameter v

is the maximum lattice frequency as interpreted by
Debye. The limits of the remaining integrals above are
therefore taken from 0 to v . Hence, the final result
obtains:

9A'(k T)'1V4

7

16k~pimpiu '(4m'M)'

where Xp has been replaced by its classical value
Xp= (kT/4or'3Ev')&; the molecular weight is 3E, and E
is Avogadro's number.

It will be noted that this result is sensitive to two
parameters: the quantity 2, determined from the
Lennard-Jones potential constants, a measure of the
strength of the intermolecular binding forces; the
parameter v, interpreted in the original Debye theory
as a lattice vibration. If v is truly related to lattice
vibrations, it might be expected that it is not inde-
pendent of the parameter A. However this interpreta-
tion remains speculative, and v can best be considered
an empirical parameter determined from specific heat
data. Although Planck's constant h appears explicitly,
the calculation is not dependent fundamentally upon
quantum mechanics; it will be noted that the product
hvp& occurs in the denominator corresponding classically
to the energy of the internal oscillator.

AN ILLUSTRATIVE EXAMPLE: BENZENE

A small value for the transition probability, I(:, leads
to large acoustic absorption. Hence, the phenomenon of
resonance absorption should be most readily observable
in substances for which Eq. (11) leads to a small value.
Such substances might in general be expected to be
characterized by (1) a relatively large molecular weight,
(2) a large fundamental vibrational frequency, and (3)
a large Debye frequency. However, these first two
characteristics are in general in opposition and their
combined effect may not be relatively important.
Probably of considerable irn.portance is the requirement
that A is small, or the binding forces weak; this implies
that the Lennard-Jones parameters 0 and rp, are small
and the intermolecular spacing large.

An illustrative example, benzene, was selected for
study. This substance is almost the ideal molecular
crystal. Simpler molecules exist, but benzene is probably
the simplest molecular substance existing in the solid
state which can be studied over the wide temperature
range necessary to establish accurate specific heat data;
no complications arise out of polymorphic transitions,
molecular disorder, or hydrogen bonding. Raman and
infrared spectra have been studied extensively as well
as intermolecular potentials leadin'g to the I ennard-
Jones parameters.

The values for benzene for evaluation of the transition
probability are given in Table I. Substitution in Eq.
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(11) leads to ~=10'/sec; this is rather a low value
compared to transition probabilities in other processes.
The predicted acoustic absorption utilizing Eq. (1)
together with this transition probability is about 0.5
cm ' at 10' cps; resonance absorption will vary as the
square of the frequency. Hence absorption arising from
resonance is orders of magnitude greater than has thus
far been observed in crystals (e.g., quartz, metals).

In order to test this prediction, a large single crystal
of benzene of linear dimensions about 7 cm was grown
from the purified liquid and its acoustic absorption
measured. The details of the method of crystal growth
and acoustic measurement are to be published else-
where. ' The measured absorption of longitudinal
acoustic waves at 107 cps was found to be 0.24 cm '.
At frequencies around 6.4&(10' cps the absorption
was 0.09 cm—'. In the frequency range measured, the
frequency dependence was proportional to co' as pre-
dicted. As a check on the experiment, measurements on
a sample of ice obtained from a block of commercial
ice of rather poor optical quality yielded 0.04 cm ' at
10' cps. In view of the many approximations inherent
in the theory, this agreement between observation and
theory is considered adequate.

DISCUSSION

The above calculation is capable of considerable
refinement. The crystal symmetry of benzene is not
simple cubic, as assumed, but simple orthorhombic
(I'bccl); nor does a single acoustic wave propagate, but
longitudinal and transverse waves may exist, each with
characteristic elastic constants in the three crystallo-

' L. Liebermann, J. Acoust. Soc. Am. (to be published).

TAm.z I. Numerical constants for benzene.

e (Lennard-Jones parameters)'
'rp

d (intermolecular spacing)
A (e ro,d) (coupling parameter)
v~ Debye frequency)'
vq& (internal vibrational frequency)d
M' (molecular weight)
mar (apparent internal vibrating mass)s
T (temperature)

6.15X10 P erg
5.27X10 s cm
5.03X1P—s cm
1.73X10~ g cm'/secs
3.1X101' sec-~
1.21X1P» sec-1
78.11 g
24 g
273'K

Hirschfelder, Curtis, and Bird, Molecular Theory of Gases a7id Liquids
(John Wiley and Sons, Inc. , New York, 1954), p. 1112.

b E. R. Andrew and R. G. Eades, Proc. Roy. Soc. (London) A218, 537
(1953).' Lord, Ahlberg, and Andrews, J. Chem. Phys. 5, 649 (1937).

d R. C. Lord, Jr., and D. H. Andrews, J. Phys. Chem. 41, 149 (1937).

graphic axes. Further, the Lennard-Jones potential is
a central force field intended for spherically symmetric
molecules; in addition the constants used were deter-
mined from the vapor rather than the crystalline state.
In spite of these obvious simplifications, the immediate
result is meaningful. The predicted and observed
absorption is orders of magnitude higher than has been
observed in other crystalline substances (in which
resonance absorption is believed to be negligible). The
major source of acoustic dissipation in solid benzene,
and undoubtedly in many other substances, is certainly
resonance absorption.

It would be of interest to search for additional
examples of resonance absorption in molecular crystals.
Tabular values of Lennard-Jones coeKcients for other
molecules indicate that the coupling coeKcient 3 is
comparable to that in benzene in a number of other
simple organic substances. With the aid of a more
precise theory, measurements of acoustic absorption
may well yield significant molecular properties.


