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The simple classical theories of the dielectric constants and
compressibility of ionic crystals lead to two relations among the
experimental quantities from which arbitrary parameters have
been eliminated, the Szigeti relations. Neither is satisfied by the
data, indicating the inadequacy of these simple theories. The
short-range repulsive interaction between ions with closed shell
electron configurations is investigated, and an approximate inter-
pretation of the Born-Mayer potential in terms of overlap integrals
is developed. These results are applied to the interaction of model
ions consisting of rigid charged shells bound to cores by harmonic
restoring forces. Using this model, polarization mechanisms
neglected in the simple dielectric constant theory, the "short
range interaction polarization, " and the "exchange charge
polarization" are described. Both arise from charge redistributions

occurring when the ions move with resulting changes in electron
overlaps. Applied to a crystal, these ion models permit the
derivation of generalizations of the Szigeti, Clausius-Mossotti,
and Lorenz-Lorentz relations. The e /e of the second Szigeti
relation can then be calculated and comparison with the e*/e
values derived from experimental data imply that the above
polarization mechanisms must be at least in part responsible for
the deviation of this parameter from unity. The failure of the
first Szigeti relation is discussed and attributed to the inadequacy
of the treatment of compressibility. The additivity feature of
the simple theory and its absence in the refined theory are dis-
cussed in relation to the so-called vacuum and crystal ion
polarizabilities.
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I. INTRODUCTION

HE simple classical theory of the dielectric con-
stants of ionic crystals' considers the following

model: The crystal lattice is occupied by polarizable
ions in static equilibrium of charge ~Ze and polariza-
bility o.+. This theory gives expressions for the extra-
polated high-frequency dielectric constant e, the low-

frequency dielectric constant ~p, and the characteristic
frequency of transverse lattice polarization waves (the
restrahlung frequency) cpp.
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Consider the expression for e„, (I.1). It is a function
only of tV(cr++cr ). If it is further assumed that the
polarizability of an ion is the same in all crystals then
~„ is said to possess the "additivity" property. If the
additivity property holds for actual crystals it should be
possible, for instance, to find 8 polarizabilities for the
io s L+, Na+, K+, Rb+, F, Cl, Br, I which through
(I.1) would give the sixteen e„'s for the NaCI type
alkali halides. Tessman, Kahn, and Shockley' (TKS)
have determined such a set of crystal polarizabilities.
These crystal polabizabilities have meaning only insofar
as the simple model on which the expressions (I.1),
(I.2), and (I.3) are based is valid.

We can use (I.1) to express 1V(cr++cr ) in terms of
e„. Substituting this JV (or++et ) into (I.2) and (I.3) we

get two expressions from which the adjustable parame-
ters a+ and n have been eliminated:
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Here 3I is the reduced mass of the positive and negative
ions; E is the number of ion pairs per unit volume; and
A is the harmonic restoring force constant related to
the short-range repulsion between the ions which in
the simple theory for NaCl type alkali halides is given
by 2 = 6Rp/IC, Ep being the nearest neighbor distance
and E the compressibility.

Of the parameters appearing in these expressions

M, E, and Z are known if the crystal is specified and is
assumed to be completely ionic. The polarizabilities n+
and o. for, say, the alkali metal ions and the halogen
ions in alkali halides are known neither in vacuum nor
in a crystal environment and are to be regarded as
adjustable parameters in the simple classical theory.

* Present address: Department of Physics, University of Illinois,
Urbana, Illinois.

' See, for instance, M. Born and K. Huang, Dynam''ca/ Theory of
Crystat Lattices (Oxford University Press, Oxford, 1954), Sec. 9.

If A is expressed in terms of the lattice constant and the
compressibility, (I.4) and (I.S) contain experimental
quantities only. By eliminating alternately A or
E(Ze)' between (I.4) and (1.5) these two relations can
be written

3fcpp'(ep+2)/(e„+2) =A = 6Ep/E, (I.6)

ep —e„=(e„+2)'[4prX(Ze)']/91IIcpp'. (I.7)

In this form (I.6) and (I.7) are called the first and second
Szigeti relations, respectively (Szigeti' ').' The failure
of the experimental data to satisfy (I.6) and (I.7)
demonstrates the inadequacy of the model on which the
classical theory is based.

2 Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 (1953).
3 B. Szigeti Trans. Faraday Soc. 45, 155 (1945).
4 B. Szigeti, Proc. Roy. Soc. (London) A204, 51 (1950).
'In Szigeti's statement, (I.6) has 2 replaced by 6Rp/X and

(I.7) has e replaced by e*.
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TABLE I. Values of IC*/K and e*/e derived from
experimental data (Szigeti' 4).

K*/K e*je

LiF
NaF
NaCl
NaBr
NaI
KCl
KBr
KI
RbC1
RbBr
RbI

1.0
0.83
0.99
1.13
1.05
0.96
0.95
0.99
0.89
0.83
0.66

0.87
0.93
0.74
0.69
0.71
0.80
0.76
0.69
0.84
0.82
0.89

'N. F. Mott and R. %V. Gurney, Electronic Processes in Ionic
Crystrtfs (Oxford University Press, Oxford, 1948), second edition,
p. 17.

The first Szigeti relation depends for its validity on
both the classical theory of the dielectric constants and
the theory of the compressibility which associates 2
with experimental data. If we define

E*—=6Ep(e„+2)/Mppp'(ep+2),

then a comparison of E* with the observed compressi-
bility gives a check on the validity of the first Szigeti
relation. If the relation were satisfied, E*/E= 1. Values
of E*/E derived from the experimental data are listed
in Table I. It is seen that deviations of E*/Efrom'
unity are of both signs and are as great as 34% for RbI.

The second Szigeti relation gives the difference
between the high-frequency and the low-frequency or
static dielectric constants. It is a relation that does not
contain A and so does not depend in this classical
theory on the validity of the theory of the compressi-
bility as did the first Szigeti relation. As is the case with
the first Szigeti relation, the second relation is not satis-
fied by the experimental data. Accordingly Szigeti
introduced a quantity e* in place of e in (I.7). e*/e is
defined by

(e*/e)'=—9Mpp'(ep —e )/47r/e'(e„+2)', (Z= 1).

If (I.7) were satisfied, e% would be unity. The values
of e% derived from experimental data are given in
Table I. For the cases given here, ee/e is always less
than unity.

Whereas the failure of the first Szigeti relation could
be due to either the inadequacy of the theory of the
dielectric constants and/or the theory of the compressi-
bility, the failure of the second relation demonstrates
the inadequacy of the dielectric theory itself. The
success of the Born-Mayer equation for the cohesive
energy and the fact that the Cauchy relations are
approximately satisfied for alkali halides suggest
strongly that these crystals are highly ionic in character.
This makes it unlikely that the departure of e% from
unity is to be ascribed to a departure from ionicity in
these crystals. The suggestion of Mott and Gurney'

that overlap alters the Lorentz local field drastically and
thus accounts for the failure of the second Szigeti
relation has been criticized by Born and Huang' and
made to appear implausible. It is therefore of interest
to know to what extent the departure of e% from unity
can be understood on the basis of a model of an ideally
ionic crystal, if it is assumed that the ionic charges are
&e and not &e*.The fact that e% is less than one for
the NaCl-type alkali halides suggests that in these
cases, accompanying the electronic polarization of the
ions and the polarization due to the displacement of the
ions from lattice sites, there is some further polarization
of opposite sign which has not been included.

In the classical theory leading to Fqs. (I.1), (I.2), and
(I.3) the only agency causing polarization is the
effective field at the lattice sites composed of the
externally applied field and the field due to the dipoles
of the polarized crystal. We shall find that the nearest
neighbor short-range repulsive interactions are also
responsible for deformations resulting in polarization.
These deformations are entirely neglected in the simple
classical theory except insofar as they are responsible
for the restoring force which limits the ionic displace-
ments. Szigeti, in his paper deducing the second
Szigeti relation, suggested that such deformations
would cause the deviations of e*/e from unity, and
Born and Huang present a phenomenological treatment
of such distortion dipoles although without investigat-
ing the details of their origin. The problem has also
been treated by Yamashita' and Yamashita and
Kurosawa. ' Yamashita has carried out a quantum
mechanical variational calculation of the polarization
of Lip and MgO neglecting the positive-ion polariza-
bilities, Using this calculation as a guide, Yamashita
and Kurosawa propose a general theory in which a
quadratic form for the energy similar to that used here
is employed. However, their general theory in which
the polarizability of both + and —ions are considered
has more parameters than can be evaluated from the
experimental data. In the present paper, using the
quantum mechanical treatment of the nearest neighbor
interaction as a guide, we are led to a simple physical
picture of this interaction which allows us to evaluate
and estimate quantities which can be identified with the
unknown parameters of Yamashita and Kurosawa.

We shall examine in detail a model of an ideal

NaCl-type alkali halide crystal with overlapping ions.

With a more complicated model than that of the
classical theory it is not always possible to accomplish

the elimination of all nonexperimental parameters to
give simple Szigeti type relations among the experi-

mental data alone. However, we shall be able to derive

expressions for E*/E and e% in terms of parameters
of the model. The property of additivity which the

r J. Yamashita, Progr. Theoret. Phys. Japan 8, 280 (1952).
J. Yamashita and J. Kurosawa, J. Phys. Soc. Japan 10, 610

(1955).
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simple model possesses will be seen not to hold for more
elaborate models. We shall be able to understand,
though, why it holds approximately and why Tessman,
Kahn, and Shockley were able to find a not too bad
"best" set of crystal polarizabilities. The relation of
these polarizabilities to vacuum polarizabilities will be
given a physical basis on the model.

In Sec. II the short-range interaction between ions is
discussed and the magnitude of the exchange charge as
a function of internuclear separation is estimated. In Sec.
III an ion model is discussed. The implication of this
model in the polarization process is treated in Sec. III
where two polarization mechanisms neglected in the
classical theory are found. These features are incor-
porated into a theory of the polarization of an ideal
crystal in Sec. V.

II. SHORT-RANGE ION INTERACTIONS

We seek the explanation of the deviation of e*/e from
unity in the details of the short-range or repulsive
interactions between the closed-shell ions of the alkali
halide crystals. In this section the interaction of two
helium atoms is erst discussed, this being the simplest
system of two closed-shell atoms. The insight provided
by studying this simple case is then applied to more
complex ion pairs and an approximate interpretation of
the Born-Mayer repulsion potential in terms of overlap
integrals is given.

The interaction of two He atoms is studied using a
Heitler-London approach' in which the atomic wave
functions are taken to be products of hydrogen like 1s
functions. The effective nuclear charge Z' in these 1s
functions used ultimately in deriving numerical results
is Z'= 27/16, the value for the isolated He atom derived
from a variation calculation using a product of 1s-type
functions with Z' as the variation parameter (see
Pauling and Wilson" ).

We wish to calculate the interaction energy
given by

interaction integral similarly can be written (see
Rosen" ")

t u '(1)ubs(2)
d7 yd72

e' (1—S')' ~ rrs

4Z ( u.'(1) Z'

1—5' rgg

2—4S' I. u.(1)u.(2)ub(1)ub(2)
l7'yl7 2(1-S) ~ r12

4S
p

u. (1)ub(1)u.'(2)
dTld7 2

(1—S')' ~ r

4SZ t. u. (1)ub(1)
d7 y. (II.3)

It is interesting to notice that the interaction energy
contains no kinetic energy. The expectation values of
the kinetic energy operators in II all appear as terms in
E,' and E~' and not in 5', thus the interaction of the
two helium atoms involves no change in the kinetic
energy of the system in this first-order treatment. Lenz
and Jensen" have treated this problem using Thomas-
Fermi atoms and find in that approximation that the
origin of the repulsion between rare gas configuration
atoms lies in the higher kinetic energy of electrons in the
overlap region. The kinetic-energy in the overlap region
is considered to be higher because of the increased
density there and the operation of the exclusion
principle. It seems difficult to reconcile the Thomas-
Fermi atom treatment with the Heitler-London treat-
ment. The latter is surely the more realistic.

The terms in (II.3) can be given a simple interpreta-
tion in terms of the charge density associated with the
wave function 0'0. This charge density is given by

p(1) = —(I el/(+sl+o)) +o*+s&r' (II.4)

as a function of R. In (II.1),E,' and Eb' are the energies
of the two He atoms at in6nite separation, and +0 is an
antisymmetrized product wave function for the four
1s selectrons.

By treating the integrations and summations of the
antisymmetrized wave functions in the standard way,
it can be shown that the normalization integral can be
expressed as follows:

(+oleo) = (1—s')' (II.2)

where S is the overlap integral t'u (1)ub(1)dr&. The
9 For closed-shell interactions such as these, the Heitler-London

and the molecular orbital schemes are identical. See F. Seitz,
Modere Theory of Sobds (McGraw-Hill Book Company, Inc.,
New York, 1940), p. 262.

' L. Pauling and E. B. Wilson, Jr., Introduction to Quantum
Mechomecs (McGraw-Hill Book Company, Inc. , New York,
1935), p. 184,

where the integration d7-' is over all spins and over all
space coordinates except one, say coordinate (1). The
result of this simple integration is

p(1) = —
L I

e I/(1 —s'))L2u (1)+2ub'(1)
—4Su, (1)u (1)). (II.S)

To the erst order in S' the first two terms, the "electron
charge distribution, "are

p,q(1)—=—
I
e

I
L(1+s')2u s(1)+(1+s')2ubs(1)) (II.6)

which we see to be the spherically symmetric negative
charge distributions of the noninteracting helium atoms

"N. Rosen, Phys. Rev. 38, 255 (1931)."N. Rosen, Phys. Rev. 38, 2099 (1931).
» See P. Gombis, Die Statistische Theories des Atoms und ihre

Anweadlagea (Springer-Verlag, Vienna, 1949), Sec. 18.
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TABLE II. Molecular integrals and lV for He-He system. The integrals and 8' are given in atomic units. 8=Z'R.

(allele)

0.09658
0.04710
0.02219
0.01005

(DleleleleR)

0.99785
0.99956
1.00000
1.00000

(Kl leR)

0.99997
1.00000
1.00000
1.00000

(CleleleleR)

0.018585
0.0048841
0.0011732

(I.leleleleR)

0.180830
0.0918686
0.045765

(Ae»R)

0.2021
0.1041
0.05107

3.500X 10~
7.467X10 '
1.665X10 '
4.072X10 4

increased by a factor of 1+5'. The remaining part, the
"exchange charge distribution, " to O(S'), is

p, (1)=+~e~45tt, (1)gs(1), (II.7)

and is seen to be a positive charge distribution which is
large where the overlap integrand is large. The charge
distribution is thus regarded as the sum of the electron
distributions on the atoms increased by a factor 1+5'
and a positive "exchange charge distribution" given by
(II.7). The total exchange charge is

tribution of the square bracket terms is small, negative,
and decreasing in magnitude with increasing R. This
corresponds to a slight attraction arising from the
overlap of the charge distributions. The remaining
three terms correspond to exchange charge interactions.

Notice that the exchange-exchange and the electron-
exchange interactions are attractive while the exchange-
nuclei interaction gives a repulsive term. To a very
good approximation (Jl.l,R) 2S, Ll, l, l,l,R~25, and
C~,~,~,&,R 25' so that we can write

W—25'e'/R = eq,„/2R. (II.10)
qea=

g
pea(1)drl= 4

~
8

~
5 (II.8)

The total electron charge on each atom is —(1+S')2
~
e

~

.
With the aid of this picture of the charge distribution,

the terms in W (II.3) can be interpreted. In order, the
terms are: the Coulomb interaction between the
electron charges on the two atoms; the Coulomb
interaction between electron charges and the two
nuclei, the electrons on atom u interacting with
nucleus b and vice versa; the nucleus-nucleus interac-
tion; the exchange charge interaction with itself; the
exchange charge-electron charge interaction; and the
exchange charge-nuclei interaction.

It remains to calculate the integrals appearing in
(II.3) so as to know their relative importance as con-
tributions to 5 . These integrals have been expressed in
terms of tabulated auxiliary functions by Kotani,
Amemiya, and Ishiguro. " In the notation of these
authors, (II.3) can be written to O(5') with Z=2, as

WR/e = L(4+6S )Dl l l l R 8(1+S)El l R+47
2~10lslslsR 4SI lslsl818R+85+lslBR) (II 9)

when it is noted that Clelsl, l, is O(5') and that Ll, l,l.l,
and Jl,l, are O(S).

These integrals are tabulated in Table II for several
values of Z'E= 8, R in atomic units. The range of 8 has
been chosen to give values of 5 similar to the overlap
integral magnitudes in crystals (see Lowdin").

The three terms in the square brackets of Eq. (II.9)
correspond to the Coulomb interaction of the electron
charges and nuclei. Since D~,~,~,~,R and E~,~,R are
nearly equal to unity in the range considered, this
square bracket is nearly equal to —25'. Thus the con-

"Kotani, Amemiya, Ishiguro, and Kimura, Table of Molectttar
Irttegrals (Maruzen Company, Tokyo, 1955)."P. Lowdin, A Theoretical Irtoestt'gattort tttto Some Properttes of
Ionic Crystals (Uppsala Almqvist and Wiksells, Uppsala, 1948);
also Phil. Mag. Suppl. 5, 1 (1956).

Thus the exchange charge-nuclei interaction is respon-
sible for the net repulsion between the two helium
atoms.

A more precise calculation gives the values of 5' listed
in Table II. These values are well expressed by the
repulsive law

%=4.6X 10 "exp(—5/0. 688) ergs.

Slater's calculation" using more exact helium wave
functions gives

W=7.7X 10 "exp(—b/0. 695) ergs.

From Eq. (II.10) we see that if W is known as a function
of R then we have a way of estimating the magnitude
of q, . This method of estimating q, will be of im-
portance in Sec. IV.

Equation (II.10) shows that W for a pair of helium
atoms is proportional to q,„/R and depends exponen-
tially on R. It is plausible to assume that these features
are retained in the interaction of pairs of more complex
closed shell atoms. Accordingly it is assumed that the
short-range interaction energy for such atom pairs can
be written

W=8 exp( —R/p) =Vq,„/R, (II.11)

"J.C. Siater, Phys. Rev. 52, 349 (1928).

where 8, p, and y are constants. The first part of
(II.11) is the assumption of the Born-Mayer theory of
ionic crystals and that theory evaluates 8 and p in
terms of the lattice constant and the compressibility.

To evaluate the dimensionless constant y we need to
know q, . Equation (II.8) for the exchange charge of a
pair of overlapping helium atoms can be generalized to
more complex atoms. If atom 2 has occupied states
tt;(i=1, , rt~) and atom 8 has occupied states
I;(j=1, , sttt), and if both 3 and 8 have no partially
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filled electron shells then the total exchange charge is

(II.12)

where S;;= t'u;(r)u, (r)dr.
The overlap integrals S;, have been evaluated for

LiCl and NaCl by Lowdin" for a number of inter-
nuclear separations. By using these S;, for separations
closest to the measured lattice nearest neighbor
distances and the values of 8 exp( —Rs/p) from refer-
ence 1, values of p can be deduced. They are 4.2 and
1.4 for LiCl and NaCl, respectively.

Note that (II.11) and (II.12) imply that

gS;,'/R e p( —R/p).
This relation can be checked by using Lowdin's overlap
integrals for LiCl and NaCl. The assumption (II.11)
is given support by that fact that a plot of
logL(1/R) g S,,~j vs R gives an excellent straight line
over the range 5alr&R&6. Jager (arr=i Bohr radius).
Furthermore the slope of these lines gives a p of ap-
proximately 0.35 A in good agreement with the values
of p deduced by Born and Mayer. '

We shall assume that the constant y is the same for
all the lithium halides; also that among the sodium,
potassium, and rubidium halides it is the same. One
expects the value of y for the lithium halides to differ
from that for the other alkali metal halides since Li+
has an s shell outermost while all the other positive
ions —Na+, K+, Rb+—have p shells as outer shells.

It is not unreasonable that y is larger for LiCl than it is
for NaCl. The exchange charge is distributed more exten-
sively in the lithium salts where it extends all the way to
the lithium nucleus than it is in the sodium, potassium,
and rubidium salts where the wave functions of the
electrons participating in large overlaps are small near
the nucleus. This has the consequence that the
exchange-exchange interaction integrals will be con-
siderable larger in the case of the latter salts than for the
lithium salts. Since the exchange-exchange term is
negative, this consideration leads one to expect that
QNaC1 +P LiCl

The principal results of this section are the inter-
pretation of the repulsion in terms of the exchange
charge and the approximate relation (II.11).

It will be necessary to consider how the short-range
interaction between ions studied in this section is
affected by the polarization of the ions. Before con-
sidering this problem, a model for the ions themselves
will be proposed. Then, in terms of this model, the
question of the repulsive interaction between polarized
ions will be treated.

III. ION POLARIZATION MODEL

The polarizabilities of a number of free ions have
been calculated by Pauling" and Sternheimer. " It is

'r L. Pauling, Proc. Roy. Soc. (London) A114, 181 (1927)."R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565
(1957).

(ep —1)/(ep+2) =-s'rrlVnp, (III.2)

where E is the number of atoms per unit volume.
For nonstatic applied fields with M«coo, the dielectric
constant is given approximately by

e = ep+m (ep —1)'L4rrcVne'] 'co'. (III.3)

The static dielectric constants and the frequency
dependence of e are known for the rare gases" and,
according to (III.2) and (III.3), suKce to determine rs

and k for these atoms. The values of n and k for rare
gas atoms calculated in this way are found in Table III.

If only the outer shells moved in polarization, and
they did so in the manner assumed in the spring model,
then the numbers e would be eH, ——2, eN, ——6, e~——6,
etc. The rare gas e's of Table III are thus not un-

' Using Sternheimer's values for the polarizabilities does not
much alter the calculated values of (e*/e).

~ C. Cuthbertson and M. Cuthbertson, Proc. Roy. Soc.
(London) 484, 13 (1910).

desirable to understand the eGects arising from the
crystalline environment and not to conceal these
effects in "crystal polarizabilities" to be assigned to
the ions so as to satisfy the relation (I.1).Thus, in the
following, the Pauling" free-ion polarizabilities will be
used since in principle the vacuum polarizabilities
should be used as input data. Assuming then that the
free-ion polarizabilities are known, a picture of the
charge distribution deformations in a polarized ion will
be needed. This problem will be treated in terms of an
ion model.

In an ion those electrons far from the nucleus, being
less tightly bound, are more profoundly affected by the
application of an electric held than the inner electrons.
Sternheimer has found that the polarizabilities of rare-
gas-configuration ions are due almost entirely to the
outermost shells. Accordingly a model is used which
incorporates this qualitative feature.

The rare-gas-configuration ions are considered as
being constituted of an outer spherical shell of m

electrons and a core consisting of the nucleus and the
remaining electrons. In an electric field the shell
retains its spherical charge distribution but moves
bodily with respect to the core. The polarizability is
made finite by a harmonic restoring force of spring
constant k which acts between the core and shell. The
two unknown parameters e and k will be chosen by
considering the polarizability and ultraviolet dispersion
of a gas of such model ions.

It is easy to show that the polarizability of this
model ion in an applied periodic 6eld of angular
frequency co is given by

(III.1)

where ns (me)'/k, toe ————k/rrm, and e and m are the
electronic charge and mass. Upon using the Lorentz
local field, the static dielectric constant of the gas is
given by
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TAsx,E III. Some data for rare gas atoms and derived quantities
for isoelectronic ions.

Atom
or ion

Paulinga
polarizability

(10 24 cm3)

TKSb
polarizability

(10 24 cms)

n k
Spring model

(107 cga)

He
Li+
F
Ne
Na+
Cl
A
r+
Br
Kr
Rb+
I
Xe

0.201
0.029
1.04
0.390
0,179
3.66
1.62
0.83
4.77
2.46
1.98
7.10
3.99

0.03
0.652

0.41
2.97

1.33
4.17

1.98
6.44

2.24
2.24
4.8
4.8
4.8
8.7
8.7
8.7
9.9
99
99

11.3
11.3

5.77
3.39
0.511
1.36
2.97
0.477
1.08
2.10
0.474
0.91
1.62
0.412
0.736

a See reference 17.
~ See reference 2.

reasonable. The increase in n for the heavier rare gas
atoms suggests that these heavier atoms have more
electrons far from the nucleus which can take part in
the polarization.

Neither the polarizabilities nor the ultraviolet dis-
persion data is known for the alkali metal or halogen
ions, so that it is not possible to treat them as we have
the rare gas atoms. However, for a given rare gas
electronic configuration it is reasonable to suppose
that the change i.n polarizability accompanying a
change in nuclear charge (e.g., the change in n from A
to Cl ) will be due mainly to the altered spring constant
while e remains the same. The classical agencies that
tend to restore a polarized ion to an unpolarized state
are the central field of the nucleus and the electron-
electron Coulomb repulsions which tend to make the
electrons assume a spherically symmetric distribution.
Consider what happens if the nuclear charge of a rare
gas atom is increased from Z to Z+1 without changing
the number of electrons. To a first approximation the
electron distribution is scaled down in its dimensions
by a factor Z/(Z+1). The decrease of size of the elec-
tron distribution puts the electrons both closer to the
nucleus and to one another and therefore increases the
effectiveness of the restoring agencies which appear in
the spring model in the spring constant k. Therefore it
will be assumed that the number of shell electrons e will
be the same as that of the rare gas atom with the same
electronic configuration. The spring constants k will
then be determined from the Pauling polarizabilities on
the assumption that these are good estimates of the
vacuum free-ion polarizabilities. These e and k are
given in Table III.

Using the physical insight into the repulsive inter-
action provided by the discussion of Sec. II and the
ion model outlined above, the problem of the repulsive
interaction of polarized rare gas configuration ions can
be discussed.

Consider for simplicity the case of two helium atoms
differently polarized as shown in Fig. 1.

Shell Centers

~ Cores

FIG. 1. Core and
shell conagurations
for the interaction of
two differently po-
larized helium atoms.

-- =8, =

4l &&

The short-range interaction energy can be estimated
in the same way as was used to write (II.9) in the
approximate form (II.10) except that R„, R8~~, and
R.c2 must be used as denominators where before all
the denominators were R. For instance, for the electron-
core interaction the distance entering in the denomi-
nator of the estimate of the corresponding term will be
R.c~ or Rsc2 in the polarized state (Fig. 1) where it was
R in the unpolarized state. S' is clearly a function of
R„.Thus:

6S' ~ 1 1
+4~'I +

R~g k RBC$ RBC2)
(III.4)

Rsc] —Rss ~ly

Rec2 —Rgg 82 ~

Expand in powers of h~/R„, 82/R„ to get

25' 45' (8g—82)
W= +

~

— l+" =a exp(-R. ./p). (111.5)R„R,.& R„)
Since the deformations of ions in the state of polariza-
tion are very small compared with the lattice separa-
tions that are encountered, we can neglect the second
term.

In using this spring model, the alteration of the
repulsion due to polarization of the atoms will be
estimated using (III.5). Knowing the state of polariza-
tion of the ions and the separation of the ion cores
we can deduce R„; the short-range interaction energy
is then given by 8 exp (—R„/p) rather than by
8 exp( —R/p). Thus the repulsion between ions is to be
regarded as acting between the shells and not the cores.
This modification constitutes the first improvement of
the present theory over the simple classical theory.

IV. SHORT-RANGE INTERACTION
POLAMZATION MECHANISMS

From the discussion of the short-range interactions
of the ions that has pre"eded, we can now deduce two
polarization mechanisms which are neglected in the
simple classical model of Sec. I.
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+ ION —ION action polarization arises from a coupling of the
ionic displacement polarization and the electronic
polarization of the ions, a coupling beyond that which
exists because of the Lorentz field.

TV Y

Repulsion

UNPOLARlZED STA

DIRECTION OF POLARIZING FIELD
d-I

d+ d-
4

POLARIZED STATE

Cores

X Shell Centers

FIG. 2. The short-range interaction polarization. d+ are the
displacements of the shells with respect to the cores in the absence
of repulsion between the ions. d+' are the additional shell displace-
ments resulting from repulsion.

I

Short-Range Interaction Polarization

First consider what happens due to the short-range
interaction when pairs of ions are moved together as is
the case in that polarization of a crystal due to the
motion of the positive and negative ions. As we have
seen, the shells of the ions repel one another and tend to
become displaced with respect to the ion cores because
of this repulsion. This is equivalent to a polarization
of the ions. The restoring spring between the shell and
the core is in general weaker in the negative ion than it
is in the positive ion, and hence one would expect the
polarization of the negative ion due to the repulsion of
the shells to exceed that of the positive ion if the shell
charges were the same. Referring to Fig. 2, we see that
the polarization due to the short-range interaction is in
the direction of the applied 6eld for the positive ion
and against the direction of the 6eld for the negative
ion. If the negative-ion "short-range interaction polari-
zation" exceeds that of the positive ion, it is seen that
there is a resulting net dipole per ion pair directed
opposite to the applied field. Whether it will in fact be a
net dipole directed opposite to the field depends, of
course, both on the spring constants k and on the shell
charges ne. For the NaCl-type alkali halides, the
polarization due to this mechanism is indeed negative,
as we shall see. As discussed in Sec. I, this is the sort of
contribution to the polarization that serves to reduce
e*/e to values less than unity. The short-range inter-

I-54

+4 +4

FIG. 3. Chain of positive and negative ions in an unpolarized
crystal, showing exchange and electron charge magnitudes and
positions. The large circles represent negative ions.

~'After the completion of this work we have received an un-
published manuscript from P. W. Anderson in which this exchange
charge polarization effect is treated. Our results and those of
Anderson on this eGect are in good agreement.

Exchange Charge Polarization"

There is another sort of polarization which is a con-
sequence of the overlap of the ions and the resulting ex-
change charge. When the repelling ions are moved with
respect to one another there is a change in the overlap
integrals and a consequent change in the exchange
charge distribution. This change is responsible for the
repulsive force between the ions at short distances. In
a crystal the displacement of the ions in the polarization
process causes such redistributions of exchange charge
and the resulting forces cause the ionic displacement
polarization to be 6nite. Associated with these charge
redistributions is a net dipole moment per unit volume.
This will be called the "exchange charge polarization. "

Consider a chain of ions in a NaCl-type alkali halide
crystal in equilibrium (no Geld) with their associated
exchange charges (Fig. 3).

Except for the end members of this chain, each ion in
the crystal is surrounded by six nearest neighbors which
are dissimilar to itself. The end members of the chain
have only 6ve nearest neighbors. There is an exchange
charge between each pair of ions, and the ions have
acquired increased negative charges from the electrons
"excavated" to make the exchange charge. Although,
of course, the exchange charges are distributed through-
out some region they are represented schematically by
squares in Fig. 3. Only those exchange charges along the
line of the chain are shown. The charge magnitudes
associated with the ions and the exchange charges are
shown. The end atoms differ from the interior ones by
a charge of magnitude ~q/2~.

Now consider the crystal in a polarized state with the
positive-ion shells displaced relative to the negative-ion
shells by a distance x. Figure 4 shows a line of ions in
such a crystal. The center of exchange charge q& is a
distance $ from the negative-ion shell center and q2 is a
distance g from the point halfway between the negative-
ion shell centers. The dotted circles are ions in one of the
four adjacent lines of ions. The exchange charges g3



THEORY OF D I: ELECTRI C CONSTANTS

where

Similarly

g'»= qo
—fS

qo= (Roa) (Ve) exp-( —Rp/p),

qs =qp+gx»

(IV.1)

(IV.2)

are a horizontal distance f from the equilibrium
positions 0, E.p, 280, ' ' ', nEO, . Except for the ends
of the chain the charges on the positive (small)
and negative (large) ions are 1——', (qt+qs) —2qo and
—1—o(qt+qs) —2qs, respectively. The positive ion at
the right end of the chain of Fig. 4 has a charge
1——,'q2 —2q3 and the negative ion on the left end has a
charge —j.——',q»

—2g3. The distance x is the displace-
ment of the positive-ion shell relative to the negative-ion
shell and so includes the electronic polarizability of
the ions.

Each row of qs's ip shared by two rows of ions. There
are four rows of them surrounding each row of ions, so
there should be two rows of q3's associated with each
line of ions in counting up the total dipole moment of
the crystal. This, of course, includes too many rows of
q3's since it neglects absence of them at the surfaces. It
is correct, however, to order 1/(N*) where N is the
number of ion pairs in the crystal.

From (II.11) we can calculate qt, qs, and qs.

]
Qqa

F»G. 4. Chain of positive and negative ions in a polarized
crystal, showing exchange charge magnitudes and positions.
(Exchange charge polarization. )

and

qp= qp+O(x ). (IV.3)

We need carry the expressions for these exchange
charges only to 0(x), as we shall see in Sec. V.

We now calculate the dipole moment of the line of
charges of Fig. 4. Since the net charge of this line with
the two associated lines of q3's is zero, the choice of
origin is arbitrary. It is chosen to be at the negative-ion
shell center at the left end. The dipole moment I' for
a line of E ion pairs with associated exchange
charges is'2

P=q, (qq[t+2Rp]q "+P+2Rp(N- 1)]}
+qoj[Ro+»t]+[(Ro+tt)+2Ro]+ +[(Ro+rt)+2Ro(N —2)]}
+[1 z qt —z qs

—2qs]([Rp+x]+ [(Ro+x)+2Ro]+ +[(Ro+x)+2R (N —2)]}
+[—1—-'q —-'q —2q ](2Ro+4Ro+ +2Ro(N —2)}+[1——',qt —2qo](Ro+x+2Ro(N —1)}

+2qs(t+[(+Rp]+ +D'+ (2N —1)Rp7}. (IV.4)

Performing the arithmetic sums in (IV.4) and using
(IV.1), (IV.2), and (IV.3), we have for the dipole
moment per ion pair (dropping terms of order 1/N)

P/N =gx(rt g)—
+qo($+tt —3x Ro+4t )+Ro+—x, (IV 5)

where the first term is the dipole due to changes in the
magnitude of the exchange charges, the second term is
the dipole due to the movement of the exchange charges,
and the third term is the dipole of the chain of positive
and negative ions. This third term is exactly canceled
by a similar term in the neighboring chain in the
crystal. The last term is the polarization due to the
displacement of the ion shells. The first two terms
constitute the "exchange charge polarization" per
ion pair:

P,h/N=gx(rt p)+qp($+»l 3x Ro—+4/). (IV.6)— —
By taking care, as has been done, to treat the end ions
of the chain correctly (and this is essential if P,„,t//N is
to be unambiguous), the dipole moment per ion pair
calculated using a chain starting on the left with a
positive ion is exactly the same as (IV.6).

If it is assumed that initially, before the application
of the electric field E, the exchange charge centers are
at the points of tangency of the spheres possessing the
Zachariasen radii r+ and r (KitteP') and further that
the exchange charge center moves so as to keep the
ratio of its distances to the two ion shell centers the
same after polarization as before, then

$=r +r x/Rp,

rt=r++r x/Rp,

1 =r x/Rp.

(IV./)

~ The dipole moment due to the ion core displacements is not
included in this expression since it is simply an additive term not
of interest here.

o'Charles Kittel, ImtrodtteÃog to Sett'd State Phys»ee (John
Wiley and Sons, Inc., New York, 1956), second edition.

The Zachariasen, Pauling, and Goldschmidt ionic radii
are very nearly the same for the ions considered here
with the exception of Li+. In the case of Li+ the
Zachariasen radius has a value which lies between the
Goldschmidt and Pauling radii and is arbitrarily chosen
for use here. Substituting these expressions for $, rt, f
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TABLE IV. Values of the parameters. The D/e (in units of 10 ') are calculated by using (IV.9), where r+ r—is set equal to the diiier-
ence of the Zachariasen ionic radii in the calculation of D/e and r+ r —is set equal to —Ro in calculating (D/e), &„,. Here, as in the
other calculations throughout, the Born-Mayer parameters 8 and p used are those given in reference 1, p. 26. p is deduced for the
various salts in Sec. II. A is given by 6Eo/E, where Ro is the nearest neighbor distance and A. is the compressibility from reference 1
p. 26. X, p, and v in terms of D and oi quantities to be found in Table III are given by Eqs. (V.19) and (V.12). X, —p/e and v/es are
given in cgs units. e*/e and (e*/e),„&„,in the seventh and eighth columns were calculated by using (V.31) with e'=e+D
and e'=e+D, „«,m„respectively. The (e*/e),o, are from Table I.

LiF
LiCl
LiBr
LiI

NaF
NaCl
NaBr
XaI

KF
KCl
KBr
KI

RbF
RbC1
RbBr
RbI

D/e
(io 2)

—1.36—1.47—1.61—1.77

—1.58—3.30—3.78—4.28

0.00—1.87—2.38—3.08

+0.609—1.23—1.72—2.50

(D/&) extreme
(10 2)

—4.20—3.34—2.83—3.52

—10.43
11%2—11.5—11.4

—11.4—12.2—12.4—12.6

—11.4—12.2—12.3—10.7

A
(104 ergS/Cm2)

9.79
4.35
3.82
3.00

6.34
3.80
3.43
2.66

4.70
3.25
2.88
2.42

4.02
2.89
2.54
1.97

'A )&107

2.29
2.43
2.44
2.76

2.29
2.43
2.45
2.77

2.43
2.57
2.59
2.90

2.58
2.72
2.73
3.05

—p/e )&106

0.883
1.77
2.03
2.69

0.778
1.66
1.93
2.58

0.526
1.41
1.68
2.33

0.326
1.21
1.48
2.13

v/e~ X10&

0.464
1.60
2.08
3.12

0.529
1.67
2.15
3.18

0.811.
1.95
2.43
3.46

1.06
2.19
2.68
3.71

e*/e

0.91
0.92
0.91
0.90

0.93
0.91
0.89
0.89

0.98
0.93
0.93
0.91

1.05
0.95
0.92
0.93

(& /&)extreme

0.88
0.90
0.90
0.88

0.86
0.84
0.82
0.83

0.87
0.84
0.84
0.82

0.88
0.84
0.83
0.85

(~*/~)o»

0.87

0.93
0.74
0.69
0.71

~ ~ ~

0.80
0.76
0.69

~ ~ ~

0.84
0.82
0.89

into (IV.6), we get

P. ,s/1V =x(r~ —r )qo (Ro—4p)/pRo. (IV.8)

Note that for r+&r this is opposite to the direction of
the field. Since the Zachariasen radii of negative ions
do, for the salts of Table I, exceed those of the positive
ions, we see that the exchange charge polarization also
contributes toward making e*/e(1. It is convenient to
define the exchange charge polarization coefficient D
by writing (IV.8) as

&. ~/&=I (r+—«-)&
)&exp( —Ro/p) (Ro 4p)/pye]x= Dx. —(IV.9)—

Using the values of r+ and r given in reference 23,
p. 81;8 exp( —Ro/p), p, and Ro from reference 1, p. 26;
and y from Sec. II, we can then calculate values for
D/e. They are listed in Table IV. All the D's are nega-
tive except that for KF which is zero and that for RbF
which is positive. The values labeled (D/e), „&.. . are
calculated on the assumption that the exchange charge
is at the center of the positive ion. These values will be
useful in estimating how much alteration in the cal-
culated of e*/e is to be expected if q,„,h were in fact
located nearer the positive ion core than it has been
assumed to be.

The assumptions that go into the calculation of D are
rather rough. They are

(1) Assumption of the relation between exchange
charge and the interaction energy, Eq. (II.11).

(2) The relation of the interaction energy parameters

8, p to the compressibility and lattice constant. (See
Sec. V.)

(3) The assumption as to the position of the center of
exchange charge.

(4) The proportional motion of the exchange charge.

Because of the compounded uncertainty of these
assertions it would not be surprising if D as listed in
Table IV were incorrect by more than a factor of two.

V. POLARIZATION OP CRYSTAL MODELS

We are now ready to incorporate the model ions
which we have discussed in Sec. III into a model crystal.
We consider a NaC1-type lattice with positive and
negative ions at the lattice sites of interlocking face-
centered-cubic lattices omitting phonons. It will be the
procedure here to find the Lagrangian of this system
polarized in an applied electric 6eld on the assumption
of long polarization waves in the lattice. The solution
of Lagrange's equations of motion will then allow us to
calculate the dielectric constants of the model.

It will suffice to consider the electric field applied in
the direction of a crystal axis since the dielectric
properties of a cubic crystal are isotropic.

Consider a state of polarization of such a crystal made
of spring model ions in the presence of an applied field.
The 6eld and the polarization are assumed to be constant
over a region including very many lattice sites. As
shown in Fig. 5, in the state of polarization the ion
cores are displaced distances x~ and x from the lattice
sites in the direction of the applied field (the X axis).
The shells are displaced distances d+ and d from the
cores. These x's and d's will be the generalized coordi-
nates in the Lagrangian formulation of the problem. We
seek the kinetic energy T and the potential energy V

of this system. The potential energy has three parts;
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V„ the electrostatic energy; V„, the short-range
interaction energy; and V„, the self-energy of the
polarized ions, i.e., the restoring spring energies of the
ions. Thus the Lagrangian can be written:

I.= T (V—,+V„+V„). (V.1)

Electrostatic Energy V,

In calculating the electrostatic energy of the polarized
crystal model, the charge distribution is expanded in
multipoles about the lattice sites. Since we will be
interested in the potential energy only to second order
in the applied field and since x+, x, and d+, d will be
of first order in the applied field, multipoles of higher
order than quadrupoles need not be considered. About
a positive-ion site the multipoles due to the positive-ion
core and shell include a monopole +e, a dipole directed
along the positive x axis of magnitude ex+—a+ed+, and
a quadrupole which is of second order in the applied
field and has only an xx component. Here I+ is the
number of electrons on the sheB of the positive ion. The
uniformly charged spheres of the spring model are very
convenient for the calculation of these multipoles since
they can be replaced by point charges. About a negative
ion site there are a monopole —e, an x axis directed
dipole of magnitude —ex —n ed, and a quadrupole
which is of second order in the applied field.

In order to write down the electrostatic energy of
these multipoles, we must know the electrostatic
potential at and near to the lattice sites. For charges
distributed axially, as in this case, the energy of inter-
action of the distribution with the local Geld is

where P', P2, and P' are the monopole, dipole, and
quadrupole moments, respectively. The local Geld is
the sum of the applied field plus that field due to the

X Shell Centers

Lattice Sites

~ Core Centers

multipoles other than those at the lattice site in ques-
tion. The latter Geld for the case of a transverse polari-
zation wave, of wavelength long compared to the lattice
constant and short compared with the size of the
dielectric sample, is, in the Lorentz approximation,
composed of the Lorentz Geld 4mB/3 and the de-
polarizing Geld. In this case the macroscopic Geld

appearing in Maxwell's equations is the sum of the
applied Geld and the depolarizing field.

Consider erst the energy of the multipoles in the
macroscopic field. The monopole contribution is zero
when summed over the crystal because of the electrical
neutrality of every plane of lattice points perpendicular
to the macroscopic field on which the potential due to
the macroscopic Geld is constant. Considering the
macroscopic field as being uniform, the Geld has no
gradient and the quadrupole energy of interaction with
the macroscopic field is also zero. This leaves only the
dipoles with nonvanishing energy of interaction with the
macroscopic Geld.

Of the interaction of the multipoles with one another
we need retain only those contributions of, at most,
second order in the displacements. Thus only the
monopole-monopole, monopole-dipole, monopole-quad-
rupole, and dipole-dipole interactions need be considered.

The monopole-monopole interaction energy is in-
dependent of the displacements or the applied Geld
since piezoelectric eGects are absent in crystals with
center-of-inversion symmetry (such as alkali halides).
Thus the monopole-monopole contribution to the
potential energy in the Lagrangian is merely an additive
constant, the Madelung energy. '4 The monopole-dipole
term is zero since the field at a lattice site due to the
monopoles in a cubic array is zero.

The monopole-quadrupole term is given by
—,p4(8'V/Bx'), where V in this expression is the potential
due to positive and negative monopole charges dis-
tributed on a NaCl lattice. Since in a cubic crystal
O'V/Bx'=0 at a lattice site, the quadrupole-monopole
interaction also vanishes.

Thus the electrostatic potential energy of the
polarized crystal reduces to just that due to the inter-
action of the point dipoles with the macroscopic field
and with one another. The dipole moment per ion pair
due to displacements x+ and d+ is

X =cI—

lOX

—Xp d»

0

e(x+ x) rr ed—e+—ed—
This does not include the exchange charge polarization
per ion pair, which is given by

D(x~+d+ x= d ), —

Ro

FlG. 5. The generalized coordinates used in expressing the
Lagrangian of the model crystal.

~4 This is true even when one considers the increased electronic
charge on the ions which comes to them from the exchange charge
region. This alteration of the ionic charge from unity is given by
~q= —

&q&
—2q2 —q3= —2qo=constant. (The notation is that of

Sec. IV.) Since d q is a constant, the correction for it in the Made-
lung energy is independent of the ionic displacements, and the
Madelung energy thus corrected is still merely an additive con-
stant in the electrostatic energy of the crystal.
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—
2 (4~&p'/3) —= —2Cp'. (V.3)

The —, is included to avoid counting each dipole-dipole
interaction twice. It has here been convenient to
introduce the notation

C=4~%/3. —

We have, finally, an expression for V, :

V,= pE ., ',Cp'— ——
per ion pair.

(V 4)

(V.S)

Short-Range Interaction Energy

The short-range interaction is the origin of another
contribution to the potential energy of the polarized
crystal. The relative displacement of the positive and
negative ion shells is given by x= (x++d» —x —d ) so
that, per ion pair, the short-range interaction energy is
given to the lowest order in x by

where
V,„=i2Ax'+constant (V.6)

A —=2B exp( —Ro/p) (Ro—2p)/Bop'. (V.7)

Notice that this term involves a cross term between the
x~'s and d+'s m.d thus couples the ion displacement
polarization with the electron cloud polarization of the
ions. The short-range interaction polarization is there-
fore built into the Lagrangian that we are constructing.

where. D is defined in Eq. (IV.9) and x++d+—x —d is,
in terms of the generalized coordinates, the displace-
ment of the positive-ion shell relative to the negative-
ion shell.

The exchange charge dipoles are not well represented
as point dipoles but arise from extended distributions
of charge. The interaction of these exchange charge
dipoles with the macroscopic field, with the "point
dipoles" of the polarization of the ions and the dis-
placement polarizations, and with one a,nother is a
complica, ted problem. Here it will be assumed that the
exchange charge polarization is to be incorporated
exactly as the usual dipoles are; that is, it is assumed
that they contribute to and experience the same loca, l

field as they would if they were point dipoles at the
lattice sites. The expression (V.31) for e*/e that results
from the present analysis can be shown to be quite
insensitive to considerable variation of the local field.
Thus we write the total dipole per ion pair, p, as

p = e (x+ x) n—ed —n»ed»—
+D(x»+d+ —x —d ). (V.2)

E=Xp is the dipole moment per unit volume, where E
is the number of ion pairs per unit volume. The poten-
tial energy of the dipole (V.2) in the macroscopic field is

pE „—The loca. l field due to the other dipoles is the
Lorentz field (4m/3)2V p (we are considering long trans-
verse polarization waves in the lattice). The dipole-
dipole interaction energy per ion pair is then

Also, note that A is related to the compressibility
according to the Born-Mayer theory and given by
680/IC.

V,.= 2k»d+.'+-', k d ', - (V.S)

where k+ and k are those spring constants given in
Table IV.

Kinetic Energy

We neglect the kinetic energy of the electrons, that
is to say, the kinetic energy of the shells, This assump-
tion is valid so long as we only consider applied fields
with frequencies well below the ultraviolet dispersion
region of the crystal. In that frequency region the
phenomena are such that the spring model would be
inadequate in any case. Thus we write the kinetic
energy per ion pair

7'= ',M+x„'+-,'Mm '-, - (V.9)

where M+ and M are the ion masses.
The Lagrangian (V.1) per ion pair, using (V.5), (V.6),

(V.8), and (V.9), is

L= ,'M+x+'+ ,'M-m '+pE -„+,'Cp'-
—-', Ax' —-', k+d+' —-', k d '. (V.10)

Written explicitly in terms of the generalized coordi-
nates, (V.10) becomes

I.= —,
' Mx+'»+', Mm '-

+Pe'(x+ x) Pd= P—»d+ jE—„
+2CL~'(*+ * ) P d —P-+d—+j2--—
——,'A(x++d» —x —d )'

,'k»d»' ,'k d ', (—V—.11)——
where terms containing 8 „and C have been simplihed
using the definitions:

(e+D)=e', —
n e+D=P, —
n»e D=P+. — —

(V.12)

We now consider Lagrange's equations of motion,

~ t~LI BL
=0

at Egg;) gg;

Multiply the x and x+ equations, respectively, by M+
and M and subtract. This yields the equation

Md'X/dt2=e'E „+Ce'~X Ce'(P d +P d+)—
—AX—A (d» —d ), (V.13)

where
M=M»M (M»+M ) ', (V.14)

Self-Energies of the Ions

According to the spring model, the self-energy of per
ion pair is
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and
X=x+—x . (V.15)

This is merely a conversion to coordinates expressing
the relative motion of the positive and negative ions.
The motion of the center of mass is not of interest here.

Assuming that E „(t)=E „e'"', X(t)=Xe' ', and
d+(t) =dze'"', then Eq. (V.13) becomes Eq. (V.16).
This equation with the d+ and d Lagrange equations of
motion give the three equations

(—Mcu' —Ce"+A)X+ (Ce'P —A) d

+(Ce'P~+A)d+=e'E ... (V.16)

(e„+2)' 4m' '1+A(X+tc/e')
6p—6 = ——8

3 ) Mcus' 1+AX

—=4~ V(e*)'(e„+2)'/9Mcuo' (V.29)

With these we can construct generalizations of the two
Szigeti relations and the Clausius-Mossotti, Lorenz-
Lorentz equations.

The generalized erst Szigeti relation is

Mcuo'(co+2)/(e +2)=A (1+AX) '—=6Re/E*. (V.28)

The generalized second Szigeti relation is

According to (V.28) and (V.29), we have
+(CP P++A)d+=PM „, (V.17)

—(Ce'P +A)X+(CP P +A)d
+ (CP+' k~ A)d+—=P~—E .„(V.18)

*/E= 1+A'X, (V.30)

e%= (e'/e)L1+ (Atc/e') (1+AX) 'j. (V.31)

which must be solved for x, d+, and d .
It is useful to dehne the following quantities:

X
—= 1/k~+ 1/k,

t =P+/k+ P /k--
v=P~'/k++P '/k-

Then we have, by a straightforward calculation,

A is defined in Eq. (V.7), X and tc are given by Eqs.
(V.19), and e' is defined in (V.12).

All of the parameters that occur in the expressions
(V.30) and (V.31) have been estimated so that estimates

(V 19) of e* and E*can be ruad. e on the basis of the present
model.

The generalized Cl ausius-Mossotti and Lorenz-
Lorentz relations are

v+A (Xv —tc')3
X =—C

47r (1+AX) (1—Cv)+ACtc'

(A —Ce")—A C(Xe"+2tce'+X)
~coo2=

(1+AX)(1—Cv)+ACtc'

(V.26)

(V.27)

8X/k~kM „=Ae'X+e'+Ate,

Ad /E .,=Mcu'fk, P +A(P++P )7
+Ak (e' —P ), (V.21)

hd+/E, =3IAu'$k P++A(P++P )]—Ak (e'+P+), (V.22)

where 6, the determinant of the coeKcients of (V.16),
(V.17), and (V.18), is given by

6/ku. k = [(A Ce") A—C(X'—+2e'tc+ v) 5
—Mcu'L(1+AX) (1—Cv)+ACv'j. (V.23)

The polarization per unit volume, I'=&V(e'X pd-
—p+d+), can be written in terms of these quantities.
Further, we can write an expression for the dielectric
susceptibility which is defined by the equation P=pE „.
Comparing the resulting expression for g with the infra-
red dispersion relation

x= Lxe—x„(cu/cue)'jL1 —(cu/cuo)'$-', (V.24)

we can identify the following expressions:

3 e"+A (Xe"+2tce'+ v)
Xo———C (V.25)

4m (A —Ce")—AC(Xe"+2tce'+ v)

(ee—1)(co+2) ' =-'m;7 (e"/A+Re" +2tce'+ v), (V.32)

(e„—1)(e„+2) '=43nELv —Atc'/(1+AX) j. (V.33)

In Table IV are given va, lues of e*/e calculated using
both D/e and (D/e), c„,. For the assumptions which

yield the values of D/e given in the first column of Table
IV, the short-range interaction polarization mechanism
contributes somewhat more to the deviation of e*/e
from unity than the exchange charge polarization
mechanism. The slight difference in the relative
importance of the mechanisms is reversed for the case in
which (D/e), „c„,is used. .

The predicted values of e*/e are seen to be too high
for the most part, though they follow in general, with
less extreme changes, the trends of the observed values
of e%. The values omitted from the observed e*/e
column are missing because the reststrahlung fre-
quencies for these salts are apparently unknown. It is
regrettable that coo is not known for RbF since for this salt
the model predicts e*/e) 1. The crudeness of the many
approximations makes the rather poor numerical agree-
ment of the calculated and observed e*/e not surprising.
However, it seems very convincing that the mechanisms
discussed in Sec. IV, the short-range interaction
polarization and the exchange charge polarization, are
responsible for at least part of the deviation of e*/e from
unity.

An idea of how much improvement in the value of
e*/e could be expected from assuming c7,„,i, to be nearer
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the positive ion than supposed in the present calculation
is furnished by (e*/e),„t„.. These values for e*/e are
calculated on the assumption that the exchange charge is
at the positive-ion core, certainly an upper bound on the
displacement of the position of the exchange charge
toward the positive ion. It is seen that these extreme
values are rather close to the observed values except in
the cases of very low e%:NaCl, NaBr, NaI, KBr, KI.
Of course, this is not the only manner in which D
might be altered; for instance, the values used for p may
be in error.

The calculations of e*/e and E*/E have been carried
out with an entirely diGerent ion model than the
spring model described above. In this alternative model,
the ion is again regarded as a shell and core though in
this case the shell is Axed with respect to the core. The
electron density on the shell in the presence of a time-

varying electric field is taken to be proportional to
(1+0.cos8) when the field is applied in the 8=0 direc-
tion. 0. is calculated to first order in the electric 6eld.
The restoring force in this case is the Coulomb inter-
action of the charges on the shell. In this "tidal model"
the undetermined parameters are the radius of the shell
and the number of electrons on it. These are determined
from the experimental data for the rare gas atoms and
the Pauling polarizabilities in the same manner that
k and e were determined for the spring model. All of the
features and mechanisms that have been described for
the spring model can be given an interpretation in
terms of this tidal model, and on this basis values for
e% and E*/E can be ded'uced. The results for the two
ion models are in close agreement, the spring model
giving slightly smaller values for e*/e than the tidal
model. It is interesting that the two models which
diGer considerably in their details should give such
similar values for e*/e, and the fact that they do
suggests that the underlying physical arguments have
some validity.

Kith regard to the additivity property, we note from
Table IV that Ap'/Pi(1+AX)j 10 4 in cgs units.
Hence the Lorenz-Lorentz equation can be written to a
good approximation as

(e„—1)(e„+2)=-34mXi =-', vrEt (P '/k )+(P+,'/&+) j.
Thus, although the generalized Lorenz-Lorentz equa-
tion (V.33) does not strictly admit the assumption of
the additivity property for e„, it does so approximately.

p '/k and p+'/k+ are crystal polarizabilities which

dier from the vacuum polarizabilities in the same way
as the TKS polarizabilities diGer from the Pauling
or free-ion polarizabilities. For one has

P '/k = (e e+D)'/k ((n e)'/k
=Pauling polarizability of —ion;

p+'/4= (e,em)2/u, ) (e,e)'/u,
=Pauling polarizability of + ion.

Quantitatively D is too small to account for the differ-
ence between the TKS and the Pauling polarizabilities.

Now consider the predictions of E~ given by the
model. Equation (V.30) predicts E*/E values slightly
greater than one, whereas the experimental values of
Table I differ from unity by as much as 34% and show
both positive and negative deviations. It is interesting
to notice that this difhculty is more or less unrelated to
the disagreement between experiment and the present
theory with regard to e*/e. For instance, if the exchange
charge polarization parameter D, the magnitude of
which is rather doubtful, where greater in magnitude it
would tend to improve the theoretical prediction of
e*/e, and it is likely that improvement in the theoretical
e*/e lies in this direction as we have seen in the calcula-
tion of (e*/e), &„,.E*/E, however, does not depend on
D at all.

Since the first Szigeti relation is quite insensitive to
the polarization mechanisms introduced in our model,
as evidenced by the small deviations from unity
predicted by (V.30), it seems likely that an explanation
of the deviations of E* from E is more to be sought in
the theory relating A with the elastic constants than in
the dielectric theory.

A is related to the parameters of the Born-Mayer
potential, and these parameters have been determined
on the assumption that only the nearest neighbor
repulsive interactions and the Coulomb interactions of
point monopoles are present in the crystal. The failure
of the Cauchy relations even for alkali halides indicates
that this assumption is in error. It is clear that the
Born-Mayer potential derived in the absence of other
interactions than these will not necessarily be an
accurate representation of the nearest neighbor inter-
actions. The Born-Mayer parameters will then give an
erroneous value for A which is related only to the
nearest neighbor interactions. Among the neglected
interactions are clearly the next nearest neighbor
interactions. Also, using the picture furnished by the
model of the crystal containing exchange charges we
see that in this model the interactions of these small
charges should be included. When the crystal is strained
these exchange charges move and change in magnitude.
The interaction of ions A and 8, say, and their associ-
ated exchange charges will depend on the magnitude
and positions of these associated exchange charges. These
magnitudes and positions are determined by the positions
of the neighbors nearest to A and B.Thus the interaction
of A and 8 depends on the configuration of ions other
than A and 8 and hence the presence of the exchange
charges gives a "many-body" character to the interaction
of the ions in the crystal. This probably corresponds to
Lowdin's "S-energy" contributions in the theory of the
cohesive energy and elastic constants of the alkali halides.
The "S-energy" or "many-body" contribution to c» and

c44 is as great as 30% of the electrostatic contribution
according to Lowdin. The many-body effects are there-
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fore not negligible, and the values of A used here are
somewhat in error.

Instead of using the static lattice bulk moduli and
lattice constants to evaluate the Born-Mayer potential
parameters, as would be correct, the room temperature
values of E and Ro were used. It is estimated that the
static lattice compressibility is about 10'%% lower than
the observed room temperature compressibility and
that the lattice constant of the static lattice is a fern

percent lower than the observed room temperature
value. ' This correction mill be neglected here, such a
refinement being unwarranted by other approximations
in the theory.

SUMMARY

The results of this study may be brieRy summarized
as follows: The mechanisms of polarization described
in Sec. IV must be responsible for at least part of the
deviations of e% from unity. These mechanisms also
give a qualitative explanation of the deviations of the
so-called crystal polarizabilities from the free-ion
polarizabilities. The explanation of the deviations of
E*/E from unity is to be sought in a more sophisticated
theory of the elastic constants than that used here.
The model of the short-range repulsive interaction in
terms of the exchange charge introduces many-body
forces into a Born-Mayer type model of the crystal.
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Study of Reactor-Irradiated e-A1&0,$
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Studies are presented here on reactor-irradiated alpha aluminum-oxide single crystals. These are a con-
tinuation of the use of long-wavelength neutron transmission for determining the concentration and types
of defects produced in solids by high-energy particle irradiation. The material exhibited crystallographic
stability to fast-neutron irradiation at temperatures &40'C, and the results indicate a total number of
defects approximately 40 times less than that predicted by current theories. Correlation with macroscopic
density changes is good. Examination of the wavelength dependence of the neutron scattering indicated
that the damage may be partly Al-0 vacancy pairs at room temperature. Annealing of the material pro-
duced no decrease in the concentration of defects from room temperature to 400'C, a steady decrease from
400'C to 1250'C, and nonuniform changes in neutron scattering and visually observable optical coloring
beyond 1250 C. Annealing at a temperature of 1800 C did not remove the coloring, although the density
returned to its pre-irradiation value.

I. INTRODUCTION

OME earlier experiments concerning the use of
neutron spectroscopy for the determination of

point defects in irradiated graphite' gave promising
results. The experiments to be described here are pri-
marily a continuation of this work. The technique is
simply a measurement of the scattering of long-wave-
length neutrons by crystallographic defects in a solid.
It is unique in its ability to give a direct measure of
the number of defects in a material without an undue
number of assumptions. As a result of the low neutron
intensity which is presently available for wavelengths
greater than 4 or 5 angstroms, only concentrations of
defects of 0.1% or greater are readily detectable. For
the same reason the experiment must be restricted to
materials which have a low capture cross section and a
high bound-atom coherent scattering cross section, and
which will retain large numbers of defects at tempera-

$ Work performed under the auspices of the U. S. Atomic
Energy Commission.

' Antal, Weiss, and Dienes, Phys. Rev. 99, 1081 (1955).

tures where irradiation and examination are possible.
It was expected that the strong, mostly ionic bonding
in cr-aluminum oxide (corundum) would lead to reten-
tion of defects at the temperatures available for this
irradiation (always less than 40'C). Also, the low
capture cross sections of the constituent nuclei made this
a favorable material. As explained in the next section,
complicating features of this material are its complex
crystal structure and its diatomic nature.

II. BASIC CONSIDERATIONS

A. Neutron Transmission

(1) Mortatomic materia/. If one consider—s the scat-
tering of slow neutrons by isolated, randomly arranged
point defects in a crystal lattice, for wavelengths
suKciently long that Bragg scattering is not possible,
the atomic fraction of such defects is simply' given by

=Op os.

Here, O-d, is the cross section per atom for scattering by


