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and I' denotes the Panofsky ratio. Using the value
I'= 1.8 and the experimental value of Sargent et a/. for
E, we obtain p~, p=0.0089. We see that theory and
experiment are no longer in good agreement.

3. CONCLUSIONS

We have found that the nucleon structure contribu-
tion to the internal conversion coeKcient, p~, for the
process m. +p ~ n+e+e+ is of the order of 2%
Present experimental data are not su%cient to detect
this contribution. Indeed the most reliable value of the
Panofsky ratio to date reveals a discrepancy of 25%
between theoretical and experimental values of p~. This
situation may be removed through the collection of
more events, and indeed may be regarded as the result
of a statistical fluctuation.

The stopping of high-energy x mesons with subse-
quent formation of pairs" would seem to be of more
theoretical interest with regard to eGects of nucleon
structure. However, the application of the photo-
meson dispersion relations to this problem is not so
straightforward.
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The ground-'state energy and low-energy excitations of single-particle character of an infinite medium
of fermions are discussed with the aid of time-dependent Green s functions, which are convenient general-
izations of the exact particle correlation functions in the ground state of i7 particles. The power series
development for the one- and two-particle functions, under the restriction to two-body forces, is derived
and described by means of Feynman diagrams. The derivation of the linked-cluster expansion for the
energy then follows immediately. The equivalence to previous versions is established. The one-particIe
function is examined in particular detail, and it is shown that the poles of its space-time Fourier transform
studied as a function of the energy variable, for fixed momentum, determined the (iV+1)-particle and
(X—1)-particle excited states which have single-particle character. For a reasonable assumption about
the full spectrum of excited states, it is found that for the interacting system, single-particle excitations
with a real energy occur only at the Fermi momentum. It is pointed out that the corresponding energy,
termed the perturbed Fermi energy, equals the binding energy per particle in the ground state of E' particles
for a saturating system at equilibrium density.

It is shown, finally, that the entire structure of the theory may be carried over to the case of finite
temperature, requiring only a redefinition of the Green s functions. The analogy is constructed from a
discussion of the internal energy.

I. INTRODUCTION

HE important advances made recently in the
understanding of many-body problems in quan-

tum mechanics has resulted in the first instance from
the realization of a suitable form of perturbation theory,
the so-called "linked-cluster expansion, " and in the
second instance from the recognition that both for
Fermi and Bose statistics certain subseries of terms,
which can (and must) be summed, are most relevant
to the extreme low- or high-density approximations. '
By this time there exist several distinct derivations of
the linked cluster property, ' as well as fundamental
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With this paper we initiate yet another study of
the same class of problems. The formal development
of the subject has been marked by an increasing
reliance on the method of second quantization, not at
all surprising in view of the fact that we are dealing
from one standpoint with a class of particularly simple
field theories. What has seemed surprising to the authors
is that the detailed treatments so far published have
for the most part been either special to the problem
at hand or else have taken over general techniques of
quantum field theory which date from the "early
part" of the last decade of profound development of
methodology. It appears to us completely appropriate
therefore to introduce current history into this class
of problems by applying to it that method which has
proved most satisfactory in the more dificult instance
of the field theory of elementary particles both for the
elucidation of general properties and also for many
applications.

The method in question makes use of Green's
functions or propagators which are suitably defined
matrix elements of Heisenberg field operators taken
between exact eigenstates of the system. ' The utility
of such constructs is at least twofold: If one studies
the equation of motion of the "one-particle" Green. 's

function, for instance, one finds that it describes only
the interactions which the particle in question under-
goes with other particles of the medium; in short,
only connected or linked diagrams occur. Again, the
"two-particle" Green's function describes either the
interactions of each particle with the medium or of
the two particles with each other. The second point
is that these functions are most closely related to the
computation of observables: From the one-particle
Green's function we may compute all one-particle
observables of the system such as the kinetic energy;
from the two-particle Green's function we can compute
that part of the potential energy due to two-body
forces, etc. It may be inferred from these remarks that
the X-particle Green's function is nothing more than
a convenient generalization of the S-particle correlation
function, chosen so as to facilitate a systematic con-
struction of its equation of motion and of that equation's
solution.

The present paper illustrates this general point of
view by detailed study of a particular example, the
ground state and restricted excited states of an infinite
medium of fermions. We are dealing with the problem
near zero temperature. The initial emphasis is also on
formal questions of the structure of the perturbation
series. In the latter portions of the paper, however,
the discussion is carried beyond perturbation theory

7, 459 (1958); P. C. Martin and J. Schwinger, Bull. Am. Phys.
Soc. Ser. TI, 3, 202 (1958).

'See P. C. Martin and J. Schwinger, reference 6, where the
application to statistical mechanics has been carried out. Similar
ideas have been studied by N. Fukuda and C. Zemach (private
communications).

and in a final section we point out how our results may
be generalized to finite temperature.

The detailed contents of this paper may now be
described as follows: In Sec. II we define the one- and
two-particle Green's functions appropriate to the study
of the zero-temperature problem, and several formulas
are given for the computation of the ground-state
energy by their means. The analogy to the field theory
of elementary particles is already sufhcient to imply
the linked-cluster expansion. The equations of motion
of the various Green's functions are derived in Sec. III,
and it is seen that they are coupled in virtue of the
nonlinearity of the fundamental field equation. In
particular it is shown that all properties of the two-
particle Green's function required for the computation
of the energy may be inferred from the structure of
the one-particle Green's function through its dependence
on the self-energy operator, analogous to the operator
so designated in quantum electrodynamics, ' for
instance. The power series for this operator is derived
and interpreted in terms of Feynman diagrams. '

In Sec. IV, we return to the problem of the ground-
state energy. This fundamental quantity is now related
to the self-energy operator, the follow-through on the
diagrammatic analysis of the previous section constitut-
ing an explicit proof of the linked-cluster expansion in
power series form. The equivalence to previous time-
dependent expressions such as that of Goldstone2 is
demonstrated explicitly. We next turn to the time-
independent form of the theory. The expression of the
self-energy operator and of the energy as a series of
terms of the type occurring in conventional perturbation
theory is given in Sec. V and here interpreted by means
of time-ordered diagrams. In carrying out this trans-
formation, an explicit representation of the one-particle
Green's function for a Fermi gas introduced.

The investigation shifts to more general ground in
Sec. VI with a discussion of those properties of the
exact one-particle Green's function which can be
inferred from invariance and plausibility arguments
alone. The altered structure of the self-energy operator
when expressed in terms of the exact propagator is
described. It is indicated that it has a branch point at
the perturbed Fermi energy, defined as the (negative)
binding energy of the (%+1)st particle added to the
ground state of X particles, at constant volume. In
Sec. VI an eigenvalue equation for this excitation
energy is derived from the requirement that it be a pole
of the Fourier transform of the one-particle Green's
function. It is remarked that for large systems the
Fermi energy equals the binding energy per particle.
A proof is then outlined, with some details left to an
appendix, that the binding energy per particle does
indeed satisfy the given eigenvalue problem. (This is
the content of a theorem due to Hugenholtz and Van

F. J. Dyson) Phys. Rev. 75, 1736 (1949).' R. P. Feyninan, Phys. Rev. 76, 749, 769 {1949).
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Hove. '0) It is moreover the only real solution. We then
discuss the essential limitation on the concept of real
single-particle excitation energies implied by this
result. There remains the possibility of defining metasta-
ble single-particle states under suitable conditions.

The final section contains an account of how the
theory may be generalized to finite temperatures.
Using the example of the internal energy, defined with
respect to the grand canonical ensemble, it is proved
that it is given by a power series formally identical
with that for the ground-state energy, requiring only
the insertion of a modified temperature-dependent
one-particle Green's function. Finally, the form of this
Green's function for the noninteracting case is derived.

momentum operator

P= "d'x:lP(x)(—i/)lP(x):

for a further labeling of states.
Ke first derive an expression for the energy of the

ground state of X particles, which we take to have
zero total momentum and therefore to be designated

IE,O). This will serve to introduce the objects of
fundamental interest in the present investigation. Such
an expression is

zPv, o) =(x,olalx, o)

II. FORjKULATION OF THE MANY-BODY PROBLEM
IN TERM'S OF GREEN'S FUNCTIONS

We are interested in the eigenfunctions and eigen-
values of the Hamiltonian

EE= )/d'x:vga(x) ~P(x):+-,'X)I d'x'd'x

x:p'(x')0'(x)~(lx —x'l)p(x)p(x'):=~o+&a, (&)

= ~d'x(1V, OI P'(x)( —V')P(x):llV, O)

+-'X d'x d'x'e(lx —x'I)2

x (x,ol:0'(x')p'(x)p(x)4 (x'):Ix,o)

i~
—d'x lim V'G(x, t; x', t')

x'~x, t'~~

I d'x:Pt(x)P(x). (3)

whose eigenvalues will label the states of interest. In
addition we shall restrict ourselves throughout this

discussion to situations of complete translational

invariance such as the infinite nuclear medium or the

electron gas and shall therefore employ the total

'o N. M. Hugenholtz and L. van Hove, Physica 24, 363 (1958).
Wick~ Pllys Rev 80~ 268 (195P)

describing a system of identical particles interacting
pairwise through the potential energy function v. Ke
choose units in which A=2m=1. The colons indicate
that the normal product of the operators is to be taken. "
This means that in any such sequence of operators all
referring to the same time, destruction operators are
to be brought to the right of creation operators. In
this or any subsequent rearrangement, the anticom-
mutation relations of Eq. (2) below are to be used,
except that 8-function contributions must be omitted.
For the sake of definiteness, we shall throughout this

paper study the case of Fermi-Dirac statistics neglecting

spin. The P(x), Pt(x) are then operators satisfying
the algebra

4 (x)4'(x')+4'(x')0(x) = {4(x)4'(x') }=&(x—«'),

8 (x) &(x')}= (4'(x),4'(x') }=o.
(2)

The Hamiltonian (1) conserves the number of

particles, here represented by the operator

+(—i)'-'X ' d'xd'x' lim v(lx —x'I)
gll ~~

XG(x,t,x', t; x,t",x', t"), (5)

where the new functions introduced, the one- and
two-particle functions G~ and G~2, are delned, respec-
tively, as

(6)G(x;x') =~(E,ol T(g(xg'(x')) Ix,o),

G(»)»j» )xo )
="P OI ~(4 (»)4 (»)4'(»')4'(»')) I»o& (7)

In these definitions x now represents a point in space
and time, and T is the chronological ordering symbol
of Wick" which directs that the operators be arranged
in increasing time from the right and an over-all

sign factor afFixed according to the parity of the
permutation from the standard order given. The
generalization of the definitions (6) and (7) to any
number of particles is obvious.

Though the introduction of the functions G~ and 6~2
into Eq. (5) may appear forced, such should not be
the reaction of those readers who are conversant with
current praetiee in the quantum theory of fields, for
they will recognize that Eqs. (6) and (7) define Green's
functions of interacting fields whose properties have
been widely studied. For example, G~ provides a
convenient basis for the study of the propagation of a
single "particle" through the medium. As we shall

derive anew below, such a propagation can be described
in terms of Feynman diagrams in which all interactions
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occurring are directly connected with the given particle.
Also for G~~ all interactions are linked with one or
both of the "particles" which occur in this function.
It followers that Eq. (5) can be interpreted as a closed form
of the linked clus-ter expansion.

As a matter of fact, Eq. (5) differs in an essential way
from any recent versions of the theory of the many-body
problem, for it contains the actual kinetic energy of
the system. This has certain advantages which we plan
to exploit in a future publication. For the present, our
goal is to make contact with previous forms of the
theory. For this purpose we require a formula in which
the kinetic energy is evaluated in the unperturbed
Fermi-gas state. To this end, we employ a familiar
device based on the variational principle. Upon differen-
tiation of Eq. (5) with respect to the coupling strength
X, remembering Eq. (1), we find

equation

i~i1 (*)=I:4(x)»j

=p'f(x)+X I d'x" v(Ix"—xI)

)&:Pt(x",t)P(x",t)P(x):, (13)

where p'= —V'. Upon this equation we carry out the
operation indicated in the definition Eq. (6) and obtain
the equation"

( ia—,+p')G(x; x')+iX)t d'x" v(Ix"—xI)

y G(x",t,x; x",t,x') =b4(x x'),—(14)

with the four-dimensional unit source on the right-hand
side. The latter enters because of the relation

dE(X,O)/dX= (S,OIHiIS, O),
T(Big(x)ft (x')) =O'T(P(x)gt (x')) 84(x —x'), (—15)

owing to the stationary character of the energy upon
variation of the wave function. Upon integration, we which can be verified by applying the operation
now have

E(E,O) =Eo(E,O)+ dX'(X,0
I
Hi

I
E,O)

aJ 0

t '+»

h
0 t'—

(16)

=Eo(1V,O)
~'A

+ (—i)'-,' d}~' d'x d'x' lim i'(
I
x—x'I)'J J0

~lr ~g+'

where Eo(X,O) is the kinetic energy of the Fermi gas,
and it is understood that the integrand in the second
term is taken at ) '.

For the sake of completeness, we note here that
J

d4x" M(x; x")G(x";x')=iX d'x" e(Ix"—xI)

to (15), noting that the left-hand side contributes
nothing, and making use of the anticommutation
relations (2).

Equation (14) can be converted to an integro-
(9) differential equation for G(x; x') by defining an integral

operator M(x; x') by means of the relation

0
Eo(X,O) =Q p'= 4~p'dp p',

o (2w)'~ o

(10)

0

harp'dp.

(2m.)'J o

For the particle density p, we therefore have

where 0 is the volume of the system and p~ the Fermi
momentum, is defined by the equation

yG(x", t,x; x",t,x'). (17)

At the same time the right-hand side bears an obvious
kinship to the energy expression, Eq. (9).

Through various techniques are available for the
construction of the operator M(x; x'), the "irreducible
self-energy operator, " we shall 6rst describe a method
which suffices to express M as a power series in the
coupling constant X. Proceeding as in the derivation

p = (S/0) = (pr'/6''). (12)

Both Eqs. (5) and (9) now suggest that further
progress be predicated upon a study of the functions
Gg and Gg2.

Qy Yg

III. STRUCTURE OF THE ONE-PARTICLE
GREEN'S FUNCTIONS FIG. i. Lowest order contributions to the

single-particle Green's function.
consider initially the one-Particle function» This method is due to J. Sd winger, proc. Nag. head. Sci.

G(x; x'). From Eqs. (1) and (2), there follows the field U. S.57, 452, 455 (1951}.
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----oy

--- oy2

I
x (o)

X

Xg

X

yg

y2

The structure of Eq. (17) will be suKciently clear if
we obtain the right-hand side to second order in X.
We therefore require the solution of Eq. (18) to first
order in X, which we obtain by neglecting the first
term on the right-hand side of (18) and converting the
differential equation to an integral equation by means
of the noninteracting single-particle Green's function
satisfying

( i—& &+)p )2G&'& (x; x') =&&4(x—x'). (19)

Xl —-- y

jL

X2 —— y2

x (e)

X (h)

yi

y2 -oz

Vg
=

X

I

y2 -0Z&

(Boundary conditions will be studied below in Sec. V.)
We then replace G~2 in the linear terms by its zeroth
approximation

G(xl)x2j xl )x2) G (xlj xl)G (x2j x2)
'"(*1,.*2')G"'(x2, xl'). (20)

When we insert the result into (17), we obtain two
terms linear in ) and ten quadratic in X. By extension
of the techniques described, we could generate the
higher terms in the series.

We now attempt to survey the nature of the resulting
expressions. For this purpose it is first convenient to
obtain a formal expansion. for G(x; x') based on Eqs.
(15) and (18). If we insert (17) into (14) and convert
to an integral equation, we obtain

FIG. 2. Complete second-order contribution to
the single-particle propagator. G(x x') =G&'&(x; x')+J d'xid'x2G&'&(x xl)

of Eq. (14), we obtain the equation

[ Z(B/&&f1)+pl 7[ 3(&&/&&32)+p2 jG12(xl)x2) xl )x2 )
or symbolically

XM(xl, x2)G(x„x'), (21)

= ( i)9.' d'yld3y2 v(l yl xll)v(l y2 x2I)

XG1234(xl yl x2)y2j xl yl x2 )y2)

i5'(xl —xl')X ~—td'y2 v(l y2 x2I)G12(x2 y2 x2,y2)

+i8 (xl—x2')X~t'd y2 v(l y2
—x2I)G12(x2y2 xl y2)

G= G&"+G&'&MG

= G"&+G&'&MG&"+G&"MG&'&MG ' + . . (22)

By comparison of the series (22) with the power series
expression which corresponds to the right-hand side of
(17), it is a straightforward matter to identify the
structure of M(x; x').

As usual, the results are most simply stated by the
introduction of Feyman diagrams accompanied by the
statement of rules for writing down the associated
contributions. We proceed by induction. Writing
as a sum,

M =M&»+ M&2&+ (23)—
i&& (x2—x2')j& d yl v(l yl —xl I)G12(xl,yl, xl',yl)

+i&'(x2 xl )X ~d,yl v(
I yl —xl l)G12(xl, yl x2 yl)

+iX d'yl &&'(x2—yl) v(
I yl —xl

I )G12(xl,yl xl x2 )

the erst-order contribution, G'M'G, to Eq. (22) is
represented by the two diagrams of Fig. 1, and as
follows from Eqs. (17) and (18) by the expressions

I&'
~

G&'&M, &»G«)& = ix d'x—l d'y»( I »—yl I )

+~ (xl xl)&& (x2 x2) && (xl x2)&& (x2 xl).
(18)

X[G ' (x; xl)G"&(xl, x'))G"'(yl, yl), (24)

X[G"&(x;xl)G"'(xl j yl)G"'(yl j x')j. (25)

G(0)My("G' ) = iX d'xz d' z &~ ~ »—yiThroughout, it is understood that whenever two points
are connected by the interaction ~ they occur at the
same time.
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In (24), (25), and henceforth in all subsequent expres-
sions, it is understood that whenever a single-particle
Green's function contains equal temporal arguments
it represents the matrix element of the number density

G& ) (y, ; y,) = —sP,Oly'(yt)4'(yt) I X,O). (26)

That this is correct stems directly from the occurrence
of the normal product in the field equation (13).

In Fig. 2 are represented the ten diagrams quadratic
in &( whose sum is G(o)~(2)G(o)+G(o)~(r)G(o)~(r)G(o)

The latter may be identified directly with diagrams

(a)—(d). Of the remaining terms we record a few

typical contributions:

G")M,("G&"=—(iX)' d'xtd'ytd'xsd'ys

X~(l»- ytl)~(l»- ys I)

X [G"&(x; x )G&'& (x; x )G&'& (x; x')]

X [G"'(yr,' ys)G'"(ys; y))7. (27)

G")Mf(')G(') = (iX)' d'xrd'ytd'xod'ys

X~(l»- yt l)~(l»- ys I)

X[G("(x»)G")(» ys)G("(y yr)

XG" (yt, xs)G(')(xs, x')]. (28)

From these equations and the corresponding ones
for the remaining diagrams, the general rules for
G&')M&"'G&" are inferred without difhculty. Draw all

topologically distinct diagrams consisting of the
following elements: (i) A continuous open particle
line which may reverse direction several times, is
directed from the point x' to the point x, and traverses
m interaction points, where ns may take any of the
values m=1, 2 2)s, as illustrated in Fig. 2. (ii) Some
number of closed loops including the degenerate one
represented by Eq. (24). The sense of traversal,
clockwise or counterclockwise is to be indicated. In
most cases, for example, as in Figs. 3 (b), (c), the
reversal of this sense yields a distinct contribution.
The rule for this will be given below. (iii) A total of ts

horizontal (instantaneous) undirected dashed lines

representing the interaction. (iv) Only connected

diagrams are to be drawn. This is essentially the
linked-cluster theorem. From the totality of such

diagrams we then discard those that can be understood
as the interates of lower order diagrams (the "reducible"

ones) in the sense of Eq. (23). Thus in Fig. (3), where

selected third-order diagrams are given, (a) is discarded

and (b)—(d) retained.
To record the contribution of one of the remaining

diagrams, we employ the following prescription: (i)

FIG. 3. Selected third-order contributions to the one-particle
Green's function. Figures (h) and (c) here represent distinct
contributions.

For every interaction connecting the points x;, y; there
is a factor (iX)fd'x;doy, t)(Ix,—y;~). (ii) For the
propagation of a particle from interactions point x;+~
to point x,, there is a factor G")(x,; x;+t). There are
corresponding factors for the initial and final propaga-
tion of the particle. (iii) There is an over-all sign factor
(—1)' where l is the number of closed loops.

Except for rule (iii), the others are obvious from the
examples already given. The rule in question is most
easily seen by consideration of an alternative mode of
constructing the totality of diagrams (reducible and
irreducible) in a given order. We illustrate this by
consideration of Fig. (2). Let us refer to diagram (a)
as the standard one. As a manner of speaking, we then
say that all the remaining diagrams can be obtained
from the standard one by a suitable number of ex-
changes. The parity of the latter determines the sign
of a diagram relative to the standard one. Thus Fig.
2(b) results from the exchange xs~ys and carries a
relative minus sign, Fig. 2 (e) from the exchange
y)~ys, and Fig. 2 (g) from the exchange xs~ss, in
Fig. 2 (e), i.e., in this case the replacement of xs by
an arbitrary contemporaneous point of the "medium. "
Each such exchange, which brings in an additional
minus sign, alters the number of closed loops by unity.
Rule (iii) now follows if we note that the standard
diagram carries a minus sign for each of its simple
closed loops, as follows directly from Eq. (25). We
may also remark that this method accounts for the
nonidentity of contributions (b) and (c) of Fig. 3.
They result from distinct permutations of the variables

y&, y&, y3, and all distinct permutations giving rise to
linked diagrams are to be included.

We have thus arrived at a complete account of the
power series for the integral operator 3II(x; x'). For
many problems it is necessary to carry out at least a
partial summation of the power series in question,
the particular summation depending on the problem at
hand. In fact one can also give a formally exact expres-

sion for this operator as has been done also in the
more complicated field-theoretical cases. All these
matters will be detailed at the apposite juncture. For
the present we shall exploit the power series method

already developed. We 6rst return to the problem of

computing the ground-state energy.
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IV. GROUND-STATE ENERGY; LINKED-
CLUSTER EXPANSION

It would be useful for future applications to carry
out an analysis of the two-particle Green's function
without the restriction on the coordinates implied in

Eq. (17), For the present purpose, however, the
comparison of (17) with (9) yields the immediate
prescription

"dX'
E(N, O) =Es(N, O) ,'—i —I td'xd4x"

~p

XM(x; x")G(*";x). (29)

An alternate form, more appropriate when the direct
utilization of the power series is contemplated, is
obtained if we de6ne the reducible self-energy operator
M~ by the equation

u,G&o&—=XG
—{M+MG(o&M+MG(o&MG(o&M+. . . )Gio& (30)

as follows from Eq. (22). We thus find

i" dX'
IE(N, O) =Es(N, O) —si ' d'xd'x'

XM, (x; *';X')G«&(x'; x). (31)

In conjunction with the results of the previous section,
Eq. (31) immediately settles all questions relating to
the enumeration of independent contributions to the
ground-state energy. It also constitutes an explicit
proof of the linked-cluster expansion.

Though Eq. (31) may be used as is and for certain
applications, as to the electron gas, is most useful in
that form, it is a simple matter to show the equivalence
of (31) to the formulas employed in Goldstone's
treatment. '

The proof (for a suminary see the last paragraph of
this section) depends on a special property of the type
of diagram which contributes to (31),namely a collection
of closed loops connected by instantaneous interactions.
Let us write

(32)

The term of order e in (31) may therefore be written

$"C&"&=—isi(&z) r$~ d4xidsyt ~ ~ d4x„dsy

XC'"'(xr x ' yi y ). (33)

Here, besides performing the ) integration, we have
introduced an additional time integration for the sake
of symmetry and divided by a "large" time interval r
as compensation. Again the coordinates with the same
subscript are connected by the interaction.

We now divide the total e-dimensional region de6ned
by the time integrations into e subregions obtained
by choosing in turn each of the e times t& ~ ~ t„ to be
the latest in any otherwise arbitrary time-ordered
sequence, i.e., we divide the total of e time-ordered
sequences into e classes. If the selected time integration
is then reserved for last, the contribution to (33) of
the particular class is independent of this coordinate,
as follows from translational invariance, the integration
merely cancelling the factor ~ '. We may, in fact fix
this last point and take it as the origin of time.

We now assert that each of the e classes yields ie toto
the same contribution to (33).For example, we compare
class ii (ti latest) with class ts. The contribution of
any diagram of the erst class corresponds in the sense
illustrated in Fig. 4 to the contribution of some, in
general diferent, diagram of the second class. By a
simple relabelling of variables, however, the latter is
identical with a contribution to class t~. Moreover, the
correspondence is both single-valued and complete. We
may consequently choose the contribution of 'class t&

and discard the factor n ' in Eq. (33).
We summarize this result as follows: To And the

mth order contribution to Eq. (31), we draw the same
totality of graphs as contribute to Mp(x; x")Gis& (x";x),
except that topologically equivalent distortions are
now restricted to those for which all other coordinates
chronologically precede x (which we identify with xi
and take ii ——0). The time integrations over these
coordinates extend from —~ to the origin. Correspond-
ing to these restrictions, we dehne an operator
DR+(x; x"). It follows that the ground-state energy is
given by the formula.

Xg 0y&
E(N,O) =Es(N, O) 'i ' d'xd—'x-' dk'

XB

Xy

{a)
Xg

Ji 'i

(b)

F/G. 4. Third-order contributions to the energy which indicate
the redundancy oi those contributions to Eci (33) which d.iffer
only by a relabeling of coordinates.

BR+( , xOx') G&'& (x'; x), (34)
the result sought.

V. TIME-INDEPENDENT FORM OF THE THEORY

The discussion of this section will concern itself with
the conversion of Eq. (34) and its predecessors to
summations of the type which occur in time-independent
perturbation theory. Toward this end we must 6nally
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state explicitly the form of G"&(x; x') which is required
in order that we be able to perform the time integrations.

Introducing the Fourier transform

1
Gi'&(x; x') =——P dpp

Q2mp~ „
Xexl&[iy (x—x') —iPO(t —t') 7&&G&» (P,P,) (35)

into the diGerential equation

the only nonvanishing contributions to (42) occur when
the state

~
X+1, p) contains one additional particle of

momentum p, ~ 1&~ )pz. This leads immediately to the
6rst of Eqs. (40). For t& t' a similar treatment results
in the second of Eqs. (40).

As a first application we compute the Fourier
transform

M(p, po)= I d'x

( 6—,+p') G&'& (x; x') =8'(x—x'), (36) &&exp[ iy—(x—x')+ipo(t —t')7M(x; x') (44)

we find that
G"'(P Po) =

I Po+P—'7 '. (37)

~(p' —p&') =+1, p' ypF'
p'& p~' (39)

By elementary contour integration, we then find that"

G&o& (x; x')

exp[ip (x—x') —ip'(t —t') 7,
0 l pl&uz

Z

exp[ip (x—x') —ip'(t —t')7, t& t'.
0 I pl&n~

That our choice (38) is correct is easily verified from
the definition

Gi &(*;*')=i@,0~T(&t (*)yt(*'))~X,O) ~,. (41)

For t &t', we can write, for example (all states are now
Fermi-gas states), "
Gi'&(x; x') =i+,(X,O~&P(x) ~/+1, p)

X(iV+1, 1tyt(*) ~X,O). (42)

Equation (42) is evaluated by the introduction of
the expansion

We tentatively choose as path of integration for variable
p, in (35) a contour which remains slightly below the
real axis for po& p&,", crosses at this point, and remains
above for po)PF'. Alternatively we integrate along
the real axis and replace (37) by the formula

G'" (P Po) =[ Po+P' —i~~(p' —P~')7 ' — (3g)

with g arbitrarily small and positive and

of the irreducible self-energy operator. Here we consider
a typical diagram of order e which will contain [includ-
ing the integration in (44)7 (i) 2ii —1 factors of G&'&

for each of which we substitute (40); (ii) e interactions
v((x;—y;~ ) for each of which we substitute the Fourier
resolution

i(~x))=f1 '2 ~"*i(la))

(iii) 2n vertices of interaction, 2e—1 spatial integrations,
and e—1 temporal integrations. The spatial integrations
insure momentum conservation at each vertex and are
done once for all. We then divide the total time integra-
tion into n . contributions, one for each relative ordering
of the e times.

We content ourselves with a description of the
contributions of the individual time-ordered parts,
the rules to be given following easily from the ingre-
dients described above. To each original "Feynman"
diagram we draw e'. time-ordered diagrams which
are merely different distortions of the same diagram,
as required to achieve the given ordering. [The two
diagrams resulting from Fig. 2(e) are shown in Fig. 5.
'The wavy lines are inserted to help keep track of the
incident and emergent energy and momentum. )
Momenta are assigned at each vertex with the help of
momentum conservation. There will be e free momenta
after this is done. It is important to remark that the
directional structure of the original space-time diagram
is maintained: In virtue of Eq. (40), an arrow directed
upwards now represents a particle with momentum

1&, ~ y~)p& one directed downward a particle within
the Fermi sphere, momentum &pi (actually a particle
missing from the sphere, i.e., a "hole").

For the sake of a simple survey formula we leave the
momentum conservation in the form of 0 functions, and

$(g) =0 *Q ii exp[$p'x —zp f$, (43) Pe Po

and its Hermitian conjugate, both valid in the absence
of interaction. Since the state ~X,O)0 is that of E
particles filling the Fermi sphere in momentum space,

kg- P

ki" kk 'Iki+kk-P

'3This propagator has also been discussed by J. Hubbard,
reference 2.

"There is of course a whole spectrum of excited-state energies
for given momentum p and more properly this should be indicated
in Eq. (42). However, only the one involving single-particle
excitation contributes to the unperturbed sum.

PPo (b)

FIG. 5. Second-order contributions to the Fourier transform
of the self-energy operator which arise from the same Feynman
diagram.
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label the interaction momenta ql q„and the particle
momenta pi. p2„ i. The general contribution of a
single time-ordered diagram of order e may be written

1 2n—1

P n( 1)i+m+1

Qi ~ ~ ~ Qn P1 . . P2a-1 j=l0n

Here l is still the number of closed loops and m is the
number of holes in the Fermi sea, the residual factor of
minus one arising from the definition, Eq. (17), of
the operator iV; 8,. is the 8 function for conservation of
momentum at the jth vertex. To complete the specifica-
tion of Eq. (46) we require merely the energy denomina-
tors. Let us consider the ith energy denominator D,.
A horizontal line drawn between the ith interaction
time and the one immediately following will cut an
odd number of "particle" lines counting the undulating
lines for the initial and final states. For every such line
directed upwards, of momentum p+, there occurs in
D, ' a term —(p+' —iq). For every such line propagating
backwards in time with momentum p there is a term

(p '+i&) In a.ll we then find by carrying out the time
integrations that

=Pa i' Pa+2—(P—'+iU) 2+(P+' i&) (47)

where i, is the number (0, 1, or 2) which specifies
whether the initial and/or final state lines are cut.

In the summations in (46), the momenta p+ are
restricted to be above the Fermi surface, the p to be
below. This has several interesting consequences. In
the erst place, there are a large number of diagrams in
which momentum conservation requires a p+ to be
equal to a p . All these then vanish. Such is the case
for the contributions of Figs. 2 (g)-(j). Here the
simplest interaction with the medium as represented by
the simplest closed loop or its associated exchange
interaction can result only in forward scattering of the
interacting particle and therefore cannot reverse the
sense of its propagation line. Of greater moment is
the fact that the structure of the D; provides us with
information concerning the analytic properties of
M(p, po). This will be discussed in the next section, in
connection with a brief consideration of excited-state
energies.

%e now turn to the formulation of the rules for
calculating E(E,O) from time-independent formulas.

Fro. 6. Selected contributions to the fourth-order energy. Each
of them corresponds to one or two distinct diagrams of the
self-energy kernel 5K@ obtained by removing the downward-
directed lines indicated.

These rules are closely those given for 3f(p,po) and
follow directly from consideration of Eq. (34). Thus
to every contribution to 5Kg there is a, contribution to
E(1V,O). It is also easy to see that at most two different
diagrams of 5Kii give the same diagram for E(X,O)

when the single-particle propagator is closed. This may
be concluded by considering the alternative definition
of E(E,O) —Eo(1V,O) as one-half the sum of all distinct,
connected, closed-loop diagrams which disappear at
time t=0 Acc. ording to Eq. (34), the diagram of
Fig. 6(a), for example, could have been formed from those
contributions to 5K' in which either of the two down-
ward directed lines marked with gg or // is opened.
In such cases the factor of —,

' in (34) is removed. The
only other type of possibility, illustrated in Fig. 6 (b),
arises from but a single distinct term of 5K', and the
factor of 2 is thus retained in calculating the contribu-
tion of this diagram.

The time integrations may now be performed and the
spatial integrals transformed to sums over momenta
as for 3I(p,po), with the even. simpler result that a
typical contribution, exclusive of a possible factor -„
has the form

2n—1

yn( 1)L+m P P Q
gi ~ .

qadi P1 ~ Pge )=i0n

where

the right-hand side having already been defined in
connection with Eq. (47). In the present case, since
the number of p~ equals the number of p, D, ' never
vanishes and the factors iq may be dropped. Though
there are 2n vertices, in (48) we have already taken.
cognizance of the fact that momentum is automatically
conserved at one of them if it is at the 2e—1 others.
There are (e—1)!terms of type (48) for every original
diagram.

VI. ANALYTIC PROPERTIES OF THE SELF-ENERGY
OPERATOR AND OF THE ONE-PARTICLE

GREEN'S FUNCTION

%e turn in this section to a further study of the
properties of the self-energy operator and of the
one-particle Green's function. The reason for this is
that though the various perturbation expansions may
well converge for potentials that are suKciently regular
and su6ciently weak, the attempt to infer the analytic
properties of the functions so defined from the individual
terms of the series can, of course, be quite misleading.
But, as we shall see, both the occurrence and position of
"one-particle" excitations, for example, depend in-
timately on just such analytic properties, in this case
of the self-energy operator.

%e consider first the general form of the full one-
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particle Green's function. Ke have

t& t': G(x; x')

=iZ (1VOI4(*) I1V+1 p,n&(1V+» y nil'(x') I1VO&

=i Q expLiy (x—x') —is+(p, n)(t —t,')j
P, A

X(1V,olg(0) I1V+1, p, &(1V+1, Igt(0) I1V,O&, (50)

where

c+(y,n) =E(1V+1, y,n) —E(1V,O),

and we have used only completeness and translational
invariance. In (50) and (51), n is a parameter of
degeneracy distinguishing states of given momentum.
It is in fact clear from a consideration of the unperturbed
situation that o. will take on an infiite number of values.
Introducing the "wave function"

n-~&, (y, ) = (1v,o Iy(0) I1v+1, y,n&, (52)

which can be interpreted as the amplitude for finding
the ground state of Ã particles if we remove a particle
from the state

I
1V+1, y,n), we thus have

zt) t'. G(x; x') =—P I q „(p,n) I

'
Q y,a.

Xexpl iy (x x') —i&+(—p, n) (t—t') j. (53)

For the unperturbed Green's function we have
&+(pn) =p~, and

I p+(p&n) I'= 8+(p' —pp') is a projection
operator onto that state of momentum p which is of
single-particle character. In the general case the
range of summation over y need bear no simple
relationship to the corresponding unperturbed sum,
where the (1V+1)-particle states must carry at least
momentum p~. For the sake of simplicity we shall
however ignore the possible occurrence in this first
discussion of "anomalous" bound states and suppose
that the e+(p,n) has a minimum for lpl =pp, though
states with lpl( p& certainly occur. More precisely,
there will be a spectrum e+(p,n) for every p, with some
minimum. We are now supposing that the minimum
among the minima occurs for lyl =p~. That such a
minimum may occur for some systems is reasonable
physically since the unperturbed state consisting of
the Fermi-gas state of X particles plus one particle,
of momentum Pp, just above the Fermi sea is the
(1V+1)-particle state of least energy. Unperturbed
states with lpl( pp, for instance, must contain at
least two of the 1V+1 particles above the Fermi sea.

Similarly we find

t(t': G(x; x') = ——P I q (p,n) I'
Qu, ~

XexpLip. (x—x') —ie (y,n) (t—t')], (54)

where
e (y,n) =E(1V,O) —E(1V—1, —p, n),

n-~, (p,.) = (1v-1, —p, .ly(0) I1v,o&.

(55)

(56)

Arguing as above, we suppose the maximum value of
c (p,n) to occur for

I y I
=pp and to be the same as the

above minimum. Their common value defines the
perturbed Fermi energy ep.

We may note that P I y (y,n) I' is the momentum
distribution in the ground state,

d"(1V,OIO'(x)a(x) I
1V,O&= 2 I ~ (y,-) I' (57)

P,cl

We have further a connection between ly (P,n)I'
and

I ~+(p n) I'

2 p'I ~-(p,n) I'. (59)

A measure of the difference between the value of (59)
and the kinetic energy of the Fermi gas can be achieved
by considering the perturbation form of the second term
of (5). Comparing this with the corresponding term of
(9), we see that in jth order it is j times larger than
the latter.

In general then we must expect
I &p~(p, n)l' to be

smooth functions, subject only to conditions like (57)
and (58), and the corresponding summations in (53)
and (54) to involve no sharp cutoff. With these introduc-
tory remarks, we renew our discussion of the self-energy
operator.

We have so far defined the irreducible self-energy
operator as a power series. A considerable summation
of terms in this series Lconsider the time-dependent
form, M(x; x')g can be achieved by use of the exact
propagator" in place of G~'). Ke need merely write

MLG&'&)=M'I Gj, (60)

and mean by M' that subclass of diagrams of 3E
obtained by omitting all diagrams that can be obtained
from M'(G&'& J by replacing G&'& by G&"+G' &MzGt" =G.

It is now a simple matter to record the time-ordered
contributions to M' by reference to the corresponding

"Further summations, which can be carried out by the intro-
duction of "vertex operators" and "polarization operators, "
might well alter some of our conclusions. To this extent our
discussion, based on the partial summation introduced here, is
subject to some of the same reservations voiced at the beginning
of this section. We plan to return to these questions in the future.

1=
J

d'x ~ "'(1VOl g'(x),4(0)}I» 0&

=2-I: I v+(p, n) I'+
I ~-(p,n) I'j (58)

It is also worth remarking that the approximation of
I y (p,n) I' and

I y+(y, n) I' by their Fermi-gas values
can lead to serious errors. As an example of this, let
us consider the exact Eq. (5) for the ground-state
energy of 37 particles. The kinetic-energy term here is
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term in M, Eq. (46). From Eqs. (59) and (60), it is
clear that the following replacements are necessary:
(i) Summations are no longer restricted to be above
or below the Fermi sea. In fact we have

Z ~Z le+(p~)l',
I ul)u~ u, ~

2 ~2 I ~-(u,~)I'.
I pl(u~ u ~

(61)

(ii) In the energy denominators we set

p+ ~e+(p&rr) i

p-'~e-(V, ~).
(62)

VII. DISCUSSION OF SINGLE-PARTICLE
jEXCITATIONS

The discussion above bears directly on our ability to
define real single-particle excitation energies. The
wave function of a single-particle state will satisfy
the equation

ir) +p'g(N, —Ol&(x) IN+1, y)

d'a'M(x; x')(N, Olf(x') IN+1, p)=0, (64)

which is immediately plausible" as one of the homo-
geneous equations associated with the equation for
G(x; x'). Since we have

(N, ol~(*) IN+1, p) =f)-l~+(p)
XexpLiy x—is+(y)t), (65)

"Equation (64) can also be derived by use of the limiting
procedures of M. Gell-Mann and F. Low, Phys. Rev. 84, 350
(1951).

We now apply the above rules together with the
assumed nature of the excitation spectrum to draw
conclusions about the analytic properties of the self-
energy operator. These follow from the general structure
of the energy denominator of M'(p, ps) which is now

po —~.po+ZLe-(Ii ~)+in3 —ELe+(u,~)—in) (63)

We use only the assumption that e+(y,n) has its
minimum value for

I pl =pr, and that at the same
point e (y,n) has its maximum value, both referring
to the common point e+= er. It follows from (63) that
for every p, M'(p, ps) is real for ps ——er (and only this
value) which is a branch point of the operator. We may
well consider that branch lines run from ep to +~
slightly below the real axis and from ep to —~ slightly
above the real axis corresponding, respectively, to
the continuum of values of e+ and e .

Ke remark finally that summed formulas for the
energy for Eq. (29), for instance, may be recorded,
but no use of such formulas will be made in the
remainder of this paper, and we relegate this exercise to
the interested reader.

we obtain from (64) and (65) the equation

I e+(y) —p'+M'(y, e+(y)))y~(y) =0. (66)

We are thus constrained to find the real solutions of
the eigenvalue equation

e+(I) =p' —M'(p, e+(p)). (67)

It is essential to realize that the solutions of (67) by
no means constitute the entire spectrum, but merely
those eigenfunctions of N+1 particles which can be
connected adiabatically (in the sense of perturbation
theory) to an eigenstate of the unperturbed Hamiltonian
consisting of the Fermi-gas state of S particles plus
one additional particle above the Fermi sea. In other
words they are the true bound states of single-particle
character, and the corresponding e+ may be considered
as the excitation energy of a "real" particle in the
medium. From the considerations of the previous
section, there can be at most one such state, namely
for &+=op. For this reason we have suppressed the
degeneracy index u, since e+(p,n) does not obey (67)
in general.

In addition to the real root, there may of course be
complex pseudo-roots which describe metastable single-
particle states of the system (which decay into collective
states).

That the equation

er —pr M (pF)er) (68)

is indeed satisfied hardly requires formal proof. For if
we write (68) as

er =pr' M(p p,pp') (ep —pF') , —(70—)—
Bpp

of M about er ——pr'. It follows from the structure of
its power series that M(pr, pr') is real. Indeed the
Taylor series (70) is term by term real and when
solved for ep by successive iteration yields the desired
power series for that quantity.

It is now essential to remark that in (68) or any of
its equivalent expressions, we have an alternative
formula for computing the binding energy per particle
in the limit of large N and Q. From its very definition,
ep is the binding energy of an additional particle at
constant volume. Expanding this finite change in a
power series in the change in the number of particles,

E(N+1, pp) =E(N, O)+pr' M'(pr, er), —(69)

we can view the result as an equation for the ground
state of N+1 particles for the given volume Q. From
(69) we can at least aver the existence of a real power
series for E(N+1, yr). To generate this power series,
we first replace M'(p&, er) by its formal equivalent
M(pr, er) (i.e., the power series for M). Then from
(68) or (69) we carry out a further expansion,
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we have
BE(N,O) 1 B'E(X,O)

6@= + +8' g 2 ~ 8Ã'
(71)

In the limit of large N and 0, we may neglect the second
and higher derivatives, for remembering that E(X,O)

=Ps(p), where e(p), the binding energy per particle,
is a function only of the density, we have for a saturating
system

Bs(p)= s(p)+& = s(p),
BE(X,O)

(72)

aild
B'E(1V,O) 1 ds(p) —+0

KP g 0 dp
(73)

as 0—+~, p constant.
Having noted the identity of the Fermi energy to

the binding energy per particle, it is possible to demon-
strate directly that s(p) satisfies (68), through the
proof is somewhat lengthy. We proceed from the
identities

e(p) =BE(E,O) d E(X,O)

8N g dp 0
2s. d E(X,O)

pp' dpr 0
(74)

We compute the last form of Eq. (74) directly from
the power series for E(X,O) in which, according to
Eq. (10), we make the replacements

2' d E(X,O)

pF' dpr 0
=p»' —Mrr(pr, pr'). (76)

To establish Eq. (76), we first note that it holds

trivially for the kinetic-energy term. To see that its
validity extends throughout, we study Eq. (48), a
typical term of E(E,O). The contribution of (48) to
the left-hand side of (76) is then a sum of 2n terms,
one for each particle or hole line, each one a time™
ordered contribution to Mii (P,ps), evaluated for

~p~~pr, ps—+pr'. Conversely any contribution to
Mii(p, ps) is related uniquely to some parent term

(48) in the present sense. For those terms of (48)
which bear a factor -'„ the process of differentiation
will yield the corresponding terms of Mz exactly twice.

A cautionary word or two is required before proceed-
ing. In order to claim the formal identity (76), it is

necessary to retain and diRerentiate a large class of
contributions to E(E,O) which actually vanish. These
comprise all diagrams in which at least two of the

p
PP' oo

P —+Q(2s-) s dp, or Q(2') s~ dp, , (75)
pt p Pp

as appropriate. We then find

VIII. GENERALIZATION OF THE THEORY TO
FINITE TEMPERATURES

Though the main purpose of this paper has been to
study the zero-temperature problem, we cannot forbear
from pointing out the relative ease with which the
theory can be generalized to finite temperatures by
the method of Green's functions. " Let us study the
internal energy of a system of N particles at reciprocal
temperature P = 1/It T. This quantity, reducing to
the ground-state energy as P~eo, is given by the
well-known canonical average

tr[Hrr~ exp( —pHir~)]
+~X'

trLexp( —pHsr )]
(79)

where H& is specifically the N -particle Hamiltonian,
and therefore "tr" means the trace with respect to
states of a definite number, E', of particles and appro
prsate symmetry In accordance w. ith our program we

shall deal here with Fermi statistics alone.
As is usual in such problems —because of the great

formal simplification resulting therefrom —we replace

"Equations (76) and (77) together constitute the theorem of
van Hove and Hugenholtz, reference 10.

"The authors wish to point out that they did not arrive at
this generalization before seeing the work of P. C. Martin and
J. Schwinger, reference 6, where the general Green's function
of the type illustrated by Eqs. (82) and (83) is defined.

particles, one constrained to move above the Fermi
sea, the other below it, are nevertheless required to
carry momenta of the same magnitude. The resulting
kernel Mit(pr, pr') is then highly singular, owing to
the presence of terms in which there is at least one
intermediate state containing but a single particle and
a single hole both at the Fermi surface. To complete
the demonstration of the assertion preceeding Eq. (74),
we must finally show that a careful evaluation of
Mit(Pr, Pr') will establish the identity'r

MR(pr, pp') =M(pp, sr). (77)

We refer for this last point of the proof to the Appendix.
We complete our account of the positive results of

this section by the statement without proof, that by
methods similar to those which lead to Eq. (66), we

can show that &p (p) satisfies the equation

Ls-(p) —p'+M'(p, s-(p))lv-(p) =o. (78)

Thus the energy of a "hole, " analogous to that of a
particle, is real only at the perturbed Fermi energy ep.
On the other hand, for

~ p~ Wpr the solutions of Eqs.
(66) and (78) are complex. Where the imaginary part of

e+(p), for example, is "small, " we can associate with
those values of p (near the Fermi surface) approximate
single-particle excitations in a manner familiar from
the theory of atomic spectra, with the qualitative
di6erence that we have a continuum of such states.
Similar remarks obtain for holes near the Fermi surface.
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the averaging process (79) by the grand canonical symmetry. The parameter p is chosen so as to yield
average the correct number of particles,

Q tr{H~ exp[ PH—~+@X'7}

Q tr{exp[—PH~ +plV'7}
W=o

Tr{H exp[—PH+p+7}

Tr {exp[ PH+—A%7} (80)

where II and E are now the second-quantized operators
of Eqs. (1) and (3), respectively, and the symbol
"Tr" denotes trace restricted only with respect to

Tr{Eexp[ PH—+pN7}

Tr {exp[ PH+—IJX7 }
(81)

The essential new step in the development is the
recognition that if we introduce the explicit form of H
into the numerator of (80), the resulting expression can
be made formally identical to Eq. (5) for the ground-
state energy if only we introduce a new set of tempera-
ture-dependent Green's functions, of which the relevant
members are

i Tr{T(p(x)p'(x')) exp[—pH+ p&7)
Gp(x; x') =

7

Tr{exp[—PH+ pX7}

(i)' Tr{&(p(xi)4 (x2)4'(xo )4' (xi )) exPL AH+9+7)
Gp(xi, x2, xi', xo') =

Tr{exp[—PH+pÃ7}

(82)

(83)

These functions satisfy formally the same equations as
developed from Sec. III onwards. In particular if we
confine ourselves here to the perturbation series for
(E), all that is required completely to define that
series is to obtain the form of the noninteracting
one-particle Green's functions Gp{').

Toward this end we carry out the discussion anal-
ogous to that developed for G&0) =G„&') at the beginning
of Sec. V. We first state the result,

1 1
Gp&@(x; x')= ——Q 'i dpo

n2

Xexp[ip (x—x') —Po(&—&') 7L—Po+P'7 ', (84)

with the contour C chosen as follows: It is the weighted
average of two contours C~ and C2. C~ runs from —~
to ~ slightly above the real axis and has its contribution
weighted by the factor [1+exp (—pp'+ p) 7 ', the
probability that. at temperature P

' the state of momen-
tum y of the noninteracting gas is empty; C~ runs
from —~ to ~ slightly below the real axis, its contribu-
tion being weighted by the factor exp (—pp'+ p)
X[1+exp(—pp'+p)7 ', the probability that under
the given conditions the said momentum state is
occupied. The same result is achieved by writing in
place of (84) 1,f' '

Gpi'i (x; x') =——Q dpo
J02m p

Xexp[ip (x—x') —ipo(t —t')7Gp ' (p,po), (85)
with

G~"'(Ii po) = L1+exp( —Pp'+~)7 'L —po+p' —i~7 '

+em( —Pp'+P)[1+exp( —Pp'+P)7 '
X[ po+ p'+ig—7 ' (86).

Performing the integral with respect to po, we then
obtain

zt) t': G~&'& (x; x') =—p exp [ip (x—x') —ip'(t —t') 7
0 p

X[1+exp(—Pp'+ p)7-', (87)

i&t'. G&&o&(x; x') = P exp[ip (x—x') —ip'(i —t')7
0 p
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"This result has been achieved by a diferent method by
C. Bloch and C. de Dominics, reference 6.

Xexp( —Pp'+~)[1+earp( —Pp'+P)7 ' (88)

The correctness of the results (87), (88) may now be
verified directly from the definition (82), employing
the methods of Sec. V.

It is furthermore clear from (87) and (88) that also
the general structure (with its associated diagrams)
of the time-independent form of the perturbation
series is maintained. " The designation of "particle"
and "hole" now refers to the contributions from (87)
and (88), respectively. Instead of sharp cutoffs in
the momentum sums, as occurs in the limit of zero tem-
perature, the corresponding sums here range through-
out all possible values, weighted by the probabilities
for non-occupation and occupation, respectively, of
the given momentum state. Further development of
this and related approaches to statistical mechanics
will be referred to future publications. We do remark,
however, that to de6ne completely the procedure
described here, the value of p must be obtained from
a simultaneous study of the expansion for (1V).



INFINITE MEDIUM OF FERMIONS

APPENDIX

Ke study here the validity of the formula

with
G = 11111p

—po+ p' —iris(p' —p&') 7g~0
(A.5)

Mrr (yp)PI ') =M (pr, er ) &
(A.1)

Eq. (77) of the text. We shall show that these functions,
with a proper interpretation of Mz are represented by
identical power series. The series in question can be
readily constructed by solving Eq. (70) by iteration.
Let

8
MQ M(pr, pp'), MQ M(pr gpo) ~

Pp 1
. . (A.2)

8 p

We then 6nd that

M (pp, eI )

We are now concerned with the limit of (A.4) as

~ p ~

—+p&, po—+p&' ~ Because of the multiplicity of
limiting procedures and the singularity of Mz(p, po)
at the limiting value, a correct order of the limits must
be inferred from the original expression for E(X,O),
from which Mz(pp, pp ) is obtained by differentiation.
Since in the former all energy denominators are
non-singular, the~ limit g—+0 may be taken 6rst. A
further study of the structure of the terms of E(X,O),
Eq. (48), shows that the limiting procedure is correctly
represented if' we replace Gto& by PL—po+p'7 ', the
principal value, and study the function

=Mo+MQMQ+ MQMQ'+ —MQMQ
2 1

I dPQ8(PQ —Pp') lim M~(p, PQ).
jul sz

(A.6)

+ MQMQ'+ ', Mo'MQ-MQ+ Mo'M—o +
3 l

1 f'8 $ 1/Bs
2!E.BPQ J Q 3!(BPQQ ) Q

1 ( as
(A.3)

4!&BPQ' ) Q

the last a highly suggestive form.
We next turn to the study of Mz(p, PQ). The rules

for constructing this kernel are, of course, the same as
those for M(p, po) except that there are additional
diagrams. Thus if we consider the Feynman diagram
corresponding to Fig. 6(a), this gives rise as usual to 4.
time-ordered contributions to M1r(p, PQ) To deduce this
series (A.3) from the limiting form of the complete
time-ordered series is cumbersome Essential simplifica-
tion is achieved if we realize the availability of an
alternative form of Mz(p, po): It follows directly from

Eq. (22) that

x (T

(Px
—'= lim, 8(x)=—lim . (A.8)

r~o x2+Q2 ' x'+o'
For example,

1 1 f a p 1 2a'x
8'(x) =—lim —

~ ~

= ——lim
rr dx &x'+0') m (x'+o')'

= —2!b(x)6 x-', (A.9)

1 d' 0. 1 —2a- Sx'0-
5"(x) =—lim =—lcm

dx2 x2+Q'2 '1r (x2+Qo)2 (x2+Q2)o

1 0
=—lim3

X 0
=3 ~5(x)5'x ' (A.10)

We have therefore in general to study the "function"

S (x)iPx-.= (—1)"L(rs+1) !7-'S&"&(*) (A 7)

If we adopt Eq. (A.7) provisionally, then the evaluation
of (A.6) leads immediately to (A.3).

Finally the validity of (A.7) may be concluded by
means of the representations"

etc.
MIrp, o™p,po+Mp, QG&Q1p, QMp, Q) 2' W. Heitler, Quantscm Theory of Radiation (Oxford University

+MG'Q'MG'"M+ . , (A.4) Press, Cambridge, 1954), third edition, p. 70.


