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Application of Perturbation Methods to the Theory of Nuclear Matter*f
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A generalized perturbation theory is developed in such a way
that it can be applied to a many-body problem with strong forces
between the particles. The Brueckner expression for the energy is
shown to be the first-order term in a particular case of this ex-
pansion. Some of the higher-order terms in the expansion are
studied, and the importance of self-consistency in the energy
denominator of Brueckner's equation and of the use of the ex-
clusion principle in intermediate states is assessed. A possible
simplification of the methods used is suggested, which involves
solving the Brueckner equation for the hard core, and using normal
perturbation theory for the attractive part of the potential. The
methods developed are used to'analyze some details of previously
published calculations.

The lack of equality between the Fermi energy and the binding
energy in the nuclear matter calculations shows that there must

be a rearrangement energy. A simple formula for the rearrange-
ment energy is derived, and its importance for single-particle
excited states, such as occur in the optical model, is shown. The
relation between the rearrangement energy and the departure of
the system from a degenerate Fermi-gas state is shown. The effect
of the rearrangement energy on the ground-state energy is indirect,
but it is as important as the self-consistency condition. The
rearrangement energy seems to come mainly from the hard core,
and simple numerical estimates of the rearrangement energy from
a hard core potential show that it is somewhat less than 16 Mev
at the Fermi surface. The ground-state energy is reduced by
perhaps 1 Mev. There seems to be a discrepancy between the
calculated and observed energy dependence of the real part of the
optical model potential.

1. INTRODUCTION

'HE object of the program of Brueckner and his
collaborators' ' is to derive the properties of com-

plex nuclei from the two-body forces which act between
nucleons, as some of the properties of atoms have been
calculated by Hartree and others' using the Coulomb
interaction. It is only recently that high-energy scat-
tering and polarization experiments have begun to show

the details of nuclear forces, but it has been known for a
long time that the forces have a short range, unlike the

forces between electrons. For both the atom and the
nucleus the particles have spin one half, and they obey
the Pauli exclusion principle, but the nuclear particles
have isotopic spin one half (two charge states) so that
each state in coordinate space may be occupied by four

particles, instead of only two. It is not certain that the
forces between nucleons are simply the two-body forces
observed in scattering experiments, but there is no

definite evidence against this, and it is assumed in the
above-mentioned calculations that they are.

The difhculties of making a calculation for particles
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interacting by strong short-range forces are great, and
the simplest system to study is nuclear rnatter, since its
translation invariance reduces the problem consider-
ably. Only for the case of nuclear matter has much
progress been made so far, but a detailed calculation has
now been made by Brueckner and Gammel. ' Ideally
we wish to solve the Schrodinger equation for a system
of A particles interacting through short-range two-body
forces, and it is claimed that the method they use
provides an approximate solution of the problem. A form
of perturbation theory will be developed here which

displays the degree of approximation involved in their
calculations. It also shows how some simpler calcula-
tions might be made using similar methods.

There are two major difficulties in the application of
perturbation theory to the nuclear matter problem. The
first is that some forms of perturbation theory give rise
to a spurious dependence on the total number of par-
ticles in the system, so that convergence problems arise
which are absent from single-particle perturbation
theory; the way to overcome this trouble has been
shown by Goldstone" and by Hugenholtz. "The second
difFiculty is that the observed forces between free
nucleons are strong, with a repttlst'se core, and perturba-
tion theory will not converge for such forces; this is the
trouble which is overcome by the use of Brueckner's
reacti oe matrix. The Rayleigh-Schrodinger perturbation
theory will be used to illustrate the first of these di%-
culties, and it will then be shown how it can be extended

to include also the solution of the second difficulty. The
method used was suggested by the paper of Tobocman"
on the subject.

'o J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957)
"N. M. Hugenholtz, Physica 23, 481 (1957).
's W. Tobocman, Phys. Rev. 107, 203 (1957).
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2. RAYLEIGH-SCHRODINGER PERTURBATION
THEORY

The difhculty about applying perturbation theory to
a many-body problem is that the individual terms in the
expansion may have an unsuitable dependence on A, the
total number of particles in the system. Even if the
expansion formally converges for all A, it may still be
necessary to include A terms of the expansion to get
approximately correct results. An example of this is
given by the Brillouin-Wigner perturbation theory, "in
which the Hamiltonian is H= Hp+Hr. 4 is an eigenstate
of Ho, + is an eigenstate of H with eigenvalue E, and I'
is the projection operator off C. The expansion is ob-
tained by iterating the equation for 4,

4=4'+P(E Hp) 'H—re.

This gives the energy as

E=(4,Hp4)+(4, Hr4)+i 4, Hr Hr4 i+ . (2)
E Hp—

The first two terms in the expansion of E are propor-
tional to A, but the third term is not, since the non-
diagonal elements of HI are proportional to A '. the
number of momentum-conserving intermediate states is
proportional to A', but the elements of E—Ho are pro-
portional to A for all excitations of just a few particles.
The succeeding terms will also be constant, but there
will be a number of order A which are of comparable
importance, so there will be further corrections to E of
order A. In the limit of an infinite number of particles,
an infinite number of terms in the series must be taken
into account.

The Rayleigh-Schrodinger expansion does not suffer
from this trouble. ""In the third term on the right of
(2), E—Hp is replaced by Ep —Hp where Ep is the
eigenvalue of Ho corresponding to C, and this is not
proportional to A, so the whole term is proportional to
A. This does not prove that there are not terms which
depend on a lower power of A, for example transitions
which do not conserve momentum, but whose cumu-
lative eRect is proportional to A. This seems unlikely
when it is realized that the Rayleigh-Schrodinger ex-
pansion is a simple expansion in powers of a coupling
constant g. If the Harniltonian is written as

H(g) =H p+ gHr,

if the power series converges uniformly for
~ g ~

~& 1, then
there is no trouble with the terms of very high order,
since these are only important for values of g very close
to the circle of convergence. For the same reasons, the
expectation values of operators corresponding to physi-
cally observable quantities should be given in a satis-
factory way by the Rayleigh-Schrodinger expansion.
The observable is written as a power series in g, and its
value can be obtained if the radius of convergence is
greater than one.

The wave function is not a physical observable, so it
is not surprising that, its expansion in powers of g does
not give satisfactory convergence. If the amplitude of
the ground-state component of the wave function is
chosen to be unity, then the amplitude of the first term
in the expansion is of order A, the next of order A' and
so on. In fact, as was pointed out by Bethe, "the proba-
bility of the system being in its ground state falls oR like
e ~. This is what gives rise to what has been called the
"unlinked-cluster problem, " and it is analogous to the
problem in classical statistical mechanics which is over-
come by the use of Mayer's cluster integrals. In classical
statistical mechanics it is also extremely unlikely that a
system of interacting particles will be in the ideal gas
state, even if the interactions are very weak. The wave
function can still be used for the calculation of observ-
ables, since there is a cancellation of terms between the
matrix element of the operator and the normalization
factor. This has been treated in some detail by
Goldstone" and Hugenholtz. "

The translation invariance of the nuclear matter
problem dictates the choice of basis wave functions, so
that Hartree-Fock self-consistency is no problem; if the
unperturbed wave function is a determinant of single-
particle states, then these states must be plane waves.
It would be possible that the best choice of an unper-
turbed wave function were not the condensed Fermi gas,
but it is likely to be. There are solutions which corre-
spond to an unstable state in which the density is less
than the equilibrium density, and in which condensation
has not occurred (condensation of a dilute system would

imply the existence of long-range correlations in the
wave function). These are states of negative pressure,
and are unstable, although there must be some pertur-
bation to make such states condense.

In the generalization of this method that must be
used here, (3) is replaced by

an eigenstate, subject to some subsidiary conditions, can
be found for all values of the coupling constant g be-
tween zero and one, and so the energy of the system can
be expressed as a function of g in this range. If the
density of the particles is constrained to be constant, it
seems likely that the total energy will vary with g in a
simple manner that does not depend on A in the limit
of large A. If the energy is an analytic function of g, and

"H. A, Bethe, Phys. Rev. 103, 1353 (1956).

where H(0)=Hp and H(1)=II, so that the simple
Rayleigh-Schrodinger expansion is a special case of this
expansion. We expand in terms of g, and, for the same
reasons as before, we can expect that observables will be
given satisfactorily by the power series, if the elements
of H(g) can be expressed as a power series in g. Even if
the elements of H(g) cannot be expressed as a power
series in g, it is quite possible that the expansion of gomt:
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other quantity will converge to the right answer. If
H(g) is analytic, and the expansion of an observable
converges, its sum should be the actual value of the
observable. It is of course hoped that only a very few
terms in the expansion need be taken into account if the
form of H(g) is chosen correctly.

The form of the Schrodinger equation which is used is

+ [H(g)-H. -E(g)+E 7l~(g)&, (5)
Ep Hp

where the symbols have the meanings which were given
earlier in this section. The energy is given by

E(g) =(c'IH(g) I+(g)&
=Eo+(4'IH(g) —Ho

I +(g)&,

if IC) is normalized to unity. The notation

H„= [8"H(g)/Bg 7,=p/e!

is used, and similarly

+-= [&"+(g)/~g"7.=o/~-

(6)

E(g)= 2 E-g"
n=p

The eth derivatives of (5) and (6) give

n

P (H„—E„) +„„&
+p—Hp ~-1

~p Hp ki+ ~ -+k, =n
k;&0

(Her —Ear)

A power series expansion of E(g) can now be made by
using (6) and (5). The solution is written as

that the elements of H do not have to be hnite for the
method to converge. It has not been assumed that the
power series for H (g) converges at g = 1, or even that the
elements of H(g) are regular for

I gl &1, but only that
E(g) is regular for Igl (1, which could be a weaker
condition (it could also be a stronger condition).

3. EXPOSITION OF THE BRUECKNER METHOD

The actual Hamiltonian of the nuclear system is

A

H= Q T;++v;;,

and is the sum of a single-particle part, the kinetic
energy, and a two-particle part, the potential energy.
The second summation on the right of (14) denotes a
sum over all distinct pairs of particles, and this notation
will be used throughout the work. To keep C as a de-
terminant of single-particle wave functions, Hp need not
be chosen as a sum of single-particle operators, but the
analysis is very much simpler if it is so chosen. It need
not be a local operator, and it is not in the Hartree-Fock
method. In fact, to preserve translation and rotation
invariance in the nuclear matter problem, Hp must be
diagonal in momentum space, with elements equal to
Q[T(k)+ V(k)7. The correct choice of Hp is very im-
portant in order to get rapid convergence of the ex-
pansion, and it will be chosen much as the Hartree-Fock
Hamiltonian is chosen.

It would be possible to choose H (g) in such a way that
it included many-particle operators to take account of
many-particle correlations at any early stage of the
expansion, but such a choice will not be considered here,
and H(g) will be a sum of one- and two-particle opera-
tors for all values of g. In order to study the Brueckner
method, a reaction matrix G is defined which satisfies the
equation

G =v+vP e 'G, (15)

X (Ha, —Ea,) Ic&, (10)
Ep —Hp Ep —Hp

E„=P(cIH„le „&.
x=1

O.=- l~&(~l =P-1,
gs ——P(Ep —Hp) s, k)0, (13)

and Xp is the number of times gp occurs in the term. "
The advantage of this generalization of the method is

These can be combined to give the general formula

(&a+1) '
l1+ ~ ~ +l~=n k1+ ~ ~ +km 1=no —1

I;&0 kf& 0

X(C
I
IArgarHis X b~ rHi„l C», (12)

where v (g)=gG gv (g)P.e 'G. . — —(16)

G is kept constant, independent of g, and is defined by
(15). v(g) is then only equal to v, the real potential, for
g=1, and is zero for g=0. The Hamiltonian is then
written as

where I' is some projection operator, diagonal in the
single-particle states, e is the sum of two single-particle
operators with the dimensions of energy; all these
operators are acting on antisymmetric two-particle wave
functions. The subscript e denotes that the choice of I'
and e, and hence of G„, may depend on the context in
which G occurs; this will be explained in detail later.
We want to express v in terms of G, and to do this we
define the potential to be the function of g which
satisfies

'4 B. S. DeWitt, University of California Radiation Laboratory
Report UCRL-2884, 1955 (unpubhshedl, p. 115.

H(g) =Z(T'+I'*—gl'~)+2 v' (g), (17)
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FIG. 1. Representation of the
propagator —P~e~ '.
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where the ket
l
kik&) is used to denote an antisymmetric

two-particle wave function. Only if P and e are chosen
suitably will this be a good approximation, and the
choice of these depends on the choice of V, since we shall
require some of the lower order terms in the expansion
to be small; a variety of choices of P and e have been
made in previous work, and some of these will be
described later. The sums in (18) are over all momentum
states with momentum less than the Fermi momen-
tum kp.

In analogy with the Hartree-Fock method, a single-
particle energy, the model energy, is defined for a particle
with momentum k as

~(k)=T(k)+ Z «k'IG-lkk')
k'&k~

= T (k) +V(k), (19)

and this defines Ho. It was suggested above that Bo need
not be a sum of single-particle operators, and an ex-
ample of this would be for the definition of the G matrix
used in (19) to depend on the state of excitation of the
nucleus. Combining (17), (18), and (19), we get

Ep P(T(k)+ V(k) $,
——

k&kg

Ei=——,
' Q V(k).

(2o)

k&k p

Equation (12) as it stands is not in a convenient form
for discussing the general terms of the perturbation ex-
pansion, for the many-body problem, but it can be
shown that it is equivalent to a linked-cluster expansion
like the one used by Goldstone. "The modification of his
formalism for the Rayleigh-Schrodinger expansion which
must be made is due to the terms H~ with /& 1 which
occur in (12).The Pi, defined by (7), are given term by
term by the iteration of (16). At every place where
there is a e interaction in the diagrams for the Rayleigh-
Schrodinger expansion, there can be a series of G
interactions, arising from Eq. (16), in the new expan-
sion. The propagator —P e ' which must be used

which is in the same form as (4), so that the ideas de-
veloped in the previous section can now be applied.
This is the basis of the treatment which will be given
here.

In the calculations made by Brueckner and his
collaborators, ' ' the energy has always been worked out
to first order in g, and the value of this is

Ep+Ei= P T(k)+ P (kik2l G.
l
kikp), (18)

k&kg k1, k2&k~

3L )( )E JL I( )( ik . 3E
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FIG. 2. A series of ladders of the same order.

between these G interactions is represented by a cross,
as shown in Fig. 1. It must be remembered that the
operator P does not necessarily exclude states below
the Fermi surface, and such states, behaving as particles
and not as holes, will be shown by broken lines if there
is any need to distinguish them. C is treated as the
vacuum state in this formalism, so that a hole is created
by removing a particle from the Fermi sea.

An important concept for this theory is the "ladder"
purl of a diagram. It must be remembered that the
vertices of these diagrams are ordered to understand
this definition. A ladder consists of two particle lines (not
hole lines) joined by a series of G interactions —the
rungs of the ladder —so that no interaction occurs any-
where else in the diagram between the levels of the first
and the last rung. Figure 1 can only occur as part or the
whole of a ladder. The ladder may end in either particle
lines or hole lines. The order of the ladder is one less
than the number of rungs. A series of possible ladder
diagrams of a certain order is shown in Fig. 2. The
definition of P„and e, and hence of G, will always be
constant in a particular ladder, because we will wish the
ladder diagrams to cancel with one another as nearly as
possible, and each diagram of Fig. 2 will have the same
set of G-matrix elements, but di6erent propagators.
These ladders are not identical with the ladders defined
in Goldstone's paper. " Of particular interest is the
"diagonal ladder" which begins and ends on the same
pair of states.

Rules for computing the energy by means of diagrams
in the Rayleigh-Schrodinger expansion have been given

by Goldstone. " Certain modifications come from the
use of a di8erent expansion, so the rules are repeated
here, with the necessary modifications. Particles are
represented by lines going upwards, and holes by lines

going downwards. One line must go into each vertex and
one line out, and there are no external lines in the
diagrams representing the ground-state energy, so that
the particle and hole lines together form a system of
closed loops. A vertex may be joined to itself or to
another vertex at the same level only by a hole line, not
by a particle line, and such an arrangement is called a
bubble. G interactions are represented by wavy lines, and
they always join two vertices through which fermion
lines pass. A V interaction is represented by a dashed
line ending in a cross ————-g, and the other end goes to
a vertex through which a fermion line passes. Both G
and V lines are always drawn horizontally, so that a G
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(o) (b) (c)
FIG. 3. The elements of graphs which will compensate one another

by the definition of V.

interaction must join two vertices at the same level,
called a vertex pair; otherwise the vertices must all be at
different levels. Between the rungs of a ladder there may
either be a cross or no cross. Both the G and V inter-
actions conserve total momentum, spin, and charge in
the nuclear matter problem. All distinct diagrams of any
order, which are not composed of two or more parts not
joined by any lines (Nnlirtked clusters), must be drawn,
and the fermion lines are given all possible combinations
of momentum, charge, and spin. Two diagrams are
distinct if the only difference between them is that the
vertices occur in a difI'erent order. The order of a diagram
is equal to the total number of G and V interactions
which occur in it.

The contribution of a particular diagram is the
product of the following factors. Each wavy line gives
the matrix element of G and each dashed line gives the
matrix element of V. The part of the diagram be-
tween two successive interactions gives the element of
(Eo—Hp) ' unless it is part of a ladder with a cross to
denote the factor Pe '; the—(Ho —Eo) gives the sum
of all the energies of the particle lines at that level, less
the sum of all the energies of the hole lines at that level.
Finally, each hole line gives a factor —1, and each closed
fermion loop gives a factor of —1.

The scheme used by Goldstone" to describe the
Brueckner theory is the following. I' e„' is defined in
such a way that all the ladder diagrams cancel exactly.
For this to happen, I' must be unity for states above
the Fermi surface, and zero for states below the Fermi
surface. —e must be equal to the unperturbed energy
of the two-particle state on which it acts plus the
excitation energy of the rest of the diagram at the same
level as the ladder. Then P(Eo Hp) will have—the
same value as I' e ', and the sum of all the diagrams
indicated in Fig. 2 will be zero. Therefore all diagrams
which contain a ladder part can be dropped out. The G
matrix depends on just one parameter, which is the
excitation energy of the rest of the diagram at that level,
—W, and so it will be written as G(W). e then satisfies
the equation

e
~
mim2) = LW —M (sinai)

—M (F2)j ~
mimg). (21)

The difhculty we are now faced with is this: how is the
self-consistent energy to be determined? The operator
V which occurs as part of Ho was originally defined by
(19), but the G which occurs there is a function of W,
and the value of 8' to be used has not been stated. The
diagrams shown in Fig, 3 can only cancel exactly for the

G(W) =n vP(M W) 'G—(W). —

This can be written formally as

G '(W) =v '+P(M —W) '.

(22)

(23)

A combination of this with the same equation with 8'
replaced by S'0 gives

G '(Wo) =G '(W)+P(M —W ) '—P(M —W) '
=G '(W)+P(WO W)—

X(M—Wo) '(M —W) ', (24)

FIG. 4, A ladder part with one
hole line and one particle line at
each end.

right value of the excitation energy of the rest of the
diagram. 3(b) is just the exchange part of the bubble
diagram. It can be seen that if any hole states enter or
leave the vertices between which the G matrix acts,
their energies must be subtracted from the energy of the
rest of the diagram to get —8', since the hole lines
overlap the ladder parts which were made to cancel by
the definition of G, as is illustrated in Fig. 4. It is there-
fore tempting to define the energy of a hole by using
W=M(k)+M(l) to cancel the diagrams shown in
Fig. 3. Only if this definition is used will (20) hold, but
(18) is true anyway, so this definition is not necessary.
The simplest corrections to (18) come from diagrams
like those shown in Fig. 5, and 5(a) and 5(b) do not
cancel with this definition, so it might seem better to
define the hole energies to give some better cancellation
of these terms. It will be shown in the next section,
however, that there are further diagrams which do give
exact cancellation when added to 5(a) and 5(b) if the
hole energies are defined with W=M(k)+M(t). The
particle energies are defined to give some sort of average
cancellation between 5(c) and 5(d). The G interaction
in the rniddle of 5(c) is defined by the sum of certain
ladders cancelling, and the rest of the diagram at that
level (the rest of the diagram is everything at that level
except the two particle lines in the ladder, as was ex-
plained above) consists of one excited pair, one hole line,
and another hole line of momentum l from the bubble.
V can be defined to cancel the G interactions only for a
particular value of the energy of the pair and the hole.

The contributions of the type of diagrams shown in
Fig. 5, and generally the diGerence between bubble and
V interactions at the same place, can be written formally
in a simple way. We suppose that a particular bubble
diagram would have been cancelled by the corresponding
part of the V matrix if the energy of the rest of the
diagram had been —8'0, but in fact the energy of the
rest of the diagram was —8'. The remaining interaction
therefore contains an element of G(W) —G(WO) as a
factor. If the two-particle Hamiltonian is denoted by M,
substitution of (21) in (15) gives
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and so

G(W) —G(Wp)

P(Wp W—)=G(Wp) G(Wp)
(M—Wp) (M—W)

P(W —W)
X 1— G(Wp) . (25)

(M—Wp) (M—W)

This expression can be developed as a power series in
G(Wp), and if this is done a series of ladder-like dia-
grams is obtained which must be included in the com-
plete diagram.

If complete cancellation of all bubble diagrams, as
well as complete cancellation of all ladder diagrams, is
required, then we must remove the condition that Ho is
a sum of single-particle operators, retaining, of course,
the condition that it be diagonal in the representation
which we have been using. We can still write it as the
sum of operators V, but the V matrices will depend on
the excitation of the rest of the diagram, since they are
meant to cancel with the bubble diagrams. Since the
energy of the rest of the diagram depends on the
definition of V, there is a complicated self-consistency
requirement. This problem of self-consistency is not the
one which is solved in Appendix A of Brueckner and
Gammel's paper, ' as can be seen immediately from the
fact that they do not modify the de6nition of hole
energies on account of the excitation of the rest of the
diagram, and so Figs. 5 (a) and 5 (b) do not cancel with
one another.

(Y7l ~

of a ladder, the 8' which is used depends in just the
same way on the four states which enter and leave the
vertices at which it acts. A bubble counts as one hole line
entering and one hole line leaving the vertex. We will

only be concerned with diagonal ladders at present, so
there are only two different lines at the vertex. If both
lines are particle lines, as in Fig. 2, we put S'= —2A,
where 6 is a constant. If one line is a particle line, and
the other a hole line of momentum /, as in Fig. 4, we put
W= 6+e(l)—. If both the lines are hole lines, we put
W= e(li)+e(lo). This definition of the G matrices will be
justiled and a suitable value of 6 chosen later, when we

try to make an approximate cancellation of certain low-
order diagrams.

The first-order energy is given by (18), and there is no
need to define Hp in order to evaluate that. The G which
occurs there acts between two bubbles of momentum k~

and k2, and so, in accordance with the rules given in the
previous paragraph, W=e(ki)+e(ko). U will now be
de6ned so that it exactly cancels all bubble diagrams as
shown in Fig. 3. The rules of the previous paragraph
give

U(l) = P (11'~ G(e(l)+e(l'))
~

ll'), (26)

(o) (b) (c) (d)

FIG. 5. The simplest ground-state diagrams which compensate one
another by the definition of V.

4. CHOICE OF THE ENERGY DENOMINATORS U(m)= P (Im~G)e(l) —Af~lm), (2&)

Since complete self-consistency, in the sense discussed
in the last paragraph, seems very dificult to attain, all
the calculations reported so far have used less stringent
conditions to de6ne the G and, V matrices. In order to
show how to assess the importance of self-consistency in
the choice of the energy denominators, we will discuss a
model in which the exclusion principle in intermediate
states is treated exactly (in the defining equation of G),
but the energy denominator is not made to satisfy any
self-consistency principle. The perturbation expansion
can be carried out as before, but there will be less
cancellation of terms than there was in the previous
section. A study of the low-order terms in the expansion
will show how the energy denominators should be chosen
without the requirement of exact self-consistency.

In the model which will now be discussed, an energy
e(k) is associated with each particle state and with each
hole state; the form of this function e(k) is as yet
arbitrary. G(W) is defined by (22), where M is just the
sum of the e(k) for the two-particle states on which it
acts. If G occurs as part of a ladder, the 8' which is used
to de6ne G depends only on the four states with which
the ladder begins and ends. If G does not occur as part

where I is a hole state and m is a particle state. The
propagators to be used in the perturbation expansion
are now defined, since (19) gives the single-particle
energies in the unperturbed system.

The first thing to do is to combine the ladder diagrams
of the same order, as shown in Fig. 2, into one term.
This is quite simply done by using as a propagator the
sum of the two propagators which occur, which is

P(Eo Ho+M W)(Eo——Ho) '(M——W) ' (28)

An asterisk is placed between the rungs of a ladder to
show that this has been done. This was made possible by
keeping the definition of G constant within a ladder.

In Fig. 6 are shown a number of types of diagram
which give corrections to the energy. Figures 6(a), (b),
(c), and (d) give all the second- and third-order dia-
grams, since (e) is an exchange part of (d). It must be
noticed that only (a), (b), (f), (g), and (n) would be zero
in the completely self-consistent scheme, and all the
other diagrams would give contributions. (c), the scat-
tering of a hole from a hole, is a kind of four-particle
cluster, and (d), (e), and (k) are three-particle clusters,
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as are some of the other diagrams shown. ' " (o) is an
example of a case in which there is no cancellation of
what would otherwise be a ladder part, because of an
interaction which occurs in another part of the diagram
at the same level. This is an unsatisfying feature of the
theory as it has so far been developed, and will be dis-
cussed in a forthcoming paper. It must be observed
however, that if there were no asterisk in the ladder part
of (n), it would give a larger contribution than (o), since
the extra energy denominator which occurs in it is larger
than the one which occurs in (o); this gives some
justification for the scheme in which a ladder is only
called a ladder if no other vertex occurs at the same
level. Figures 6(g) and 6(m) would cancel exactly if
e(k) =M(k), which is the justification of the definition

of the hole energies by (26). 6(h) and 6(i) might be
important, and these will be discussed in Sec. 10.

The impression given by a study of I'ig. 6 is that the
cancellation of the ladder diagrams becomes less and
less important as the excitation of the rest of the dia-
gram becomes higher, since there will be more and more
similar diagrams which are not cancelled even in the
completely self-consistent scheme. If we can cancel out
(a), (b), and higher order ladders of that kind, and (f)
and higher order ladders of that kind, and also (g) and
(n), then we will have got the theory as refined as is
reasonable in its present form.

The propagator in a ladder diagram like 6(a) or 6(b) is
obtained by substituting the rules for W in (28), and the
result of this is

M (li)+M (i2) M(—mi) M(—m2) +e (mi) +e(m2) e(l i—) e(4—)

M(ll) + M(l2) M—(mi) M—(mm) 5)e (mi) +e(m2) e(l—i) e(l—2)5
(29)

where l~, l2 are the hole states and m~, nz2 are the particle
states. This expression shows at once the importance of
self-consistency in the definition of the energies, since,
if e(k) is exactly the same function as M(k), then (29)
is exactly zero. It is often more convenient not to
attempt exact equality of these functions, but to take
e(k) as a quadratic function which fits M(k) near k = kr,
this is known as the effective mass approximatiom, and
has been used by several authors. """Expression (29)
should then be used to check whether the contribution
of diagrams 6(a), 6(b), and so on is small. If 6(a) gives
a contribution less than the three-particle cluster terms,
then there is no point in improving the self-consistency.

If we denote the G matrix defined by the use of a func-
tion e(k) by G{e},then we can get the not very sur-
prising result that the sum of diagrams 6(a), 6(b), etc.,
is just G{M}—G{e).This can be proved by using (23)
to get an equation similar to (25).

Next we try and reduce the contributions from dia-
grams like 6(f) by a suitable choice of A. It will be
assumed that e(k) is the same as M'(k) for this discus-
sion, since, if this were not true, the modification would
be much less than it was for 6 (a) and 6(b). If the hole
and particle lines are labeled 1, 2, 3 from left to right,
and the intermediate state of the second particle is m2',
then the propagator is, by use of (28),

M (li) —3II (mi)+M (l2) +6

{M(li)—M(mi)+M(l2) —M(mg')+M(lg) —
M( m)8) { M( m)2+M( m) 8M(lg)—+&)

(30)

8 should be chosen so as to make this expression small
on the average, so it should be equal to the excitation
energy of a typical pair less the energy of a typical hole,
and —M'(0) should be a good order of magnitude for it.

Now let us make a small change in A. This will alter
the particle energies and hence the G matrices, and so
produce a change in the erst-order energy. This change
in the first-order energy must be exactly compensated
by a change in the higher-order energies, since the total
energy is not changed merely by a change in the pertur-
bation procedure. The most direct eRect it could have,
which is also likely to be the most important higher-
order effect, is to alter (30) by an amount determined by
taking its partial derivative with respect to 6, equal to
—[M(m2')+M(m3) —M(l&)+&5 ', and so to make a
change in the contribution from 6(f). If these assump-
tions are correct, it can be seen that an increase in 6
should lead to an increase in ED+Bi. Moreover, if we

»H. A, Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A288, 551 (1957l.

multiply the derivative of (30) by M(kr) —M(0), we
should get a quantity greater in magnitude than (30).
Therefore, if we vary 6 about a reasonable value by an
amount M(kr) —M(0), the change in the first-order

energy provides an outside estimate of the contribution
from 6(f). Something very like this has been done by
Brueckner and Gammel, ' and they do indeed hand that
the eRect is very small.

It can be shown quite simply that if we sum over all
the ladder parts which can occur in a diagram, we get
back to the expansion proposed by Goldstone, which
was explained in Sec. 3. We suppose that each of the
series of elements shown in Fig. 7 is part of a larger
diagram, that the energy of the rest of the diagram at
that level is 8', and that the G matrices were defined
with TV=WO, the two-particle Hamiltonian will be
understood for Ho, and M will denote the two-particle
operator used in the definition of G by (22). If E is
written for the sum of the diagrams in I'ig. 7, and is
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regarded as an operator, it obeys the equation

K=G GP—(Hs W—) 'K+GP(M W—o) 'K. (31)

This reduces to

G '=K—'+P—(M Ws)—' P(M—s—W) ' (32)

and comparison with (24) shows that K is just the G
matrix used by Goldstone. ' The two ways of estimating
the corrections to the 6rst-order energy are therefore
equivalent. In the first, the ladder diagrams were made
to cancel exactly by making G depend on the energy of
the rest of the diagram; this made us unable to cancel all
the bubble diagrams. In the second, all the bubble
diagrams were eliminated by making G independent of
the rest of the diagram, but the ladder diagrams would
not all cancel.

(e)

(b) (c) (d)

(f) (a)

S. THE EXCLUSION PRINCIPLE

The operator P which is used in (15) has so far been
defined so that it excludes all states below the Fermi
surface. The methods used previously can be extended
to treat the case in which P is some other single-particle
operator, with eigenvalues between zero and one, and
the only di8erence will be in the propagators which
must be used in the ladder diagrams. To illustrate how
such a case is treated, we will take P to be just the
principal-value operator, which is unity unless the
denominator is zero. Particles may now propagate in a
ladder part below the Fermi surface, and such "par-
ticles" are denoted by broken lines in the diagrams.
Figure 8 shows some of the new diagrams which now
contribute to the energy. Figures 8(a) and 8(b) seem to
be the most important corrections, and their total
contribution is

v v0

(k) (I)

W™~l

(m) (n)

FIG. {i. Some of the simpler ground-state diagrams which re-
main after the bubble parts have been cancelled by use of (26)
and (27).

I&, le, is&kp mi)kx M(ls)+M(mi) —M(li) — M(l )+s-,' D

+ (33)
iii*isi~ &k,~ M, , (ls)+M(li) —M(li) —M(ls)

where ~~D is a constant which is added to the particle
energies in the energy denominator which dehnes G, for
reasons which will become clear. Owing to the presence
of this constant D, the contribution of Fig. 6(a) is now

(ii4IGlmims) 'D

i, i &k ~,~ »r (M(mi)+M(m&) —M(li) —M(ls))LM(mi)+M(ms) —M(li) —M(ls)+D)
(34)

If D is zero, then the second term of (33) vanishes, ' the
first term is positive, and (34) is zero. As D is increased,
the first term of (33) gets smaller, going to zero when D
becomes large, and (34) goes steadily to a negative
limit. The approximation will therefore be improved if
D is made equal to some positive constant, probably
less than the Fermi kinetic energy, but it is only by
trial that a suitable value can be found.

For D= 0 the terms represented by 8(c) and 8(d) are
also positive, since, even if some of the particles in the
intermediate state are below the Fermi surface, the
total energy is positive, and the rest of the diagram just
gives the square modulus of some matrix element.
Therefore they cannot cancel with the first term of (33),

/ 5,/

mlM

&m~i'

WM

%AM

Fro. T. A series of ladder parts of successive orders.

and the convergence would be better if 6(f) were made
to help to cancel them. This means that the convergence
would be better if the model energies were the ohes
proposed by Bethe" and Goldstone, "with the exclusion
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9r Xi& $F )l X)&

principle used in intermediate states. This appears to
contradict the remark of Brueckner and Wada' that the
change in self-consistent energy largely compensates for
the neglect of the exclusion principle. The reason for
this will be discussed below, but it is essentially just
because the lower effective mass has a similar effect to D
in (33) and (34) that they got this result.

The choice of P as the principal-value operator has
been made in a number of different calculations, since
(15) can then be transformed into a differential equa-
tion, and it has been discussed in some detail here to
show what effect the choice of P has on the validity of
the approximation. It is also convenient and much more
accurate to choose P so that it is a function of the
relative momenta of the two particles only, and it will
then be chosen from geometrical considerations as some
function varying smoothly between zero and one. Such
a scheme can be treated in the same way, and there will
be a tendency for Figs. 6(a) and 8(a) and 8(b) to cancel.

0. THE SUM OF TWO POTENTIALS

Equation (15) is not a linear equation, so it is not
solved by separating the potential into the sum of two
parts and solving for each part separately. However,
such a separation might be used as the starting point for
a perturbation calculation. The solution of (15) for a
pure repulsive core is well known, ' ""and it is also
known that the potential itself is a good solution of (15)
below the Fermi surface for a nonsingular potential. ""
If the actual potential ~ is the sum of a potential z for
which (15) can be solved to give the solution G and. a
nonsingular potential u, then we can replace (16) by

w(g) = gG gw(g)Pe 'G, — —(35)

n(g) = ~(g)+gN, (36)

and use (36) as the basis of the expansion. If we still
denote the G interaction by a wavy line, and the I
interaction by a dashed line, then the diagonal elements
of e must be added to (18), and, in addition to the
diagrams of Fig. 6, there will be diagrams like those of
Fig. 9 as corrections to the energy.

The single-particle energy M(k) which is used in the
perturbation expansion will be dehned so as to cancel
the bubble diagrams with both G and u interactions, so
the correct energy denominator to be used is not given

"D.J. Thouless, Proc. Roy. Soc. (London) A259, 108 (1957).
&r D. J. Thouless, Phys. Rev. 107, 559 (1957).

(b) (c)
FIG. 8. Some simple ground-state diagrams when the exclusion

principle is neglected in intermediate states. The broken lines
represent particles propagating below the Fermi surface.

by the self-consistent solution of (15), but by the self-
consistent solution of the whole problem. The most
important class of corrections to the energy is likely to
be the one shown by Figs. 9(a), (b), and (c), and the
higher-order diagrams consisting of just a single ladder.
Figure 9(a) is known to be unimportant for a well-
behaved potential; the addition to the energy of 9(b)
and 9(c) is equivalent to replacing the expectation value
of u in the model state C by its expectation value in the
state (1+Pe 'G)C. Since this is the solution of the
Schrodinger equation which is solved to find the G
matrix, this correction would be quite convenient to
make.

It is also possible to use the solution of (15) for the
potential m as a starting point for an iterative solution
with the potential n; the solution with m will be called Ii

and the solution with v=u+to will be called G. The
equation for F gives

w=n —N=(1+FPe ') 'F,

and substitution of this in the equation for G gives

G= [1—NPe '—(1+FPe ') 'FPe '] '

X[I+(1+FPe ') 'Fj
= (1 NPe ' F—Pe 'NPe—') '(I+F+FPe 'I),

(37)

"Gammel, Christian, and Thaler, Phys. Rev. 105, 311 (1957).

- which can be expanded as an iterative equation for G.

'7. DISCUSSION OF PUBLISHED CALCULATIONS

A number of calculations of the energy of nuclear
matter at various densities have been made on the basis
of Eqs. (15) and (18). They have used various defini-
tions of P and e in order to simplify the completely
self-consistent scheme. The validity of all these ap-
proximations can be discussed in terms of the theory
which has been presented here, and a brief discussion of
several of them will be given.

(a) Brsleckner and Garnrne/. ' ' The calculatio—ns by
these authors come closer than any others to satisfying
the self-consistent energy condition, and use the po-
tentials deduced by Gammel, Christian, and Thaler"
from nucleon-nucleon scattering data as their starting
point. The exclusion principle was used in intermediate
states, although, for a given center-of-mass momentum
and relative momentum, its effect was averaged over
angles; this should indeed be a very good approxima-
tion. The energy denominators were defined in a way
very similar to the scheme described in Sec. 4, with the
self-consistency condition e(k) = M (k) obtained by iter-
ation. The main difference is that they treated the
particle energies more precisely, so that their energies
depend on the hole which was created with them. In
diagram 6(f) the second hole energy has been allowed
for exactly, and the only reason that this diagram is not
exactly zero is that the excitation energy of the pair on
the left has been allowed for in the definition of G only
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by an average value. That this is unimportant was
shown by the fact that the total energy was very
insensitive to the choice of this average excitation
energy. The sign of the energy change was the one
derived in Sec. 4, and its magnitude shows that the
contribution of Fig. 6(f) cannot be more than 1 Mev per
particle.

(b) Bethe and Goldstone "' .T—he calculation for a re-
pulsive core carried out by these authors used P =0 for
relative momenta of the two particles less than kg and
P =1 for relative momenta greater than kp. This was

only done for center-of-mass momentum zero, and for
other values of the total momentum corrections would
have to be taken into account. They used the eRective
mass approximation for the energy denominator.

(c) Brsieckrser and Wada. s—This paper describes
calculations done with a square well potential outside a
repulsive core. The exclusion principle is neglected for
the calculation of G, and P is taken to be the principal-
value operator. The exclusion principle is then taken
into account by using the value of G found initially in an
expression which is stationary to first order in G. Al-

though the procedure is not equivalent, it is as good as
evaluating the contributions of Figs. 8 (a) and 8(b). The
remark that the eRect of the exclusion principle is small

must be treated with caution, as was pointed out in
Sec. 5. Almost the same value for the total energy was
obtained with and without the exclusion principle, but
a different effective mass was used in each case, on
grounds of self-consistency. It was pointed out in Sec. 5

that, even if the exclusion principle is neglected in
intermediate states, the same energy denominators
ought to be used. Brueckner and Wada used the varia-
tion of the hole energies from momentum zero to the
Fermi momentum to hnd the self-consistent energy,
although what is actually wanted is the variation in the
region of the Fermi surface. When the exclusion prin-
ciple is not used, the second term of (33) makes an
important contribution to the hole energy, being posi-
tive for zero momentum and negative for the Fermi
momentum, although averaging out strictly to zero. If
this term is neglected, as it is if only first-order terms are
considered, the energy is lowered at zero momentum and
raised at high momenta, so the "self-consistent" eRec-
tive mass is lowered. Although this choice of eRective
mass cannot be justi6ed on grounds of self-consistency
as better than the higher effective mass obtained when
the exclusion principle is used, it does have much the
same eRect as adding a constant to the particle energies,
which certainly should improve the approximation. Such
a treatment of the exclusion principle has been used in

Appendix B of Brueckner and Gammel. '

S. EQUATION FOR THE SEPARATION ENERGY
ON THE FERMI SURFACE

It can be shown quite simply that the condition for
matter to be in equilibrium at zero pressure is that the

(a) (b) (c) {d) (e)

Fio. 9. Some simple ground-state diagrams when (36) is used as
the basis of the expansion.

G= a+ re'e 'G, (39)

where ~ is the potential energy operator, P is the projec-
tion operator which excludes pair states with one or
more particles in the Fermi sea, and e is a diagonal
matrix equal to the energy of the initial state minus the
energy of the intermediate state of the two particles. We
are interested in the diagonal element of G for a pair of
particles both in the Fermi sea, since the total energy is
the total kinetic energy plus the sum of the diagonal
elements of G for all distinct pairs of particles in the
Fermi sea. This definition of G and its applications were
discussed at length in Secs. 3, 4, and 5.

If G were kept constant after a particle on the Fermi
sphere, of momentum kp, had been removed from the
medium, with the volume kept constant, then the
energy loss computed would be the kinetic energy plus
the interaction energy of the particle with all the other
particles, and this is just the model energy M(ks) as it
is in the Hartree-Fock theory. To be consistent it is
necessary to recalculate the G matrix, since both P and e

in Eq. (39) are changed by removing the particle. Only
if this is done will the equality of separation energy and

average energy of the particles is equal to the energy
required to remove one particle at constant volume";
this is just a thermodynamic relation. The average
energy of a particle in nuclear matter is the coefficient
of A in the semiempirical mass formula. The energy
required to remove one particle at constant volume is
the separation energy of a particle on the Fermi surface,
since changing the number of particles at constant
volume has the effect of changing the Fermi momentum.

The results of Brueckner and Gammel' do not give
equality of the average energy, E&, and the model
energy at the Fermi surface, M(ks), but the two differ
by about 15 Mev at equilibrium density, with M(ks)
less than E~. This means that the model energy cannot
be interpreted as the energy lost by the removal of the
particle, but there is also a rearraegemeet energy. This
rearrangement energy must correspond to the change in
the correlation structure of the nucleus when a particle
is removed, and it is manifested by a change in the
eRective interaction between the particles, given by the
operator G.

The model energy of a particle with momentum k,
M(k), is defined by (19) as the kinetic energy k'/2m
plus the sum of the expectation values of the operator G
over all pairs of particles which contain the one particle.
G is dehned by
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where R(ks) is the rearrangentent energy.
Di6'erentiation of (39) gives

bP P P P
bG= e—G—e—be—G+e—bG,

e e e e

and the solution of this is

bP P E'
bG= C G—G--be—G.

e e e
(42)

The first term on the right of this expression represents
the effect of the change in the exclusion principle, and,
if G were defined without the exclusion principle in
intermediate states, as it is in part of the paper by
Brueckner and Wada, ' this term would be absent. bP is
equal to 1 for pair states in which one member of the
pair has momentum ks and the other is outside the
Fermi sea, since such an intermediate state is now
allowed, but it was forbidden before the particle of
momentum kp was removed. bP is zero for all other
states. Explicitly this gives a contribution to the
diagonal part of bG equal to

f(Iris]G[mkp) f'

X[M(ti)+M(ls) —M(m) —M(kF) j ' (43)

for nt) ki, where it+le ——m+k~. If rn(kg, the change
in the matrix element is zero. The contribution to the
rearrangement energy is obtained by substituting this in

(40). It is important to notice that (43) cannot be
positive, and so the energy required to remove a particle
is reduced by this term. In Goldstone's notation, "it can
be represented by a diagram like Fig. 10, together with
some diagrams obtained from this by interchanging the
labels of the lines.

The second term in (42) gives the effect due to the
change in energy of the initial and intermediate states
which results from the removal of one particle. To a first
approximation the energy change comes from the loss of
the interaction with the particle ks, which is represented

PTTTTT T T
FIG. 10. Graph representing the

contribution to the rearrangement
kF t' ~ Ji~ m" "+S energy due to the exclusion princi-

pie in intermediate states.

average energy be obtained, since the optimum density
was found by Brueckner and Gammel' calculating the
form of G appropriate to each density. Since the change
in G made by removing one particle is of relative order
A ' (A is the total number of particles), only first-order
changes need be considered, and the separation energy
is

M(k p) — P (lils bG
~
lils)+O(A ')

Zj. , Z2&k&

=M(kr) R(k p—)+O(A ') (40)

by diagrams like Fig. 11. There are also higher order
terms which come from the change in G producing a
change in the particle and hole energies in intermediate
states, and these are represented by diagrams like those
in Fig. 12. If the rearrangement energy is small com-
pared to the potential energy, these terms will be small
compared to the rearrangement energy, and can be
neglected. This seems to be the case in Brueckner and
Gammel's calculations.

9. EXCITED STATES

We know that states of nuclear matter with a finite
number of particles excited above the Fermi surface are
not stable, and must always decay in such a way that
more particles are excited. The statistical weight of
states with an extra particle excited increases indefi-
nitely with A, so that the only stable excited states are
those with a number of particles of order A excited; this
is true unless there is an energy gap at the Fermi
surface, so that an excited particle cannot lose enough
energy to excite another without going back to the
Fermi sea. There is some evidence that such an energy
gap exists in nuclear matter, " and it is an essential

FIG. 11. Graphs representing the lowest-order contribution to
the rearrangement energy due to the change in the energy
denominator.

feature of theories of superconductivity. ""We will not
consider the existence of an energy gap here, but will
assume that all these excited states are unstable. If
there is an energy gap, it will have a serious eGect on
particles whose excitations are comparable with the
magnitude of the energy gap, but the situation will not
be changed by the gap for more highly excited particles.
If these states decay slowly, their energy will be of
interest, and can be calculated by Brueckner's methods.
The excitation energy E(rn) of a state m outside the
Fermi sea is defined as the energy of a system which has
one particle of momentum m in addition to the de-
generate Fermi gas, less the energy of the undisturbed
Fermi gas. The excitation energy E(l) of a state inside
the Fermi sea is the energy of the undisturbed Fermi
gas, less the energy of a system with a particle missing
from the state 1. The rearrangement energy of a state
with an extra particle is the excitation energy less the
model energy, and the rearrangement energy of a state
with a particle missing is the model energy less the

» C. De Dominicis and P. C. Martin, Bull. Am. Phys. Soc. Ser.
II, 3, 224 (1958).

te Bardeen, Cooper, and Schrieifer, Phys. Rev. 108, 11?5 (195?).
s'

¹ N. Bogoljuhov, Nuovo cimento?, ?94 (1958).
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excitation energy:

E(l)=M(l) —R(l),
E(m) =M(m)+R(m).

(44)

If only a few particles are excited, the excitation energies
can be added, since their mutual interactions and their
eGect on the medium are both of order 3 ', and so the
interference between them is negligible, in general. The
energy of an excited state is calculated by adding to-
gether the excitation energies of the particles and then
subtracting the excitation energies of the holes. This is
equivalent to adding together the model energies of the
particles, subtracting the model energies of the holes,
and then adding the rearrangement energies of the holes
and particles. A change in the volume of the system can
be simulated by removing particles from or adding
particles to the Fermi surface, and, for excited states as
well as for the ground state, this gives no first-order
change in the energy at optimum density. This remark
implies that the density of the nucleus cannot adjust
itself when an excited particle is added to give a lower

energy. There can, however, exist excitations for which
the energies are not additive, as, for example, when a
hole and a particle are coupled together to give a state

(o) (b) (c)

FIG. 12. Higher order contributions to the rearrangement energy.

of lower energy than the individual energies of the hole

and particle. Such an excitation is called "zero sound". "
The rearrangement energy can be obtained just as it

was obtained in Sec. 8, and it is equal to

E(k)= P (lilsihGilil). (45)
lI, l2&k JP

If a particle of momentum l is removed from the Fermi
sea, hG is given by (42), where hP is 1 for pair states
with one particle of momentum I and the other outside
the Fermi sea, and is zero otherwise. be is the interaction
energy of the missing particle with the intermediate
state less its interaction with the initial state (the sign
comes from the definition of e as the energy of the initial
state less the energy of the intermediate state). If a
particle of momentum m is added outside the Fermi sea,
hG is still given by (42), where hP is —1 for pair states
with one particle of momentum m and the other particle
somewhere outside the Fermi sea, and is zero otherwise.
be is the interaction energy of the added particle with

ss L. D. Landau, J. Exptl. Theoret. Phys. U.S.S.R. 32, 59 (1957)
Ltranslation: Soviet Phys. JETP 5, 101 (1957)j; V. M. Galitskii
and A. B.Migdal, J.Exptl. Theoret. Phys. U.S.S.R. 34, 139 (1958)
Ltranslation: Soviet Phys. JETP 7, 96 (1958)j.

(b) (c) (d)

FIG. 13. Simplest contributions to the excitation energy of a
particle with momentum m.

the initial state less its interaction with the intermediate
state. The diagrams which give the rearrangement
energy for these excited states are Figs. 10, 11, and 12
with kz replaced by 1 or m. It must be noticed that, in
the calculation of E(k), the state k comes into the
diagrams as a bubble or as a particle line, never as a hole
line, whether the state was initially occupied or un-
occupied.

There is another way of deriving the equation for the
rearrangement energy which sheds light on the reason
for the difference between model energy and excitation
energy. In Sec. 8 it was treated as if it came from a
change in the interaction between the other particles,
firstly because of the alteration of the exclusion principle
in intermediate states, secondly because of the change
in the energy spectrum which in turn changed the G
matrices. The method developed in Sec. 3, however,
allows a perturbation expansion to be made with a
variety of differently defined G matrices, so it is also
possible to make the perturbation expansion for the
system of degenerate Fermi gas plus one particle using
the G defined for the undisturbed degenerate Fermi gas.

Since the Gmatrix is the same as it was for the ground-
state calculations, there is now no change in the inter-
actions between the particles in the Fermi sea, and we
just have to consider the interaction between the
additional particle and the rest of the nucleus. Graphs
of this can be made by representing the extra particle as
an external line, just as the scattering of a real particle is
represented in field theory. The simplest diagrams which
contribute to the excitation energy are shown in Fig. 13.
Figure 13(a) represents the simple interaction of a
particle with the rest of the nucleus, and is the major
part of the potential energy. Figure 13(b) is a ladder
diagram; it would give zero if the 6 of (27) were zero,
and this shows that the oG-energy-shell propagation
which was allowed for in the definition of M(m) no
longer occurs. The model energy defined on the energy
shell is the right energy to use here. Figure 13(c) is
equivalent to Fig. 10; it represents the fact that we had
allowed for a ground-state excitation, in the definition
of the G matrix, which is now forbidden because one of
the intermediate states is occupied by the extra
particle.

In order to calculate the expectation value of a single-
particle operator 0 (for example, the magnitude of the
momentum), which is (+~0~+)/(4~%'), it would be
necessary to add to its expectation value in the model
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FIG. 14. Simplest
graphs representing the
ground-state expecta-
tion value of a single
particle operator O.

ground-state wave function (the degenerate Fermi gas)
a sum of linked graphs, each of which contains the
operator 0 once. The two most important graphs are
shown in Fig. 14, where a square on a line means that
the expectation value of 0 for the single-particle state
represented by that line must be multiplied by the usual
contributions from the rest of the diagram; the square
counts as a vertex, and so the energy denominator comes
twice in each of the diagrams of Fig. 14. The sum of
diagrams like 13(a) and 13(d) then gives approximately
the expectation value of the potential energy of the
additional particle not in the model ground state, but in
the true ground state. This gives a more directly
physical interpretation of Fig. 11.

Figure 13(b) has one very important feature which
must be observed. The intermediate state can have
either less or more energy than the initial state, and so
the propagator has a singularity. If the singularity is
removed, following the example of scattering theory, by
adding a small imaginary quantity to the denominator,
an imaginary contribution to the energy is obtained. In
fact, if the model energy of the particle state is defined
on the energy shell, so that 13(b) gives zero, the G
matrix itself has an anti-Hermitian part, and the model
energy has an imaginary part. If the anti-Hermitian
part of G is small, it is equal to —is.G8(e)G, where 8(e)
implies that the intermediate states have the same
energy as the initial state. This imaginary part of the
energy comes naturally as a result of the possible
transitions to the other states of the same energy, and
gives the inverse lifetime of the state. The expression has
been used by Bethe and Shaw" to calculate the imagi-
nary part of the optical-model potential for nuclear
matter.

The configurations in which one state in the Fermi sea
is unoccupied can be treated in the same way. The
empty state is represented by an external hole line, and
some of the diagrams which contribute to the excitation
energy are shown in Fig. 15. Figures 15(a) and (d)
together give the expectation value of the potential
energy in the true ground state. Figure 15 (b) gives zero,
since the hole-state energies were defined on the energy
shell by (26). Figure 15 (c) represents the hole scattering
into another hole state by creating a pair (exciting one
other particle), and then scattering back into its original
state; this is a process not compensated by the defini-
tion of G. Again the propagator has a singularity, which
contributes an imaginary part of the energy, and a hole
state is not stable.

rs H. Bethe and G. Shaw (private communication), also reported
by H. Bethe at the Pittsburgh Conference on Nuclear Structure,
1957 (unpublished), p. 137.

It is interesting to notice that there is no gap in the
excitation energy spectrum at the Fermi surface, since
the same sort of terms arise in the evaluation of excita-
tion energy for both holes and particles near the Fermi
surface. There must be no gap if the average energy is a
continuous function of density, since the excitation
energy at the Fermi surface is equal to the energy gained
by adding one more particle, or the energy lost by
removing one particle. An energy gap can only exist if
the excitation energies are not simply additive.

10. GROUND-STATE ENERGY

The ground-state energy in the Brueckner theory is
the sum of the kinetic energies plus half the sum of the
potential energies. For this to be true, the model
energies must be used, and there is no justi6cation for
using the excitation energies. In the Hartree-Fock
theory there does exist this relation between the ground-
state energy and the excitation energies of hole states, so
that the extent of its failure in the Brueckner theory
represents the deviation from a true independent-
particle system. The hole excitation energy is, in
principle, a measurable quantity, so that there exists a

(0) (b)

Fro. j.5. Simplest contributions to the excitation energy of a hole
with momentum l.

physically measurable rearrangement energy of the
nucleus equal to twice the total energy less the kinetic
energy of the Fermi gas less the sum of the hole excita-
tion energies. This would be zero if the Hartree-Fock
theory were exact. Some interesting results have been
obtained by several authors who use the assumption
that it is zero.""There is a simpler way of expressing
the deviation of the system from an independent-
particle model, which is the density matrix in mo-
mentum space (probability distribution of a momentum
state being occupied), which would be a step function if
there were no deviation. The arguments of the previous
section show that there is some indirect connection be-
tween the two. Experimental evidence for the form of
the density matrix in momentum space has been dis-
cussed by a number of authors, '~ ' and there are several
lines of evidence which suggest that the deviations from
the Fermi distribution are considerable, although none

'4 V. F. Weisskopf, Nuclear Phys. 3, 423 (1957)."R.B. Hall and R. J. Eden, Nuclear Phys. 6, 157 (1958)."G.R. Satchler, Phys. Rev. 109, 429 (1958).
s7 Bruecicner; Eden, and Francis, Phys. Rev. 98, 1445 (1955).
ss G. F. Chew and M. L. Goldberger, Phys Rev. 77, 470. (1950);

J. S. Levinger, Phys. Rev. 84, 43 (1951); E. M. Henley, Phys.
Rev. 85, 204 (1952); P. A. Wolff, Phys. Rev. 87, 434 (1952).
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of them gives much evidence about the very high mo-
mentum components which are of particular importance
for the rearrangement energy. A theoretical argument
by Migdal" shows that there is a discontinuity in the
momentum distribution at the. energy at which the
excitation energy equals the average energy E&.

The eRects we have discussed in this chapter do not
alter the ground-state energy in the lowest orders, but
they do have some relation to fourth- and higher-order
terms in the perturbation series. For example, Figs.
13(c) and (d) can occur as insertions into a particle line

just as 13(a) can. The simplest types of ground-state
diagrams in which these insertions occur are shown in
Fig. 16. Figures 16(a) and (e) are the same as Figs. 6(i)
and (h) which are mentioned in Sec. 4. Any of these
insertions can be made any number of times in the same
line, and so they can be taken into account by a
redefinition of the self-consistent particle energies which
are used in the definition of G, just as the insertion of

(b) (c) (4)

(d) the two diagrams obtained by interchanging the
order of the top two vertex pairs, the oR-energy-shell
eRect cancels out. Since the diagrams are symmetrical,
this process includes every diagram twice, so we should
divide by two. The lowest-order effect of 13(d) on the
ground-state energy can then be obtained by adding to
the self-consistent particle energies half its eRect on the
excitation energies. This factor of a half shows that the
best self-consistent energy is not equal to the excitation
energy of a particle, although this is probably better
than the model energy.

Figure 16(e) shows the only way of inserting 15(c)
into the lowest order ground-state diagram. The inser-
tion is defined oR the energy shell, and therefore raises
the self-consistent hole energy less than 15(c) on the
energy shell would. This means that the hole self-
consistent energies are lower than the excitation ener-
gies, and so an extra energy gap is introduced by the
oR-energy-shell eRect. This makes the theory more
symmetrical, since in Sec. 4 the model energies were
defined on the energy shell for holes and off the energy
shell for particles, but now there is a correction added
which must be calculated oR the energy shell for holes
and on the energy shell for particles. Figures 16(f) and

(g) are similar to 16(c) and (d), and again can be taken
into account to lowest order by adding half the eGect of
15(d) to the self-consistent energies.

(e)

FIG. 16. Some ground-state diagrams involving Figs. 13 and 15
as insertions.

Fig. 13(a) was originally taken into account. Figures
16(a) and (b) are each different ways of inserting Fig.
13(c), but the energy denominator is larger for the
central region of 16(a) than it is for 13(c), so the energy
change due to this is equal to the energy change pro-
duced by 13(c) evaluated off the energy shell. Figures
16(a) and (b) can be added together, however, and then

they give a change of the self-consistent particle energy
equal to 13(c) evaluated on the energy shell. Figures
16(a) and (b) contain the same matrix elementsas13(c),
but the propagators add. together to give this simple
result, just as Figs. 6(g) and 6(m) exactly cancelled in
Sec.4. Figures 16(c) and (d) represent ways of inserting
13(d) into a ground-state diagram, where again 13(d)
must be evaluated oR the energy shell. lt is not in
general possible to add together combinations of such
diagrams so that the oR-energy-shell effect disappears,
but it is possible in the limit of a small contribution
from 13(d), so that only the lowest-order diagrams,
shown in Fig. 16, are important. If we add to 16(c) and

"A.B.Migdal, J.Exptl. Theoret. Phys U.S.S.R. 32, 3.99 (1957)
(translation: Soviet Physics JETP 5, 333 (1957)j.

TAsx, K I. The results used by Brueckner, Gammel, and
Weitzner~ (private communication from K. A. Bruecirner) for
the energy as a function of momentum at three different den-
sities, and for the binding energy. The Fermi energy is extra-
polated from these figures, and then the difference between this
and the binding energy is given. The rate of change of binding
energy with density is calculated on the basis of a quadratic 6t.
R(kp) is given by Eq. (47). Momenta are in inverse fermis
(1 fermi—=10 "cm), energies in Mev.

0.1
0.3
0.5
0.7
0.9

3f (kg)
Es—M(kp)

pdEs/dp
E(ky)

kg =1.551

—107.9—100.8—86.8—66.9—41.9

—14.68—28.4
13.7
2.1

15.8

ky =1.420

—94.1—88.5
77.1—60.8—40.0

—14.43—28.2
13.8—3.6
10.2

kp =1.357

—86.8—81.4—71.3—56.7—37.9

—13.78—27.1
13.3—5.9
7.4

30 Brueckner, Gammel, and Weitzner, Phys. Rev. 110, 431
(1958).

11. ESTIMATION OF THE REARRANGEMENT
ENERGIES

From the calculations that have already been made
by Brueckner and his collaborators, ' "it is possible to
make some estimate of the rearrangement energy de-
fined by (44) and (45). The most direct evidence is the
difference between the Fermi energy and the average
energy which was mentioned earlier. Table I gives, for
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three difterent densities near the optimum density, the
energy for five mornenta less than the Fermi momentum,
the binding energy, and some other 6gures deduced
from these. The extrapolated value of the Fermi energy
is compared with the binding energy; the diGerence be-
tween the two is steadily just below 14 Mev, and its
nearly constant value is quite a surprising result. The
fact that the difference is about 14 Mev at equilibrium
density means that the value of R(kp) is about 14 Mev
at that density. To interpret the difference between
Fermi energy and average energy away from equilibrium
density, we notice that the addition of one particle at
constant volume on the Fermi surface can also be
regarded as a change in density. This leads to the
equation

+EB(p)+E(kp) = (~+1)E&(P+P/~)

and substitution of (44) in this gives

R(k p) =Ers(p) —M(k p)+pdEr4/dp.

(46)

(47)

The value of pdE&/dp in Table I is found by making a
quadratic fit to get the binding energy as a function of
kp. These values of pdE&/dp probably vary too much,
since Brueckner, Gammel, and Weitzner" give the
compressibility modulus as 172 Mev, and this quadratic
6t gives the compressibility as 200 Mev. However, the
rearrangement energy is clearly a very rapidly varying
function of the Fermi momentum, and it seems to vary
approximately as kp'.

Since a nonsingular potential such as a Yukawa po-
tential does not cause much higher momentum excita-
tion ""and Figs. 10 and 11 both depend on the high-
momentum components of the wave function, we expect
a large part of the rearrangement energy to come from
the repulsive core. At equilibrium density the product
of the core radius, r,=0.4 ferini, and the Fermi mo-
mentum is 0.6, so that the method of Bethe and
Goldstone" should give a good qualitative picture of
what happens. We will consider only an S-state pure
repulsive core, and pairs of particles with total mo-
mentum zero. The formulas derived by the author" for
general angular momentum in the limit of small kyar,
will be used here, although it would not be very labori-
ous to make a better approximation than this. These
formulas give

(k i
G i ke) = 44r (sinkr, )/ts*k

before averaging over spin and isotopic spin states, and
this will be taken as the form of the G matrix. kp is the
initial relative momentum, less than kp, and k is the
intermediate relative momentum, which will be greater
than k p. (48) could be written more symmetrically, but
it has been assumed that kor, is small, whereas it may be
necessary to take kr, large. The derivation of this ex-
pression is not valid for ko near to kg.

We now use (48) to evaluate (43). The matrix

36ris*
I

&& ~r+'&

~p J g'(kg —l)

ts, (4@~+i~—1/6 p2) /4@i

p dp~
=1

~l
p'dp ds

J—1

P'+P 2p/s q'— —

q(k p' p' q') dq— —

2p(ps+P —2p/s-qs) i

= (34r4*/80k p') (/ '(—52k p'+60Pk p' —16P) log(k p —/)

+/ '(52k p' —60Pk p' —16P) log (k p+/)+32/4 log/

+ (15kp' —30Pk p'+31/') log2

+/ '(16kp4 —16Pkp'+4/')Q(2kp' —P)

X log(Ltkp —4/g(2k p —P)]/

Pk p'+ ', /g(2k p' —P)-])—10kp'+12/k ps

+60Pk p' 34/4) (—50)

In the integral, 2p is the total momentum of a pair,
cos 's is the angle between the total momentum and 1,
and g is the initial relative momentum. This expression
is equal to 1.52nr~/k p' for /= 0 and 0 84444*/k p.

' for /= k p.
The contributions to R(/) are 9.8 Mev at /=0 and 5.5
Mev at /= k p, for k p= 1.5 fermi ' and rN*= 0.7rr4.

This method probably gives an overestimate of the
contribution to the rearrangement energy, since the
attractive part of the potential will interfere destruc-
tively with the hard core for momentum transfer less
than the reciprocal of the range of the potential.
Brueckner has calculated the corresponding contribu-
tion from a pure Vukawa force, chosen to fit low-energy
scattering data, and Ands 7.5 Mev at zero momentum
and 1.4 Mev on the Fermi surface. "This con6rms that
the repulsive core does dominate above the Fermi sur-
face, although the attractive part of the potential seems

elements involved are all approximately equal to
16kpsr, /34r4*4rA for singlet-triplet and triplet-singlet
(spin and isotopic spin) states, and zero otherwise, be-
cause of the antisymmetry requirement and the S-state
potential used. The contribution to R(kp) is then

(4k psr, '/34r'4N*')

X(/M (414)+M (k p) —M (/t) —M (/s) ]—')A„, (49)

where the average is taken over energy denominators
which satisfy the exclusion principle and momentum
conservation. In the effective-mass approximation this
is a quantity which can be evaluated explicitly. The
general expression which gives this average not only for
the contribution to R(kp), but for R(/) where 1 is
anywhere in the Fermi sea, is

"W. J. Swiatecki, Phys. Rev. 103, 265 (1956). I K. A. &rueckner (private communication),
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p '+" no*' sin'kr,
k'dk (51)

k4 k'

N(k) is the probability of occupation of a particular
state. The factor 3Ak'lk/kp' is the total number of
states in the range considered. This gives

N (k) = (4k''/3s'k') sin'kr k) kF, (52)

where the initial energy of the particle has been neg-
lected. Integration of (52) shows that the probability of
a particle being in an excited state, outside the Fermi
sea, is approximately

1 N(k)=4k p'r—.s/7r', k(kF. (53)

If we assume that a particle, once it has been excited, no
longer interacts with a particle on the Fermi surface, we
find that the loss of potential energy of a particle on the
Fermi surface due to the excitation of the other particles
is

(4k p'r '/m') V (kr ) (54)

Although the particle on the Fermi surface will still
interact with the excited particles, the interaction will
be less, since the angular average of their relative
momenta is larger. The value of (53) for k p= 1.5 fermi '
is 0.146, and so, since Table I gives U(ks) as —75 Mev,
the contribution to R(ks) is 10.9 Mev. This is, of course,
too large, since we have neglected the interaction of the
particle on the Fermi surface with the excited particles,
but it indicates that the contribution to R(kp) from
Fig. 11 is of the same order of magnitude as the contri-
bution from Fig. 10, and possibly somewhat larger. The
order of magnitude agrees with the value of R(ks) which
was calculated. ' "Both terms are much smaller than the
potential energy of a particle, so it is correct to neglect
the contributions from Fig. 12.This term also is strongly

to be important for the evaluation of (43) below the
Fermi surface. The dependence of (49) on ks is a fourth
power dependence, which is in qualitative agreement
with the strong dependence of the calculated rearrange-
ment energy on the Fermi momentum. The attractive
part of the potential will not give a contribution which
behaves in this way, since the matrix elements decrease
as the momentum transfer required to excite a pair
above the Fermi surface increases.

The type of contribution shown in Fig. 11 depends
even more on the high-momentum components of the
ground state, and so the use of a pure repulsive-core
potential to determine their values should be rather
better than in the foregoing evaluation of Fig. 10. The
deviation of the ground state from a Fermi gas is given
to first order by the wave function Pe 'G~C). The
probability of a particular particle lying in the mo-
mentum range between k and k+8k is, for k) kg,

3k'
p Sk~' ~' 3A

N(k)8k=-', A
i

ks' (3s.m*A ~ 2k''

dependent on kp in the correct way, since —V(kp)
increases rapidly with k p.

The evaluation of the left-hand side of (53) can be
confirmed by a very diGerent method; if we define

G(W) =e+rtP(W+e) 'G(W)

and differentiate this, we get

(55)

E(k) = V+k'/2m. (57)

Measurement of the real part of the optical-model
potential gives k as a function of E for E)0. Some
corrections must be made for the imaginary part of the
potential, but these are small at low energies.

In the eGective-mass approximation to the excitation
energy,

E(k) =En+ (k' —k p')/2m**, (58)

where E~ is the average nuclear binding. Thus

—V (E)= Esm**/m—+kr '/2m E(1 m*—*/m) —(59).
38 Brueckner, Eden, and Francis, Phys. Rev. 100, 891 (1955).

G'(W) = —G(W)P(W+e) 'G(W). (56)

The expectation values of the matrix elements of G'(0)
summed over all pairs in the Fermi sea which contain
the one particle just give the quantity on the left of (53).
Brueckner and Gammel' have calculated 6 for diGerent
values of 8', and the raising of the particle energy curve
by about 24 Mev when W (which they call Z) is in-
creased by 140 Mev indicates that this quantity is about
-', for particle states, and it shows no signs of getting less
for hole states.

These estimates are too crude to give a quantitative
estimate of the change in the ground-state energy due
to the eGects discussed in Sec. 4. The contribution to
R(0) from Fig. 11 would be given by (54) as about 14
Mev. Only half of this energy goes into the self-con-
sistent energy (Sec. 10), so that the hole-state energies
are raised by perhaps 10 Mev with respect to an average
particle-state energy. If the elements of G'(0) summed
over all pairs containing one particular particle are
about —6, the ground-state energy may be reduced by
about 1 Mev. A better estimate could be made if the
ratio of the contributions from Figs. 10 and 11 were
known.

12. APPLICATIONS

The optical model provides the most direct applica-
tion of the theory of excited states. This was treated by
Brueckner, Eden, and Francis"; and by Bethe and
Shaw" in the following way. When the nucleon has
entered the nucleus, the state of the system is the
metastable state with one particle outside the filled
Fermi sea. The energy of the system less the energy of
the undisturbed nuclear matter must equal the energy
of the incident nucleon, but this is just how we defined
the excitation energy of the state. The real part t/' of the
optical-model potential is the energy of the excited
state less the kinetic energy in the medium,
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This agrees quite well with the potential at zero energy,
but the potential falls oG at higher energies at a rate
which suggests that 1—m**/m is —,', '4 whereas the model-
energy eGective mass is 0.7m, and the rearrangement
energy tends to raise this even more. The critical way
in which (59) depends on the deviation of the effective
mass from the real mass makes it a useful way of
measuring the effective mass.

Another piece of evidence for a small eGective mass is
the giant resonance in the nuclear photoeGect. '4 The
variation of the position of the giant resonance with
atomic weight has been explained by using an eGective
mass of half the real mass of a nucleon. It is clear that
the excitation energy, not the model energy, should be
used in Wilkinson s theory, since it involves the excita-
tion of a single particle to a higher state."

The symmetry energy" ' involves this eGective mass
also, but, since it also depends on the details of the
isotopic spin dependence of the reaction matrix, it does
not provide good evidence for the value of the eRective
mass.

13. CONCLUSIONS

The perturbation theory developed in Secs. 2 and 3
has been used to study various features of the nuclear
many-body problem. It was shown how the self-con-
sistency problem was connected with the cancellation of
certain terms in the perturbation expansion, and so
corrections can be made for a failure of self-consistency.
The neglect of the exclusion principle in intermediate
states of the Brueckner equation can also be corrected
by taking account of additional terms, but, in practice,
it seems that this is a serious approximation, and the
correcting terms which can be calculated easily are
quite large.

It seems that the validity of the Brueckner approxi-
mation depends on the magnitude of the three- and
four-body cluster terms, as has often been suggested.
The departure of the true ground-state wave function
from the model wave function has already largely been
taken into account when the energy is calculated by use
of the Brueckner equation, but it does have important
effects on other quantities. The expectation value of
some operator in the first-order correction to the wave
function has occurred at several points in this discussion,
The lowest-order eGect of a departure from self-con-
sistency of the energy denominators, the effect of oG-
energy-shell propagation, the eGect of adding a constant
to the energy denominators, and the rearrangement
energy all involve such an expectation value.

The importance of the exclusion principle in inter-
mediate states is determined by a diGerent set of terms,
also of second order in the reaction matrix, but involving
less momentum transfer in the interactions. Since the

'4 See, for example, A. E. Glassgold, Revs. Modern Phys. 30,
419 (1958).

3' D. H. Wilkinson, Physica 22, 1039 (1956).
"A. E. S. Green, Phys. Rev. 95, 1006 (1954); A. E. S. Green,

Revs. Modern Phys. 30, 569 (1958).

attractive part of the nuclear potential dominates for
low momentum transfer and the repulsive part for high
momentum transfer, the exclusion principle's impor-
tance depends to a greater extent on the attractive
potential. Part of the rearrangement energy comes from
the use of the exclusion principle, and this could be large
even for a purely attractive potential.

The departure of the ground-state wave function
from the model wave function involves interactions with
a large momentum transfer, so the repulsive part of the
potential will play an important role here. At inter-
mediate momenta the attractive and repulsive parts
interfere, but at high momenta the repulsive part
dominates. For this reason the repulsive core has several
important effects which cannot easily be obtained by
standard perturbation theory, even if the hard core
should aGect the ground-state energy only slightly, but
which can be derived simply by using the Brueckner
theory. The rearrangement energy and the existence of
high-momentum components of the wave function are
its most obvious and important effects. Too much de-
parture of the ground-state wave function from the
model wave function would make even the Brueckner
theory inapplicable, partly because of the difhculty of
dealing with the oG-energy-shell propagation, but the
calculated departure is not alarmingly large.

The rearrangement energy is as important as the rest
of the potential energy for the setting up of a self-
consistency condition, except that it is smaller in
magnitude. In- calculations made so far it has been
neglected, but there is no doubt that it should be taken
into account. It could either be allowed for in the
de6nition of the single-particle energies, or it could be
corrected for by calculating the higher order terms in
the perturbation series. Either of these methods involves
a calculation whose difhculty depends on the size of the
rearrangement energy, since this determines the accu-
racy required. A method of including the rearrangement
energy in the self-consistent calculation will be treated
in a further paper.
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