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The function is calculated in 10' intervals of P and
averaged. E2 and X2 are taken from Bozorth"; 82 and
B2, from Kittel."C22, C2~, and C44 have been measured
in this laboratory by Daniels. "

An isotropic skin stress of 8)&10' dynes/cm' in iron

'3W. B. Daniels, M.S. thesis, Case Institute of Technology,
1955 (unpublished).

would yield an average anisotropy of 1.7X10' ergs/cm'
for a fiber axis tilt of 10'. The variation of f(J )—f(~~)
with P for the condition of isotropic stress is also
shown in Fig. 8.

The anisotropy goes roughly as the sine' of the
angle of tilt. The function f(J )—f(~~) averages exactly
to zero at a zero angle of tilt; this corresponds to the
isotropy produced by normal incidence.
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A phenomenological model is developed to facilitate calculation of lattice thermal conductivities at low
temperatures. It is assumed that the phonon scattering processes can be represented by frequency-dependent
relaxation times. Isotropy and absence of dispersion in the crystal vibration spectrum are assumed. No
distinction is made between longitudinal and transverse phonons. The assumed scattering mechanisms are
(1) point impurities (isotopes), (2) normal three-phonon processes, (3) umklapp processes, and (4) boundary
scattering. A special investigation is made of the role of the normal processes which conserve the total crystal
momentum and a formula is derived from the Boltzmann equation which gives their contribution to the
conductivity. The relaxation time for the normal three-phonon processes is taken to be that calculated by
Herring for longitudinal modes in cubic materials. The model predicts for germanium a thermal conductivity
roughly proportional to T & in normal material, but proportional to T ~ in single-isotope material in the
temperature range 50'—100'K. Magnitudes of the relaxation times are estimated from the experimental
data. The thermal conductivity of germanium is calculated by numerical integration for the temperature
range 2—100'K. The results are in reasonably good agreement with the experimental results for normal and
for single-isotope material.

INTRODUCTION

A LTHOUGH an exact calculation of lattice thermal
conductivity is possible in principle, lack of

knowledge of crystal vibration spectra and of an-
harmonic forces in crystals and the difhculty of ob-
taining exact solutions of the Boltzmann equation are
formidable barriers to progress. It is interesting to
investigate the consequences of a simple model which
is more amenable to calculation. It is assumed in this
work that all the phonon scattering processes can be
represented by relaxation times which are functions of
frequency and temperature. It is further assumed that
the material is elastically isotropic and dispersion in the
vibrational spectrum is neglected. As a small concession
to reality, the relaxation time for normal three phonon
processes is taken to be that characteristic of longi-
tudinal modes in a cubic crystal. ' No distinction is
made between longitudinal and transverse phonons.

It is well known that normal processes (scattering
processes which conserve the total crystal momentum)
cannot by themselves lead to a finite thermal conduc-
tivity. Consequently, it cannot be legitimate just to

' C. Herring, Phys. Rev. 95, 954 (1954).
~ R. E. Peierls, Quantum Theory of So/ids (Oxford University

Press, Oxford, 1955), Chap. 2.

add reciprocal relaxation times for the normal processes
(1V processes) to those which do not conserve the crystal
momentum. Examples of the latter type of process
include umklapp processes, impurity scattering, and
boundary scattering (we shall designate all such
momentum-destroying processes as U processes). U
processes tend to return the phonon system to an
equilibrium Planck distribution, whereas E processes
lead to a displaced planck distribution. An investi-
gation of this point is made in some detail to allow the
eGect of normal processes to be included more exactly.

Existence of the following scattering processes is
assumed: (1) Boundary scattering, described by a
constant relaxation time I./c, where c is the velocity of
sound and I is some length characteristic of the ma-
terial. (2) Normal three-phonon processes whose
relaxation time is taken to be proportional to (co'T') ',
where co is the circular frequency and T is the absolute
temperature. For further discussion of this choice, see
the Appendix. (3) Impurity scattering, including
isotope scattering, whose relaxation time is independent
of temperature and proportional to &v '. (4) Umklapp
processes with a relaxation time proportional to
(e ~ rsPTs) ' where 0" is the Debye temperature and
u is a constant characteristic of the vibrational spectrum
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of the material. ' For germanium, on account of the
extreme dispension in the vibration spectrum, 4 u may
be of the order of 8.

Finally, it may be useful to point out that the
addition of thermal resistances calculated for separate
processes is unjustified at low temperatures because of
the strong frequency dependence of the relaxation time.
In particular, it is impossible to define a specific thermal
resistance due to point defects alone.

NORMAL PROCESSES

The Boltzmann equation in the presence of a tem-
perature gradient is written as

t'BEq dE
i
—e VT =0,(Bt), dT

where n(k) is a total relaxation time. It is desired to
determine n in terms of T. and TK. Upon using (6), the
thermal conductivity ~ is easily found to be

~

c' cos'8 n(k)Cpi, (k)d'k.
(2m)' ~

(7)

The factor 3 comes from the three contributing branches
of the vibrational spectrum. (At the low temperatures
we are interested in, the optical modes will not be
excited. In any case their contribution to the thermal
conductivity is limited by their low group velocity. )
In (7), C,i, is the phonon specific heat:

gg2(g2 gpss/X 7

Cph. =
It T2 (e/i&a/KT 1)2

(9)

Since 2 must be a constant vector in the direction of
the temperature gradient, it is convenient to define a
parameter P with the dimensions of a relaxation time by

(BEq E(3)—E Ep E-
+

E at),

in which E is the distribution function, T the tempera- Substitution of (5) and (6) into (4) yields

ture, c the group velocity, and (BE/Bt). the rate of
Ao/n 2 k

change of E due to collisions. In the second term we c VT+ = cVT.—
may replace Ã by So, the Planck distribution function. r/T 7/7 T
The first term is approximated as follows:

Here we de6ne r~ to be the relaxation time for all
normal processes and r to be the relaxation time for
those processes which do not conserve momentum.
r is obtained by adding reciprocal relaxation times
for the appropriate processes. Eo is the Planck dis-
tribution and E(X) is the displaced Planck distribution
to which the normal processes tend. '

Z k= —(App/T)Pc VT,

so that (9) simplifies to

(10a)

———= 1, or n = r, (1+&/r )/p

X= —(A/T) Pc2VT. (10)

Since k= co//c', we have

rc
I

A~ —2 kq- —' 2 k e""/KT
E(X)= exp =Ep+ . (3)

J &T ( „ /KT 1),
' lf we make use of the assumed isotropy, the thermal

conductivity is found to be
If we define T/i=E Ep, the Bo—ltzmann equation (1)
can be written as

cp p ( p
T.

~

1+—~C,i,k'dk.
2~P 8 ( T//)

(12)

c V'T
(e//e/KT 1)p &&ZT (e//+/KT 1)

~1 11—
i
—+—i~,=o.

We define a combined relaxation time r, by

T
—1—T~—1+T

—1

(4)

(5)

The combined relaxation time appears in (12) multi-
plied by the factor (1+p/T„) which expresses the
correction due to the nature of the distribution E(X).
It is now necessary to determine P. To do this, we
utilize the fact that the normal processes conserve
momentum. The rate of change of the total phonon
momentum due to V processes is set equal to zero. We
express this as

We express n& as follows:

e)= —nC V'T
ET2 (e»/KT —1)'

(6)

/ (BE& / E(X)—E
f

kdpk= kd'k=0.
4 Bt ) /p.

Substitution of (3) and (6) into (13) leads to

(13)

'P. G. Klemens, EncyclopeCha of Physics, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. 14, p. 198.

4B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 108, 894
(&957).

ggcu/KT zk k
nc. VT+ —d'k =0. (14)

Les+/KT 1]2 ET r~
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E
(I,+-PI,),
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(c VT) (a—P) d'k.
(esa)/AT '1)2 ETs C2

where
KO/ll7 $2~2

I,=,t M dM&
E2Ts (es(a/xT 1)2If we introduce the variable x= her/ET=Act/KT, we

find that

When the expression (10a) for 2 k is substituted into We then write
(14), the equation becomes

(19)

(20)

e* X4

(n —P)—dx=0,
(e*—1)' r~

(15)
p KO~/5 ~ PP~2

I = M dGO.

E2T2 (esru/xr 1)s
(21)

since a is a function of the magnitude of L only. 0 is
the Debye temperature. We can insert a from (11) and
solve for p which is independent of x:

j.e/r r. e*
P = — x4dx

"o r/v (e —1)'
/8/r 1 p ry e~—

i
1——

I
x4dx. (16)

r/v) (e*—1)'

When p is computed in this way and is substituted into
(12), the thermal conductivity is determined. We
observe that in the limit r„—+ ~ (no V processes),
r, approaches rv and p becomes infinite, Consequently
x becomes inhnite as required. When 7.~ becomes large,
we see from (12) and (16) that the thermal conductivity
is determined principally by z„and that addition of
reciprocal relaxation times is justi6ed in this limit.

Consider I~. Introduce the dimensionless variable x as
in (15).Equation (20) becomes, on substitution of (18),

//ET) s /, Olr

dx, (22)
(Dx'+ Ex'+ c/L) (e*—1)'

4n.4 I. (ET~' 20m'EL

15 c&A) 7 c

DI.—16m'

which gives rise to a thermal conductivity (neglecting
the PTs term).

in which D=A(KT/h)4; E= (B,+B,)T'(ET/f/)' At
very low temperatures, D and E are much smaller than
c/L, so that the denominator may be expanded. The
upper limit may be set equal to infinity. To first order
in D and E, we obtain

2K~'L )ET~ ' ]~ETq 'L
cALcULATrorr oF THE THERMAL corrDUcTrvrTv

15c' ( A ) j. L A ) c
Even with the extreme simpli6cations made in this

model, it does not appear possible to evaluate the basic
integrals analytically. Approximate evaluations can be
made which retain the essential features of the theory,
in particular the temperature dependence. Results
based on numerical integration are presented in the
next section.

The thermal conductivity is obtained from Eqs. (12)
and (16) employing the relaxation times discussed in
the introduction. We can write,

r„'=A/d4+BiT'(a'+c/L, (17)

where the term 3~4 represents the scattering by point
impurities or isotopes; the term B~T'cu' includes the
umklapp processes (Bi contains the exponential tem-
perature factor e o r); and c/L represents the
boundary scattering. Since measurements of the
thermal conductivity of germanium have been made
on a sample almost isotopically pure, ' special attention
will be given to the case A =0. Similarly

~~—I B2~3~2

where B2 is independent of temperature. The combined
relaxation time is

r, '=Ae/4+ (Bi+Be)Tse/s+c/L (18)
' T. H. Geballe aud G. W. Hull, Phys. Rev. 110, 773 (1958).

20 (7rETy 'L
——(Bi+Bs)T'i

i
—. (23)

7 & h ) c

2 (cA/I. ) '

1+
2LA (Bi+Bs)j'*T'- (Bi+Bs)T'.

(24)

At temperatures above perhaps 30'K the size depend-
ence may be regarded as a correction, so that we can
expand the bracket in (24), retaining only the first
term:

1 (cA/L, )&

I —— 1— (25)
2 LA (Bi+Bs)jlT*' (B,+Be)T'

If we anticipate that the term PIs in (19) will prove to
be only a reasonably small correction, we observe from

Because of the strong dependence of D and E on the
temperature, at higher temperatures the situation is
reversed, and c/I. is effectively small. If D is large, the
isotope scattering is very effective for short waves and
we may evaluate (22) approximately by replacing
x'e~/(e~ —1)' by unity. Thus

(ET)'- 2 (cD) & -&

Ii= 1+—
2(ED)'L A ) E( L )
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(25) that the thermal conductivity in the region just
beyond the Iow-temperature maximum will be pro-
portional to T ', unless 82 is so much smaller than B~
that an exponential temperature dependence e "/' ~

will be observed.
If A is very small, as will be the case for a chemically

pure single crystal containing only one isotope, this
result must be modified. Ke cannot use the isotope
contribution to render the integral (22) convergent.
H we set D=O in (22), we then have

(ET' '
I,=B,T!

E. AJ ~0

A(v4+B, T'co'+ c/L

[Aco'+ (Bi+82)T'co'+c/L]

X6e*

X dx. (3O)
(e*—1)'

We approximate this integral as follows:

According to Eq. (16), P= (h/ET)3I2/I3, where

ET~ 3 1 ~oi

&ai z~.
(ET~ ' r" x'e'

Ia= B2T'! ! — dx
dx. (26)

' '
q y, ) g, (~. 1)2x'+c/LE (e~—1)'

This integral is somewhat simpler than before, and we
shall retain the finite 0/T. Even at temperatures for
which the boundary scattering may still be regarded
as small, the integral (26) does not possess an expansion
in integral powers of c/LE. Instead it can be shown that,
to a reasonable approximation,

16m'
B2T'(ET/A)'. (31)

These are important corrections which have to be made
to I~ and Ia to allow for a finite value of O~/T. These
are easily obtained and will not be presented here.
Thus we find

tKT~'1 (0' 20 y ~t c q-'*.

I,=! ! ——; —e-8&
!
—+

&f & Z. &T' T ) 2«LZ).
7 q a ~ 3~(B,+B,)T'

16A &~ET) 2~ E A
(32)

3h(Bi+By) T'

3t,' eir (2 20~

!
—+ +2!

gT2 T j
3A

pI2=
48m'A2E~

3 i' (Bi+B2)T '*

+E A
(27)

2vrKT' L(Bi+B2).

It is seen from (27) that the thermal conductivity in
isotopically pure materials should depend on tempera-
ture as T ' beyond the low-temperature maximum.
This means it should exhibit a sharper fallo8 in tem-
perature. The size-dependent part of the conductivity
is actually the same in (25) and (27) and has the tem-
perature dependence T '~' predicted by Herring. '
However, the size dependence is relatively less im-
portant in the isotopically pure material because the
over-all conductivity is higher.

We must now calculate I2 and P. Anticipating the
relatively small eGect of these terms, we neglect their
size dependence. This will not be valid at very low
temperatures. We have, for normal material,

7,/7.~ B2T'cv'/[Ace'+——(Bi+B2)T'(v'+ c/L j,
(ET't ' $'

[(E'Ax'/A')+ (B,+B,)Tj (28)

This result can now be combined with (25) and (19) to
obtain the total thermal conductivity.

E 1 (cA/L) &

47rcT' [A (Bi+B2)$'* (B,+B2)T'

782A3

96m 4E2cA2

3 0 "(Bi+B2)T &

mE A
~ (33)

Bm pK'T~' t" x4e
dx

Bi+B2 ( A ) ~0 (e*—1)'

Thus, the thermal conductivity of a large sample of
material in the temperature region considered deviates
from T ' by a correction roughly independent of
temperature.

For a chemically and isotopically pure material, we
have

(34)
15 (Bi+82) E i' )X dx.

(e —1)' BiBIT' ~ET' '
I

x'e
I3= ! !, dxThis integral can be evaluated in the same fashion as B +B I, y )

(26).
~'B2T' (KT~ 3 ii )(Bi+B2)T~

(29)
16m' BiB2T' (ET)'

!- (35)
21 (Bi+B2) E 5 )
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Consequently,

P= 7A'/(20s'IC'Br T').

The thermal conductivity of the pure material is then

Its — 3 ~
Q~~ 2Q~

1——e—8'rf —+ +2
)

6A(B,+B,)eT& &s & rs r
3A c & 7 82

+—— (36)
2m ET L-(Br+Bs). 25 Br

At very low temperatures, we retain the size de-
pendence, treat the normal processes as small, and
obtain

P =L/c PIs= (16m'/21)B&T'(ET/A)'(L/c)'. (37)

We find by combining (37) with (23) in (19), that

2m~' I. (Zr) '- (~ICr) 4L

15 e'EA) E A i
20 (rrET) ' L—B,T~

~
—, (3g)

7 & A J e

so that the normal processes do not contribute at the
lowest temperature.

COMPARISON WITH EXPERIMENT
FOR GERMANIUM

There have been several measurements of the thermal
conductivity of germanium. Some of these works are
listed below. ' ' Slack' has emphasized the importance
of isotope scattering.

Qualitatively, we can explain the shape of the ob-
served thermal conductivity curve at low temperatures
as follows: At the very lowest temperatures, boundary
scattering predominates, and the thermal. conductivity
goes as T'. Even at 2'K the T" deviations from
boundary scattering in normal material are appreciable,
so that pure T' behavior is not observed. The isotope
scattering rapidly becomes important as it becomes
easier to create higher frequency phonons which are
scattered efficiently by point impurities. Consequently,
the thermal conductivity reaches a maximum and then
declines. As the temperature increases further, normal
three-phonon scattering and umklapp scattering become
important, and come to dominate the isotope scattering.
In the region from 40 to 100'K the conductivity of a
large sample should be proportional to T '. lt is likely
that observed deviations from this law (2' "is reported
by White and Woods) are caused by the dying out of
boundary scattering. At higher temperatures, the
simple model of this work ceases to apply as O~/T

'Carruthers, Geballe, Rosenberg, and Ziman, Proc. Roy. Soc.
(London) A258, 502 (1957).

7 G. K. White and S. B. Woods, Phys. Rev. 103, 569 (1956).' H. M. Rosenberg, Proc. Phys. Soc. (London) A67, 837 (1954).' G. A. Slack, Phys. Rev. 105, 829 (1957).

decreases and the relaxation times for all phonon-
phonon scattering processes become proportional to 7 '.

In isotopically pure material the T' behavior char-
acteristic of predominant boundary scattering persists
to 5 or 6'K. Three-phonon scattering and umklapp
processes gradually set in, but the conductivity reaches
a considerably higher maximum than normal material.
The falloB from the maximum is steeper, and T—'
behavior is observed from 40 to 100'K.'

In order to make a more detailed comparison of
theory and experiment, we have evaluated the basic
parameters of the theory from the experimental data
of Geballe and Hull. ' This was done as follows: From
the coe%cient of the T' term in the thermal conduc-
tivity of their enriched Ge"' sample, the quantity c/L
can be determined. They report (using c=3.50&&10'
cm sec ') that L=0.180 cm. We assume that the
residual isotope scattering in their enriched material
can be neglected at 75'K, and from (36) (neglecting the
term proportional to Bs/Br) we determine a value for
(Bq+Bs). In doing this, we assume Q=375'K, a value
close to that obtained by Marcus and Kennedy. "We
obtain in this way (Br+Be)=2.77)&10 " sec deg '.
The value of A was determined by numerically inte-
grating (22) for T=75'K, using the previously deter-
mined (Br+Bs) with different choices of 2 until
agreement with the result of Geballe and Hull for
normal Ge was obtained. The correction XpI&/2''e
was again neglected. A was found to be 2.57)&10 44

sec .
Klemens has calculated the relaxation time due to

isotope scattering. "He obtained

Vp 2 f;L1—(M /M)l'a)'=Ace'
4n-c' '

(39)

where Vp is the volume per atom, M; is the mass of an
atom, f; is the fraction of atoms with mass 3II,, and M
is the average mass of all atoms. The quantity 2 was
computed from (39) using a value for the sum given
by Slack.' The result is A = 2.40)&10 ~ sec'. The agree-
ment with the result deduced from the experimental
data is very striking.

The values of the constants A, (Br+Bs), and c/L
determined above were used to calculate the thermal
conductivities of normal Ge and single-isotope Ge in
the range 2'—100'K by numerical integration according
to Eqs. (19) and (22). The correction EPIs/2s-'c was
neglected throughout, and (Br+Bs) was taken to be
independent of temperature, although neither as-
sumption is really valid. The results are shown in Fig.
1, where they are compared with some points read from
the graph of Geballe and Hull. ' It is seen the agreement
is quite good except in the vicinity of the maximum. In
the case of the single-isotope curve, a small amount of
residual isotope scattering in the enriched sample

'0 P. M. Marcus and A. J. Kennedy (to be published)."P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955),
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estimated since it depends essentially on the unknown
ratio Bg/Bg.
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APPENDIX. CHOICE OF PHONON-PHONON
RELAXATION TIMES

Herring' has established that the relaxation time of
a single low-energy mode of wave vector k via three-
phonon scattering processes depends on wave number
and temperature as

r '(k)=k'T' ' (A1)
I I l

5 I 0 20 50
Tempera t Ur e in Degrees Kelvin

Ioo

could easily account for much of the discrepancy near
the maximum. The eGect of the other approximations
mentioned above, which have their most serious eGect
in this region, is to give an underestimate of the thermal
conductivity. It is signi6cant that the theory gives
correctly the very-low-temperature deviations of the
conductivity of the normal material from the T' law,
which are important even at the lowest temperature
shown. These deviations are due to isotope scattering,
and the 6t indicates that the isotope contribution is
given correctly by this simple theory at low tempera-
tures.

The correction A~=KPI~/2~'c has been estimated

by numerical integration for T=75'K for the normal
material. An overestimate is made if we set B2=B~+B2
in (28). It is found on this basis that 6~= 0.3 watt cm '
deg ', about 10%%uo of the observed value of K. The
correction to the conductivity of the single-isotope
material might be more serious, but cannot be reliably

FIG. 1. Thermal conductivity of germanium. The solid lines are
the theoretical curves whose computation is described in the text.
The open circles represent experimental points read from the
graph of Geballe and Hull.

where s is an exponent determined by crystal symmetry.
For reasons of mathematical simplicity, we have chosen
s=2 which is characteristic of longitudinal acoustic
modes in a cubic crystal. A short calculation leads to
the result that for s(3, the thermal conductivity of
single-isotope material will be proportional to T ',
independently of s, beyond the low-temperature
maximum. The restriction s(3 is necessary so that the
integral (20) will converge if these scattering processes
alone are considered. However, if isotope scattering is
included, the exponent of the temperature dependence
will depend on s. We have already seen in Eq. (24)
that if s=2, the thermal conductivity in the presence
of strong isotope scattering goes as T ' .If we choose
instead s= 1, a similar calculation shows that the tem-
perature dependence is T:.Of course, in a detailed
comparison of theory and experiment, boundary
scattering cannot be neglected.

It should be pointed out that the relation (A1) is

expected to hold only for phonons whose energies are
small compared to ET. The extent of the agreement
between theory and experiment suggests that at least
in some average sense, (A1) is valid for the bulk of the
phonons participating in thermal conduction in the
range 40—100'K.


