
PHOTOELE CTROMAGNETI C AN 0 P HOTOCON DU CTI VE EF F E CTS 855

and Sah and Shockley" have indicated how r and Tp
can be obtained when there is more than one trap level
in the forbidden gap.

At surfaces where surface recombination is important,
one may put, for the components of the carrier current
densities perpendicular to that surface,

J„=—Js,——ests„= epso,

in analogy with (2); these boundary conditions define
the surface recombination velocities s and s„, which,
of course, may or may not be equal.

As a final application of the theory, consider the case
of the steady-state PEM current when the light is
absorbed in the bulk within a distance which is at
least comparable to carrier diGusion lengths but which
is still small compared to the thickness of the sample.
For this purpose, it is convenient to de6ne what might
be called the "effective ambipolar magnetic diffusion

length, "
Dr pEM(1+c)

1+/2+2+ gc (].+@2+2/$2)

With no magnetic field, J~~ reduces to the diffusion
length of the minority carrier in an extrinsic semi-
conductor. Also, for the case when light is strongly
absorbed at the surface of the material, the PEM cur-
rent. , as given by Eq. (4), can be written as

"C.T. Sah and W. Shockley, Phys. Rev. 109, 1105 (1958).

(i pEM= ( 1+— (eIpBLo
fs)

If light (assumed to be monochromatic, for simplicity)
is absorbed in the bulk, however, the term

eIrr e—xp (—uy)

must be added to each of the right-hand sides of the
recombination relations (2), representing the volume
generation of electron-hole pairs by the light. Here, n is
the optical absorption coefficient and y is the coordinate
in the direction perpendicular to the illuminated surface.
The PEM current is then found to be given by

1p nLn*
sp, M

——
~

1+- ~crt OLD' . (10)
b) 1+otLn*

When crLz*))1, (10) reduces to the expression (9), as it
should, since the physical meaning of O,JD*)&1 is that
the absorption of light takes place within a distance
much smaller than the effective diffusion length J~*,
i.e., the light is absorbed "at the surface. " In short,
(9) and (4) are a special case of (10).

The purpose here in exhibiting (10) is to show more
clearly how lifetimes enter in steady-state diffusion
processes, namely, by way of the effective diffusion
length Lo~. It is Lo* (evaluated at the appropriate
magnetic field) which determines the steady-state be-
havior of the PEM effect, the p-rt junction effect, and
other diffusion phenomena.
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The work of two previous papers is extended and a theory of pressure broadening is developed which treats
the perturbers quantum mechanically and allows for inelastic collisions, degeneracy, and overlapping lines.
The impact approximation is used. It consists in assuming that it takes, on the average, many collisions to
produce an appreciable disturbance in the wave function of the atom, and it results in an isolated line having
a Lorentz shape. Validity criteria are given. When the approximation is valid, it is allowable to replace the
exact, fluctuating interaction of the perturbers with the atom by a constant effective interaction. The eRee-
tive interaction is expressed in terms of the one-perturber quantum mechanical transition amplitudes on a,nd
near the energy shell and its close relationship to the scattering matrix is stressed. The calculation of the line
shape in terms of the effective interaction is the same as when the perturbers move on classical paths.
Results are written explicitly for isolated lines. If the interaction of the perturbers with the 6nal state can
be neglected, the shift and width are proportional to the real and imaginary part of the forward elastic
scattering amplitude, respectively. By the optical theorem, the width, can also be written in terms of the
total cross section. When the interaction in the Gnal state cannot be neglected, the shift and width are still
given in terms of the elastic scattering amplitudes, in a slightly more complicated fashion. Finally, rules
are given for taking into account rotational degeneracy of the radiating states.

i. INTRODUCTION
' 'N two previous papers, ' the theory of pressure
~ - broadening has been extended in two diferent

*This work-was supported at RAND by the U. S. Atomic
Energy Commission; at the Carnegie Institute of Technology, it
received partial support from the Once of Naval Research.

' M. Baranger, Phys. Rev. 111, 481 (1958), referred to as I.

directions. In I, it was shown how .the motion of-the
perturbers can be treated quantum mechanically, and
the width and shift of the line were expressed in terms
of the quantum-mechanical scattering amplitudes. But
M. Baranger, Phys. Rev. 111,494 (1958), referred to as II. Many
of the results of II have also been obtained by A. C. Kolb and
H. Grietn, Phys. Rev. 111, 514 (1958).
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the treatment was restricted to elastic collisions and
nondegenerate states of the atom. In II, on the other
hand, the perturbers followed classical paths but we
allowed inelastic collisions, degeneracy, and overlapping
lines. For a consistent theory of electron broadening,
it is necessary to consider together quantum-mechanical
perturbers, inelastic collisions, and overlapping lines;
hence a synthesis of the two papers is called for. This
is the purpose of the present work. The two previous
papers have used the impact approximation and the

present one will too. This consists essentially in saying
that, on the average, it takes many collisions to produce
an appreciable change in the wave functions of the

atom, and it results in an isolated line having a Lorentz
shape. Without this approximation, a program as
general as the one we are now undertaking would be
next to impossible to achieve. We shall carefully ex-

amine its validity conditions. It usually turns out to
be valid in problems of electron broadening.

The main result of II was that, when the impact
approximation is valid, it is allowable to replace the

exact, fluctuating interaction between the atom and

the perturbers by a constant eGective interaction X,
which is not Hermitian, however. The very same state-
ment will be seen to be true here. In II, 3'. was related
to the collision matrix 5 for a collision between a
classical perturber and a quantum-mechanical atom.
Here, on the other hand, GC will follow from a solution

of the fully quantum-mechanical scattering problem.
In particular, the diagonal elements of BC will be ex-

pressed in terms of the scattering amplitudes, in a
generalization of the expressions for the width and

shift given in I. Once this new quantum-mechanical K
has been found, the remainder of the line shape calcu-

lation is identical with that of II and we shall not need

to repeat it here. In particular, the simpli6cations due

to spherical symmetry and the treatment of overlapping
lines have already been given there. However, since

the results for isolated lines are especially simple and

important, we shall write them down explicitly in the

last section of this paper.
All the results of this paper are expressed in terms

of the quantum-mechanical transition amplitudes, on

or near the energy shell, for the scattering of one

perturber by the atom. The problem- of computing
these amplitudes is completely outside the scope of
pressure broadening and we shall make no attempt to
solve it. The reader is referred to the abundant litera-

ture on the subject. Let us say only that the problem

can be quite dificult, and that no general method of
solution exists, but in each case one must 6nd the most
suitable approximation method. Specific examples of
electron broadening problems will be considered in

future publications.

F(ie)=x '(ft
~0

e'"'C (s)ds

C (s) =TrLdT*(s)dT(s) p$,

where T(s) is the Schrodinger evolution operator, '

T (s) —e iHs—

(3)

(4)

p is the Boltzmann-Gibbs density matrix (normalized
to unit trace),

g—l~—PH (3)

Z is the partition function, H is the Hamiltonian
operator for the whole system, which is the sum of the
atomic Hamiltonian H~, the kinetic energies of the 3l
perturbers P, K;, and the 1V interactions,

&=&~+Z~ K~+Zi I ~ (6)

and the other notations are as in II. We assume that
the perturbers move completely independently, hence
there is no term in the Hamiltonian to represent the
interactions between the various perturbers. Equation
(3) differs from (II, 10) in that it does not include the
average over all possible types of motion of the per-
turbers, since this motion is already fully taken into
account by the Hamiltonian (6). In view of the fact
that the Hamiltonian is time-independent, it is possible
to give a derivation of (3) simpler than that of II and
based on the standard expression Lfor instance (I, 4)j
for the power emitted by a stationary quantum state,
but this is left to the reader. 4

As before, we shall consider first the case where only
the initial state of the atom is affected by its interaction
with the perturbers, which we call the one-state case.
Then, we replace T*(s) in (3) by e'~"'exp(i+ K;s), .

but we can forget about the factor e'~&' is we decide to
take the energy of the final state of the atom as the
origin of energies, which we shall do. Using definition
(II, 12) of the operator D, and noting that exp(i P K,s)
commutes with d, we can write

C (s) =TrLD exp(i P K;s)T(s)pj.

This is to be compared with Eq. (II, 13). The trace
there involved only the atomic coordinates, while here
it involves both the atom and the perturbers. On the
other hand, we need no average sign in the present
formula. Our aim will be to perform that part of the

'Throughout this paper, the asterisk means Hermitian con-
jugate. For an ordinary number, this is the same as the complex
conjugate.

3We take k=1.
See, for instance, P. W. Anderson, J. Phys. Soc. Japan 9, 316

(1954), Appendix I.

2. THE ONE-STATE CASE

It was shown in Sec. 2 of II that the intensity
spectrum of the light, P(ce), is given by'

P (i0)= (4a)4'+/3el) F(co),



GENERAL I M PACT THEORY OF PRESSURE 8 ROA DEN I NG 857

trace which involves the perturber coordinates. Once
this is done, it will be found that the remaining trace
over the atomic coordinates is identical with the one
occurring in II and can be treated by the same methods.
We shall first focus our attention on the operator
exp(i+ K,s)T(s). It is actually more convenient to
consider the operator exp(i(H~+P K;)s]T(s) and to
multiply it afterwards by e 'H"'. Later, we shall con-
sider the problem of including the density matrix.
Since D involves only the atomic coordinates, it never
enters into our considerations. That part of the argu-
ment where D enters is the same as in II.

Consider the relation

"( s)" t" t"
Z dti . dt Q V (ti) Q U/(t„)

mt op 0

oo

=Z Z dti
m~ i] 1 im 1 m!

p8

preciable contribution to the matrix element, the
collisions are disentangled, we may write the operator
itself in disentangled form. We shall now proceed to
translate these ideas into analytical language.

The exponential on the right-hand side of (8) may
be expanded in a power series as follows

exp[i(H~+g K;)s] expL s(H—~++ K++ V;)s]
8

=&exp i —~ P V (t)dt, (8)
0

with the definition

V ~ ~$4 = et(H++K7) ~ V e &(H&+K7) &

This is the analog of (II, 16) and can be proved by tak-
ing the derivatives of both sides with respect to s. The
operator X is the time-ordering operator, as in II. The
right-hand side of (8) can be rewritten in the form of a
product of E factors, each of which refers to a particular
perturber, as follows

7 exp i —Vi'(t)dt exp i —Vsr'(t)Ct . (10)
J p Jp

But this product is very hard to evaluate because each
factor is an operator and the operation produces a
very complicated entanglement' of these operators.
However, the impact approximation is precisely the
case in which they disentangle themselves naturally,
just as in II. One can define a "collision time" 7, which

corresponds roughly to the duration of an average
collision, and the impact approximation is the case in
which the time interval between strong collisions is
much larger than v.. Hence the strong collisions are
completely disentangled. As in II, entanglement does
not arise for the weak collisions, because they can be
treated by perturbation theory. The reader may be
puzzled by the fact that we seem to have reverted to a
classical language for describing the motion of the
perturbers, while we should be talking about operators
and wave functions. But the transition from the classical
to the quantum-mechanical language may be effected

by using Feynman's interpretation of quantum me-

chanics, ' which says that the matrix element of an
operator such as (8) may be looked upon as a sum of
contributions from every classically describable path.
If, for the great majority of paths that make an ap-

s R. P. Feynman, Phys. Rev. 84, 108 (1951).' R. P. Feynman, Revs. Modern Phys. 20, 367 (1948); Phys.
Rev. 76, 749 (1949).

Each operator V (t) is also a function of the coordinates
x; of the perturber (as well as of the atomic coordinates),
although they are not explicitly written. When a matrix
element is taken, an integral over these coordinates is
performed. Now, we can represent each term in the
expansion (11) by a "Feynman diagram" in space-
time. For each perturber i, we draw a trajectory ob-
tained by joining those space™time points that enter
as arguments of V; in (11).We say that those are the
points where the perturber interacts with the atom and
that in between it propagates freely. A matrix element
of (11) or (8) appears then as a sum of contributions
from every possible Feynman diagram. It turns out
that a diagram gives an appreciable contribution only
if all interactions of a given perturber occur within a
short enough time and we define the collision time as an
order of magnitude for this time. Then it is clear that,
if the perturber density is sufFiciently low (the precise
validity conditions will be given later), most of the
important Feynman diagrams will have the collisions
occurring one after another, in a completely dis-
entangled manner.

Our next task must be, then, to estimate the collision
time. For this, we consider a matrix element of an
expression like (8), but for a single perturber. This is
also a matrix element of one of the factors in (10).
Consider first a diagonal matrix element (we omit the
subscript j)

(ak
~

e'&~"+xi'e '&rr"+x+ '!ak),

where
~
a) is an eigenstate of Hg and ~k) an eigenstate

of K, namely a plane wave of momentum k. We trans-
form this using the integral equation

e—i (HA+K+V) 8 —e
—i (Kg+K) 8

tea 8

rtt e—i(ir&+&) i~—o Ve-i(&A+&+vi & (13)
"p

which can be proved by noting that it is true for s=o
and that the derivatives of both sides with respect to
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s are equal. Then, (12) is equal to

S

'U i—
~

dh e' t~+'&'(akl Ve 't~"+ +v 'lak), (14)
0

where E is the energy of the atomic level, e equals
k'/2nz, the kinetic energy of the perturber, and 'U is the
volume of the container. We normalize states of the per-
turber per unit volume. We can give an argument iden-
tical to that of Sec. 5 of I to approximate (14) for large s.
We say that e '&~&+x+v"

I uk) is the result of propagating
the eigenstate Iak) of the unperturbed Hamiltonian
II~+E with the true Hamiltonian II~+E+V for a
time t. If 1 is large enough, e "~"+x+v&'I ak) looks just
like e "~'+'&'I P &,+), at least for not too large distances.
By If &,+), we mean an eigenstate of II&+E+V, i.e., a
scattering state, consisting of a plane wave

I
k) ingoing

upon the atom in. state Ia) and of various outgoing
scattered waves, elastic and inelastic. Since the potential
V occurs in the matrix element in (14), the behavior of
e "~"+x+"&'Idk) at large distances does not matter.
Hence we can expect that, if s is large enough, (14) can
be approximated by

v —is(ak
I
V lite. &,+), (15)

which involves only the forward elastic scattering
amplitude. Thus, if s is large enough, the matrix element
(12) is simply related to the scattering matrix, and it is
eminently reasonable to define the collision time, ' as we
did in I, as that value of s for which (15) begins to be a
good approximation to (12). In order to estimate this
time, we replace luk) in (14) by'

I
ak) =

I f,&,+)—(E,+e IIg E V+i») —'V
I
ak——), —(16)

and (14) becomes equal to (15) plus the following
col 1ection

i t di etta~+~&~(Gk
I

V& i(Hz+K+v& &—
X (E,+» II~ E V+iri) '—Vl ak—&. (—1"I)

After one introduces a set of intermediate states Psk
eigenstates of Hg+E+ V,' and one performs the
integral over t, the correction becomes

d I(l

IQ» I vl~k) I'
8m'

~i(Xr+e—Ey—e') s

X (18)
(E~+ e Es e ) (E~+e Es e +2ri)

For another, equivalent definition of the collision time, directly
in terms oi the time intervals occurring in (11), see M. Baranger,
The RAND Corporation Report No. RM-2118-AEC (unpub-
lished), Sec. (V,3).

B.A. LippInann and J. Schwinger, Phys. Rev. 79, 469 (1950);
M. Gell-Mann and M. L. Goldherger, Phys. Rev. 91, 398 (1933).

9 The boundary condition at inanity need not be specified.
Bound states should also be included in the summation if they
e'xist.

As in I, we require that the correction be much
smaller than the real part of is(ak

I
V lf, &,+). The argu-

ment follows that of Sec. 8 of I with only minor modi6-
cations. We shall not reproduce it here since it is rather
lengthy. The result is that the collision time 7 is related
to the "collision volume" U by

U is given by

t
d'k' &0» I Vl~k& —9b' I Vl&k& '

U=P
8+ E,+e Es e'— — (20)

where k" is a vector whose direction is that of h', but
whose length is such that

E,+e —Es—e"=0.
0- is the total cross section

(21)

(ak I
e'&~"+ 'e "~"+x+"'

I
bk'). (23)

One may use integral equation (13) again, and write it
in the form.

gS

(akI bk') i ~ dt e'&~~—+'&'(ak
I
Ue 't~"+x+v&'I bk'). (24)

o.= (2 r/7)tQts )I (d'k'/8m )

X l(y». I VI ~k)13(E.+ e—E,—.').

In addition to this, however, the collision time can in
no case be smaller than the reciprocal of the energy of
the perturbers. This is condition (I, '/2), but here we
must include the energy of the inelastically scattered
perturbers as well as the elastic ones. This condition is
none else but the uncertainty principle.

It is not sufhcient to consider a diagonal element of
(8) as in (12). We are also going to need some oR-
diagonal elements. However, we must keep in mind
that the interval between (strong) collisions is, on the
average, much larger than the collision time, hence
energy is almost conserved in the individual collisions
and, according to the uncertainty principle, the only
oR-diagonal elements that we shall need are those for
which the energy difference between the two states is
much smaller than v='. One can also see this in another
way since, as in II, one of the validity conditions for
the approximation is that the width of the lines be
much smaller than 7- '. It was shown in Sec. 5 of II
that we need oR-diagonal elements of the eRective
interaction 3C only when some lines overlap. For an
isolated line, we may treat K by 6rst-order perturbation
theory and therefore require only the diagonal element.
But overlap will not happen unless the two unperturbed
energies diRer by much less than 7=', hence those are
the only oR-diagonal elements we need. Consider then,
instead of (12), the off-diagonal element
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Then, one may reason as before that e '(H"+K+v) t
~

bk')
is equivalent to e '( '+") '

~
fb), +) for large t,, and that for

large s one may replace (24) by

(«)bk') —i ~ dt et(H~+')t((tk) V~gb), .+)e "Hb+")t . (25)

The argument is not as clear cut as before, because the
integrand is an oscillatory function and the result could
possibly be very small. However, it is correct for the
only matrix elements we need to consider, where the
energy difference is much smaller than r '. In order to
see this, we use Eq. (16) again (applied to

~

bk')) and
we note that (25) would be exactly correct if we added
to («

~
V

~ Pb), ) the quantity

(. d u" («[ V)y„,.)(y„„~V[fk')

Sar' Eb+ e' E, e—"+it—)
X8((Kb+2 E~ e"—) t —(26)

We recall that the collision time can also be defined as
the relative rate of variation with energy of a matrix
element such as («~ V ~f,k") as k" is varied away from
the energy shell (see Sec. 8 of I). Therefore, if 3 is much
larger than both collision times, most of the variation
of the integrand in (26) is due to the exponential and
the denominator, and one may as a erst approximation
consider the matrix elements as constant while one
integrates over the length of k". But then the integral
vanishes, because of the relation, valid for t&0,

z ~ d) ei (II/+K) gge i (Irg+x) g

~0

As we expected, this is very closely related to the
scattering matrix. With the same normalization, the
scattering matrix is'

5 ='D —2n-il) (E—E')R

~+oo

g] ex(H~+K) tge—i(II~+K) t)',

(32)

shell. 06' the energy shell, they differ. But their rate of
variation as one goes away from the energy shell is
given by the collision time, and we have said that we
were not interested in going off the energy shell as far
as v '. Hence, for our purpose, the two matrices are
practically equal and we shall designate them by a
common notation, E,

(«IEI&k')=(«I VIA")=Q" I
Vl&k') (30)

This slight uncertainty should not be considered as a
defect of the theory. It is part of the impact approxi-
mation and the error thus made is of the same order of
magnitude as other corrections to the impact approxi-
mation. For nonoverlapping lines, we need only the
diagonal elements and this feature does not arise.

It follows from the validity conditions which we
shall give shortly that the interesting values of s are
indeed much larger than the collision time. Then, we
have shown that each factor in the product (10) may
be replaced by the operator

(0)+ig) 'e'"td&u= 0 (27)

Thus, the corrective term (26) is certainly very small.
Since, in addition, the period of oscillation of the
integrand in (25) is very large compared to the col-
lision time, (25) is a goocl approximation to (23) when
s is much larger than r. But if, instead of using integral
equation (13) when evaluating (23), we had used
another equivalent equation, namely

e—i (Hg+K+v) 8 e—i (H~+E) s

p8

dI ~ t(Hg+K+v) (e—t) V~
—t (Hg+K) t (2g)—~ ~

we couM have shown, by a similar chain of arguments,
that a good approximation to (23) is

When the impact approximation is valid and the
collisions are disentangled, the operator (10) itself is a
time-ordered product of E factors like (31). We shall
now use this to compute the line shape, given by (7).
For p we substitute the unperturbed density matrix,
p i exp[ P(H&+P &,)—$. A discussion of this will
follow presently. Since Z ' is independent of s, it affects
only the absolute intensity in the spectrum, not the
shape, and we shall not concern ourselves with it. Then
the operator exp(i+ Z,s)T(s)p which occurs in (7) is
equal to the operator (8) or (10) multiplied by t: 'H&t

on the left and by expL —P(Hz+Q lt;)] on the right.
We shall first multiply each factor (31) by e t'K, after
which we can take the trace over the perturber coordi-
nates, which we denote by Tr~. Then we have S factors
of the following kind:

(«)bk') —i dt et(Ho+')'(tlat ),
~
V~bk')e "Hb+"", (29)

Jo

where (f,), ~
is a scattering wave function with ingoing

scattered waves. This looks diferent from (25).
But it is well known' that the two matrix elements
(«) V ( pb) +) and Q'~t, ( V (

bk') are equal on the energy

cQ Tr ~ PK i ~ df Tr st (Hg+K) tgs t(HA+K) tg PK (33)
. f'

EA~ Tr„e—t ~=Tr„e—&~8., (34)

We shall divide through by 'U, in order to return to the
correct normalization. We dehne an average R, EA„,
involving only the atomic coordinates, by the relation
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ol

We drop from (33) the factor Tr„e t'x, which may be
considered as canceling part of Z '. Thus, each of our
X factors is

8

ALexP in—t RA„'(t)dt, (3/)

where e is the perturber density, N =Xi0 We d.efine a
non-Hermitian operator 3'. by

K—sEAy ~ (38)

When (37) is multiplied to the left by e '»', we obtain
(by showing the identity of the derivatives)

expL —i(H~+X)sj. (39)

We now have C(s) written in terms of operators
involving only the atom,

4 (s) =Tr~(D expL —i(H~+K)s)pg}, (40)

and this expression is identical with the classical impact
result, as given by (II, 13) and (II, 30). From now on,
we can follow the method of II to calculate the line
shape. The results for an isolated line will be given in
Sec. 4.

We are now ready to state some precise validity
conditions. In order that expression (10)be disentangled
for most Feynman diagrams, it is necessary that the
average collision be weak and that the time interval
between strong collisions be much larger than r. Thus
it takes, on the average, a time much larger than 7.

before the atom feels appreciably disturbed. Since the
average effect of the collisions upon the atom can be
measured by the width m and the shift d of the levels,
we require

my«1,

dv«1.

(41a)

(41b)

Those are the same conditions we had in II. By virtue
of the relation ('72c) between the width and the cross
section, condition (41a) can also be written

U«e ', (42)

which is the same condition we had in I. But there was
nothing in I analogous to condition (41b). This was due
to the particularly simple type of additivity of the
forces that was assumed there. In general, it is true that
the impact approximation is valid and the line has a
Lorentz shape whenever (41a) is valid. But, unless

(41b) is valid too, BC is not given by (38) and (30), but

p8 (g8

dt e'»'RA„e-'ir&'=1 —i'U '
~' dt RA„'(t). (36)

J0 0

The ordered product of X factors equal to (36) is

things are more complicated. Since the case where
(41a) is valid while (41b) is not rarely occurs in prac-
tice, we shall not go into this question here. We recall
that 7. can never be smaller than t. ', e being the energy
of one of the perturbers, including the inelastically
scattered ones. Hence we have the following conditions
as consequences of (41)

d«e.

(43a)

(43b)

Finally, we shall justify our use of the free
density matrix, expt —P(H&+g E;)j, instead of
expL —P(H~+P E+P V;)j. This follows from the
fact that strong collisions occur rarely and that the
perturbers are free most of the time. Since the time
between interactions is so large that we can make the
scattering approximation, i.e., we stay on the energy
shell or almost on the energy shell, the density matrix
is the same after the interaction as before and we do
not run into the trouble of a time-dependent density
matrix as happens sometimes in nonimpact cases. We
must keep in mind that the energy of the perturbers is
of order P ' and that the collision time cannot be smaller
than e ', thus P is a lower limit for the collision time. It
follows from (41a) that the variation of P~ over the
width of a line is always very small and that the
problem of correcting the shape of a line for the Boltz-
mann factor should never arise whee the impact approxi
ncaa'oe is valid. This result is a consequence of quantum
mechanics and does not come out of the classical path
theory. One may put it in another way: if P~ varies
appreciably over the width of a line, it is an indication
that the impact approximation breaks down through
quantum-mechanical effects."

The above argument can also be stated analytically.
If we want to include the correct density matrix, we
must consider the operator exp(i+ E;s)T(s)p in (7)'
all at once. For this, we replace s by s iP in (8—) and
therefore also in (10) and (11).One convinces oneself
easily, using the fact P(r, that equations such as (15)
and (25) are still true when s is much larger than r,
provided one replaces s in those equations by s—iP.
Therefore we end up with (37), but with s replaced by
s—iP. However, since the validity conditions tell us
that PK is negligible, everything turns out as though
we had used the unperturbed density matrix.

' A similar conclusion was reached by P. W. Anderson, Phys.
Rev. 76, 471 (1949).

3. THE TWO-STATE CASE

Ke shall now consider the case where both the initial
and 6nal states of the atomic line interact with the
perturbers. Again, we start from (3) and our object is

to perform the trace over the perturber coordinates
first; this reduces C (s) to the classical expression of II.
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We shall rewrite (3) in the form

C (s) =TrldT*(s) exp (—i P K,s)d exp (i g K;s)T (s)p].
(44)

As in Sec. 6 of II, we shall "double" the atom, and
designate by subscripts i and f operators that act on
the initial and final components of a line, respectively.
As long as we are only summing over the perturber
coordinates, we do not need to bother with the dipole
operators. Thus, the expression which we wish to
compute is

Tr~LTf*(s) exp( —i Q K;s)]l exp(i Q K;s)T;(s)p;]. (45)

This expression contains two complete sets of atomic
coordinates, but only one kind of perturber coordinates.
Any operator having i as a subscript and independent
of the perturber coordinates commutes with any
operator having subscript f and independent of the
perturber coordinates. But those operators that act
on the perturbers have to be kept in the right order.
For the density matrix p; we shall use again the product
of exp( —P P;K) by a purely atomic factor, and we
shall assume as we did in II that this atomic factor
does not vary appreciably over the width of a line, or
of a group of overlapping lines, and hence can be con-
sidered as constant.

The method will consist in using the work of Sec. 2
to evaluate each of the two factors in (45). Again, the
impact approximation is the case where the strong
collisions are disentangled. The weak collisions may be
shown to lead to no entanglement, by an argument
similar to that of Sec. 4 of II. We may distinguish two
collision times, one for the initial states and one for
the final states. The larger of the two will be called g
and will be referred to, simply, as the collision time.
The impact approximation is the case where the col-
lisions take, on the average, a time much longer than
7 to disturb the line appreciably. Hence the important
values for s are much larger than r and the validity
conditions are still (41), m and d being the line width
and shift, respectively.

An important practical problem is the electron
broadening of a line emitted by an ion. In this case,
the interaction of an electron with both the initial state
and the final state of the ion includes the Coulomb
potential. It was pointed out in Sec. 10 of I that it is
impossible, then, to define a collision time, because the
potential is too long-ranged. But it is only the diGerence
between the interactions in the initial and final states
that is effective in broadening the line and therefore it
should be possible for the impact approximation to be
valid in this case too. Indeed, such was the case for the
simplified theory of I. In order to include such a pos-
sibility in the present theory, we shall assume that the
operator E may contain a potential, independent of
the internal coordinates of the atom and common to
both initial and final states. This potential takes care

of that part of the elastic scattering which is common
to both states. If the elastic scattering is not particularly
important, then this potential is not necessary. But it
insures that the results of I are obtained when there is
only elastic scattering. For reasons of economy of
notations, we shall not write this potential explicitly,
but shall just imagine that it has been added to E and
subtracted from V. The eigenfunctions of E will not be
plane waves any more, but scattering functions with
outgoing or ingoing scattered waves, which we shall
designate by P),+ or g), . The collision time and the
collision volume are then defined (very roughly) as the
time during which, or the volume inside which, the wave
function differs appreciably from an eigenfunction of
E, instead of a plane wave, and they will always be
finite. The results of Sec. 2 which we shall need will
have to be slightly modified to allow for this extra
potential. For instance, we must replace the plane waves
by the functions tf)), in the definitions (20) and (22) of
U and a.

Consider a matrix element of the second factor in
the trace (45), forgetting about the density matrix
which is already taken care of,

(pi, —g), p)*g
I
exp—(i Q K;s)T,(s) I

X@) i+&) 2+ p)*~+&. (46)

We are taking the matrix element only with respect to
the perturber coordinates. The above expression is still
an operator as far as the atomic coordinates are con-
cerned. We shall use many matrix elements of that type
in what follows. When the impact approximation is
valid, the work of Sec. 2 (slightly modified) tells us
that (46) is equal to e '~"" times an ordered product
of Ã disentangled factors, each of which is

1K/ 1K

p8
J~ eH&a'+e')&Q, , Ig, ly +&& ~&aa~+e)t (47)

where the operator R is defined, in the vicinity of the
energy shell only, by the relation

(b4, -i~la, +&=(be, -li'I&.,+&=Q»-I ~l~,+&. (4g)

The last two members of this equation are equal on the
energy shell. Similarly, a matrix element of the first
factor in (45),

8»' e»'I Ts*(s) exp( —i Z K')
I

X~~ — "~~ -) (49)

is equal to an anti-time-ordered product (we are taking
the Hermitian conjugate !) of 1V disentangled factors,
times g'+~f' Each factor is

/~+II' &

pS
g~& &~itsy)+s)&'Q, &+I~slyz, —

&~
—~i&ag+ ') '

(50)
aJ 0
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We must now multiply (46) and (49) together and
integrate over all k"s. Since in (45) all operators of
(49) act to the left of all operators of (46), it would

seem that the operators are not properly ordered any
more and that we shall have to disentangle them
further. But this is not the case because, as we are
going to show, the product of (47) and (50) gives an
appreciable contribution only when the two times, t
and t, are within a collision time of each other. Since
the interval between (strong) collisions is on the average
much longer than the collision time, the collisions are
indeed disentangled from each other, i.e., we get a
vanishing result unless the ordering of the collisions is
the same in both (46) and (49). Thus, the perturbers
must arrive zn the same order and at approximately the

same times for both initial and final states, and we shall
be able to dea/ with the perturbers one at a time, each of
them a+ecting the line zn its turrz without entanglement.

To prove the assertion made about the times t and
t', we multiply (47) and (50) together and integrate
over k', obtaining (note that Q &,

+
I
p&,+&='U)

p8

dt e~IIa;t(y„+
I
R ly„+&e iH~;t—

8

+z dt eiH»t'Q, ~+I Rt*l(b~+&e & Af '

~o

grating over t and (t t')—as in (52), we had chosen to
integrate over t' and (t' —t), we would have obtained in
like manner

gS
2~ ~~ dt' e'&"~'+~»&" "(d'k'/8~')Q, +IR,*ly;-&

0

xb(E' E')(g&,' I R~
I

&b&+&e '&~»+~'»&' (54)

with a 5 function of the energy difference of the two
states between which R; is taken. Fortunately, the two
expressions are almost equal, because we are only
interested in matrix elements between two lines (i.e.,
doubled states) whose frequencies differ by much less
than 7 '. Let us write out the atomic states explicitly.
We have the two matrices (np&,+ I

Rt*l Pp&, ) and
&bg&, IR;la4&,+&, and in one case we have 8(E Ee-
+e—e'), while in the other we have b(E, Ez+e—e'). —
The frequencies of the two lines are E —8 and E~—Ep.
If those are almost equal, E —E& and E —Ep are also
almost equal, q.e.d.

We have thus shown that the product of (47) and
(50), integrated over k', is equal to

"U —z dt e&(&A~+&») &Q(k) e &&Ir»+I—r») t

with

Q(k) =&&~+IR'I &~+&—(&~+ IRt*
I 0~+&

pS 8

+ ' dt dt' (d'k'/8~')e'&~»+'&'Q»+(R&*I y&. )J,
Xe &w»+~'&&'+((&—a&+I'&&&(t&,

I
R, lyz+&e

—&(Era&+~)& (5])

+2ni, (d'.k'/8m') Q &,
+

I
Rt*l y&,

—
)

xb(E—E')«t. -lR, ly,+&. (56)

This begins to resemble closely a product of S matrices.
Indeed, the two S matrices are' (here as above, E and
E' stand for the total energy, atom plus perturber)

&k Is, lk&=&q, ,-lq, +&

—2~zb(E,-E, )&q,.-lR, ly„+&, &57)

+2+zb(Ef Ef')&&~+IRtle' & (58)

In these equations, each term is still an operator acting
on the atomic coordinates. The first term on the right-
hand side is not the unit operator, but an 5 matrix of
its own, representing the scattering by E alone. The
product of the two S matrices is

t(d k'/8+)&kls, "lk'&& 'Is, lk)

=z —2m-ib(E,—E )Q&,+IR;ly&,+)

The fourth term can be rewritten in the form

Xe&(~» &»& &&y—,
I
R.

I &t +)e &&Hg&+e& t— (52)

We recall that the collision time gives the rate of
variation of the function R as one varies k' away from
the energy shell. If (t t') is much larger th—an r, the
exponentials involving (t—t ) oscillate many times, as
k' is varied, while R; and Rt do not change much, hence
the integral over k' is very small. Clearly, it would be
possible to construct a rigorous argument along the
lines of those of I. Since (t t ) is rest—ricted to a region
of order of magnitude r anyway, we can integrate over
it from —~ to +~, which gives 2zr times a b function,
and (52) becomes

+ 2zrib (Et Et') &&t»,
+

I
Rt*

I &t»,
+—)

+4&r'5 (E;+Et'—E —Et)

(d'k'/8~')Q'~+IRt' ly~ &

8

2~ t dt e'«~'+"»&' I (d'k'/8~')&y, +IR&*ly,.-)J,
Xb(Er Et')&O'

I
R' l 4 ~+&e '«"*+"—""' (53) xb(E-E')O'-IR;iy, +&

f\ 1(o

dt e&(&A~+&») &Q(k)e &(&r»+)r») & (59)where Ey and E~' are the total energies of the two states
between which R~~ is taken. But if, instead of inte-

='U —z

00

s g

dt d(t —t')
J

(d'k'/8zr')e'&~»+'&'

0 4—8

xe &«»+~&« ~'&(&t&~—+IR/*i/~, &e~(&Af+~')(& ~')—
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The analogy with (55) is clear. But the S matrix can
also be expressed in terms of the true transition ampli-
tude, T, which describes the complete scattering,
including that part due to E alone, as follows'

The result is (for the usual reason)

exp[ i (—Hg; H—f f++5C)s],
with

x= nQA, .

(66)

(67)
(k'IS;lk)=(k'lk) —2mib(E; —E,')&k'I 2';lk), (60)

&k I
sf'Ik'& =&k Ik'&+2~i5(~f +f')&k

I
2'f'Ik'). (61)

Note that the first term on the right-hand side is now
the unit operator. It is possible, then, to express Q in
terms of T, in the following way:

Q(k) =&k I
2'*1k)—&k I

I'f* lk&

+2~i "(d'&'/8~s)&kI Tf*lk'»(&—&')&k'I 2''Ik& (62)

This may sometimes be more convenient than the
expression in terms of E., since T involves the complete
scattering amplitudes and cross sections, while R has
been truncated by the subtraction of a potential from
V.

In order to obtain (45), we must still multiply (55)
by e e' and integrate over k, then raise it to the Xth
power, keeping the ordering correct, multiply to the
left by e '~»' and to the right by e'~~~', and 6nally
include the atomic density matrix p&. We define an
average Q by the relation

Z~e 'Q(k)=QA g~e ', (63)

with

1—'U ' ~ dt Q,'(t),
~o

(64)

QA„'(t) = exp[i(HQ Pg f+)t]QA,

Q exp[—i (H&, Hg f+)t]. (64a)—

The perturber coordinates have now been completely
eliminated. Then we raise to the Ãth power, with the
proper ordering, and obtain

IZ exp in dt Q„„'(t)I. —
"0

(65)

Finally, we multiply to the left by e '~»' and by
exp(iH~f+s) (also to the left, since we have transposed).

and we shall agree not to write Pi, e e', but to consider
it as canceling part of Z '. As in Sec. 6 of II, we shall
transpose all operators bearing the subscript f This.
changes the anti-time-ordering to time-ordering, the
same as for the i operators. As in II, we use the super-
script + to denote the straight complex conjugate of
an operator, which is the transpose of the Hermitian
conjugate. The result of this transposition applied to
QA„we call QA„. We divide (55) by 'U to reinstate the
correct normalization. Then, after the average over k
and the transposition, it becomes

The connection with II has now been acheived. With
the definition (II, 56) of 6, we can write C (s), (44), in
the form of a trace over the atomic coordinates (in
line space) only,

I (s) =Trz(A exp[ i (H—&, Hg f—++5C)s]p~}, (68)

which is identical with the classical result, as given by
(II, 58) and (II, 60).

One more remark might be in order here. We have
shown that, when the impact approximation is valid,
we can express the spectrum in terms of the transition
matrices near the energy shell, i.e., in terms of the
various scattering amplitudes. But we have implied
throughout this work that the perturbers could be
distinguished from the particles inside the atom. If the
perturbers are electrons, this is not the case, and the
true scattering amplitudes involve exchange eRects.
Indeed, these true scattering amplitudes are the ones
that must be used in the pressure broadening calcu-
lation. In other words, from every amplitude computed
for distinguishable particles we must subtract one or
several exchange amplitudes, to take into account the
fact that the perturbing electron may remain inside the
atom and one of the original atomic electrons may be
expelled in its place.

4. SHIFT AND WIDTH OF AN ISOLATED LINE"

From now on, one can follow the work of II to com-
pute the line shape. This involves inverting the matrix
(oi H~;+Hgf+ —BC), the num—ber of lines and columns
of the matrix being equal to the number of spectral
lines that overlap. Then the line shape, F(co), is given
by Eq. (II, 62)

p((o) = —w-'pg Tr[a(M —
Hg~ +Hg f—+ 5C)-'], (69)

where p has been considered as constant for that par-
ticular group of lines. The only diRerence from II is
that K is given by the quantum-mechanical expressions
(67), (63), (62), or (56), instead of the classical ex-
pression (II, 61). In the one-state case, BC is given by
(38), (34), and (30).

The case of an isolated line is that where 3C is small
compared to the level spacing of the unperturbed
Hamiltonian, and therefore can be treated by 6rst-
order perturbation theory. In the one-state case, as we
saw in Sec. 5 of II, the shift is just the real part ((R) of
the diagonal element of X', while the width is the
negative of its imaginary part (8). Thus, in the one-

"The results derived in this section were presented at the 1957
annual meeting oi the American Physical Society LM. Baranger,
Bull. Am. Phys. Soc. Ser. II, 2, 54 (1957)j.
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state case, for the atomic level u,

Shift=d=est(«l&~«)~ (70a)

Width=w= rs—d(«~ R
~
«)A, . (70b)

We assume here that the atomic level is nondegenerate.
The degenerate case is considered at the end of this
section. The matrix elements of R on the energy shell
are proportional to the scattering amplitudes. Calling
k' a vector whose length is the same as that of k but
which makes angles 8 and q with it, we have the relation
analogous to (I, 35):

(«'l ~
I «)= —(2~/~)f(~ ~) (71)

where f is the elastic scattering amplitude of a per-
turber of momentum k by an atom in state a. Therefore
the shift and width are simply proportional to the real
and imaginary parts of the forward elastic scattering
amplitude,

would have been if the atom had stayed in u all the time.
Thus, the effect is equivalent to a complete interruption
of the radiation and contributes a width, proportional
to the inelastic cross section, but no shift. On the other
hand, it may happen that the frequency of b is so close
to that of a that the two phases do not have time, in
the interval between the two collisions, to differ by
more than a small angle. Then, we have a case of over-
lapping lines and, then, the effect of the inelastic col-
lisions between the two states u and b is not as simple
as a mere interruption of radiation, but it has a co-
herent contribution as well. This is why the theory of
overlapping lines is more complicated than that of
isolated lines.

Now, let us consider the two-state case. The matrix
elements of the transition operator T on the energy
shell are related to the two elastic scattering amplitudes,
f; and ff, in a manner analogous to Eq. (71):

d =—(2s e/m)(R[f (0))A„

u = (2~n/m) d[f(0)$„„.

(72a)

(72b)

(«'i T;
i «)=—(2m/m) f;(8,p),

(~k'
I
7'f

I
~k) = —(2~/~) fr(0, v ).

(75a)

(75b)

These relations are the same as (I, 36). Here again, we
can use the optical theorem which relates the imaginary
part of the forward elastic scattering amplitude to the
total cross section (elastic plus inelastic) 0,

af(0)= (k/47r) 0. (73)

Then the width is given in terms of 0- by the same
relation as (I, 36c):

We are assuming that ~u) and ~n) are nondegenerate,
i.e., their angular momentum, if it exists, must be zero.
This restriction will be removed later. The shift and
width of an isolated line are given as in Sec. 6 of II by
the real part and the negative of the imaginary part,
respectively, of the diagonal element of X in line space.
Ke express 3'. in terms of T, and we perform the
integration over the 8 function in (62) by writing

3)—ZD50 Av. (72c) &"k'= flak'l6'ZQ, (76)
One can also express the shift and width in terms of
phase shifts, but since there can be inelastic collisions
the phase shifts have to be complex. Equation (I, 41)
for the scattering amplitude still holds, but with com-
plex 5~. Instead of talking about complex phase shifts,
one may replace e"~' by n&e"~' with 8& real and o, & real
and smaller than one. Then Eqs. (I, 42) have to be
replaced by

where dQ is the element of solid angle. The result is

d = —(2s e/m) $t[f,(0)—ff (0)g

+5~~ ~~I[ff*(1~)f'(~~)—f~(1I)f'*(1~)3 (77a)
Av

d= —[(me/mk) P~ (2l+1)n~ sin2M)A„(74a)
m=[(7rm/mk) Pq (2E+1)(1—nq cos2Bg)gA, . (74b) ~= (2~~/~)~[f'( )+f~( )j

These equations constitute the natural quantum-
mechanical generalization of the classical equations
(II, 53). They apply only to a nondegenerate atomic
state.

The effect of inelastic collisions on an isolated line
may be viewed in the following manner. A perturber
comes along and induces a transition in the atom from
state a to a different state b. Then, later, another
perturber collides and induces another transition. It
may happen that this second transition returns the
atom to state a. But so much time elapses between the
two collisions and the frequencies of u and b are so
different that the phase of the atom after it has returned
to u will be completely unrelated to what the phase

~=~;.+ I dnl f(")I'. (78)

The average is taken over all energies and angles of the
perturber, with the Soltzmann weighting factor e &'.

Again, these expressions are identical with those arising
in Sec. 6 of I. The width can be transformed by the
optical theorem (73). The total cross section 0 is the
sum of the inelastic cross section, 0-;„, and the elastic
cross section,
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Therefore, the width becomes with the dehnitions

(77c)

which differs from the pure-elastic result (I, 53b) by
the occurrence of the inelastic cross sections. The fact
that the shift (77a) is identical with the shift (I, 53a)
of the pure-elastic theory should not surprise us, since
the addition of inelastic collisions cannot be expected
to change the frequency of the light, but only to
interrupt emission more often. The fact that the width
divers from the pure-elastic width by the two inelastic
cross sections is also normal, since the e8ects of inelastic
collisions cannot be expected to add coherently. But it
would be a grave mistake to believe that the width
should involve the sum of the two to/ul cross sections.
The elastic parts of the scattering subtract in a coherent
manner, and it is the difference between the two elastic
scattering amplitudes that counts. It is easy to write
the shift and width in terms of phase shifts and to
derive expressions generalizing (I, 56) and (II, 72).

Finally, we shall consider an isolated line between
two levels

I
a) and lo& whose angular momenta j, and

j do not vanish. The considerations of Sec. 7 of II
must be used to take the rotational degeneracy into
account. The result obtained there was that we should
replace K by a matrix in "reduced line space, " h, given
by (II, 84), and then proceed as in the case of no
degeneracy. This procedure is easily applied to the
present calculation of the shift and width. Each elastic
scattering amplitude now becomes a (2j+1)X (2j+1)
matrix, (m, 'I f, (iI, y) lm, ) and (m 'I fr(8, q)lm ), where
m is the magnetic quantum number before scattering
and m' afterwards. According to (II, 84), we must
replace the expression ff*f;%frf,* which occurs in
(77a, b) by

&j.m. 'Itt*l j.m. '&&m, 'I f;Im. &

IhtggtSg tR~ mrs

&&j.m.
I t I j.m-&(m- I

ft*l m-'&

&complex conjugate, (79)

(j m Ittl j m )=(2j+1)-iC(j 1j„m ttm, )
=(j.m. ltt*l j.m.&, (80)

where C is a Clebsch-Gordan coefFicient in the notation
of Rose."Similarly, we must replace

I f, ff I—' in (77c)
by

Finally, according to (II, 84), (II, 80), and (II, 81), we
replace f, (0) and fr(0) in (77a, b), and o, ;„and ot;„
in (77c), by

(2j,+1)—' Qm, (m, I f;(0) I
m, ),

(2j +1) 'Pm (m I fr(0) lm ),

(2j.+ I)-~ g .&m. l..., lm. ),

(2j +1)—'P .(m. l r;.Im. &,

(82a)

respectively. Once these changes are made, the shift
and width are given correctly by Eqs. (77). In other
words, whenever a scattering amplitude or a cross
section appears singly in Eqs. (77), one replaces it by
an average over magnetic quantum numbers of the
diagonal elements. But where a product of scattering
amplitudes occurs, one must use the more complicated
type of average (79) or (81), which involves Clebsch-
Gordan coeScients. The rule is the same in the one-
state case, when the angular momentum j does not
vanish. One must replace f(0) and o. in (72) by averages
over magnetic quantum numbers, as in (82) and (83).

'e M. E. Rose, Elementary Theory of Angntar Momentnm (John
Wiley and Sons, Inc. , New York, 1957).
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