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The structure of the conduction band of Ge is completely taken into account in calculating the cross
section in second-order Born approximation. The second-order matrix element contains first-order matrix
elements of electron-photon interaction (derived for anisotropic mass) and of electron-scatterer interaction.
Scatterers considered are ionized impurities and phonons belonging to all six branches of the vibrational
spectrum. Deformation parameters of electron-phonon interaction are chosen to agree with other experi-
ments. An excellent fit to high-temperature data (450'K), where impurity effects are very small, is obtained
without adjusting any parameters. Contributions to the cross section from processes involving scattering
by longitudinal and transverse long-wavelength acoustic phonons are comparable; their combined effect
is matched by energetic-phonon effects when T&300'K. In this temperature range, when 40 p, &X&10 fm,

contributions from all phonon processes are virtually indistinguishable in their temperature and wavelength
(7') dependence. Predicted cross sections are too low by 20—30% at 293'K, and by a factor of 2—4 at 78'K.
The low-temperature results are in apparent disagreement with theoretical results of Fan, Spitzer, and
Collins. It is suggested that their theory leads to an overestimate in the impurity calculation, and that
impurity effects have not yet been explained.

1. INTRODUCTION

'HE free-carrier absorption cross section 0-pc in
n-type Ge is calculated here with full regard to

current information on the structure of the conduction
band. As is well known, the absorption of a photon by an
electron in a perfect crystal is a forbidden process. The
electron can gain a large amount of energy but very
little momentum from the photon. In order for the
absorption to occur, then, the electron must gain
momentum from some lattice imperfection. This
two-step process is accounted for in Sec. 2 by formulat-
ing the absorption cross section in second-order Born
approximation. At this stage, the type of lattice imper-
fection which scatters the electron is left unspecified.

Two kinds of lattice imperfection are treated, namely
phonons (Sec. 3) and ionized impurities (Sec. 4). All

possible intraband electron transitions are discussed,
i.e., intravalley transitions and intervalley transitions
accomplished with or without the aid of an umklapp
process. In the phonon case, the electron is allowed to
interact with a phonon belonging to any of the six
branches of the vibrational spectrum. Appropriate
deformation parameters are assigned values in agree-
ment with other properties' of n-type Ge, and compari-
son with the data of Fan, Spitzer, and Collins' (hereafter
referred to as FSC) is made without adjusting any
parameters. One may note that earlier' ' theories of
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' C. Herring, Bell System Tech. J. 34, 237 (1955); C. Herring
and E. Vogt, Phys. Rev. 101, 944 (1956).' Fan, Spitzer, and Collins, Phys. Rev. 101, 566 (1956).' H. Y.Fan and M. Becker, Proceedings of the Reading Conference
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free-carrier absorption all employ an adjustable
eGective mass for data fitting.

Section 5 summarizes the results and implications of
the present theory.

W= (2s./A) Ave Q [MrsI'8(Ef —Ee), (2.2)

where Avo means the thermal average on initial states
0 and Pf means the sum on final states f. Mys is the
second-order matrix element for a process in which an
electron absorbs (or emits) a photon and is scattered
by a scatterer, e.g. , phonon, ionized impurity, etc.
For definiteness, the transition probability (2.2) will

be developed for the case of photon absorption, i.e.,
W W Mfs (M )fs W' is then obtained by making
obvious changes in 8' .

The second-order matrix element (M')rs can be

6 Spontaneous emission is part of the background radiation.
Schmidt's4 theory is the erst to recognize the necessity for sub-
tracting of induced emission in the infrared,

2. FORMULATION OF FREE-CARRIER
ABSORPTION CROSS SECTION

The free-carrier absorption cross section 0'pc(v) is
the ratio (net transition probability for absorption of
a photon of energy hv by a current carrier) —:(flux
of photons of energy hv through the crystal):

ore(v) = $e(v, n)c/e'*) '(W —W'). (2.1)

5" is the transition probability for the absorption of a
photon by a current carrier; 8" is the corresponding
transition probability for imduced photon emission';
n(v, n) is the beam density of photons having propaga-
tion vector v and polarization index u(rr= 1, 2); c/e& is
the velocity of infrared photons in the crystal.

The transition probabilities are calculated in Born
approximation with the aid of "golden rule number
two, "
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written in abstract notation as follows: Denote the
first-order photon absorption matrix element between
electronic states ko, k@ by (V„')iiii~b(kii, kz) I this
form is derived in Appendix 2—see (A.11)] and the
first-order scattering matrix element by (V,)i oi z. Then
(M )fp is the sum

&(V„)iri,5(kr,k,) (V,)i;i o

(M')rp ——P,
0

8"for induced photon emission is obtained by changing
the sign of hv in 8".The 8"s are then put into the
absorption cross section (2.1) to give

= (2or/ts)Lrt (v,u) c/ ei]
—'

X& Ave I (V)~f~olsl (V.)~o~o—(V )~g~fl'(») '
s f

(V.)igi;(V. )i,i p5(k, ,kp)

jvo jv.'
(2.3)

X P ( 1)~ALE(kr) E(kp)HE —(—1)vhv]. (2.8)
y=o

on intermediate states i, where the brackets contain a
sum on the two possible orders in which photon absorp-
tion and electron scattering can occur. The energy
denominators in (2.3) are

Ep—E,=E(kp) —E(k,)&E„ (2.4a)

Ep—E,'= E(kp) —E(k,)+hv, (2.4b)

where kp and k; are the initial and intermediate propaga-
tion vectors of the electron, and E, is the energy which
the electron gains from the scattering center or loses to
it. The plus sign before E, applies to a gain in electron
energy, the minus sign to a loss.

Inserting the energy denominators (2.4) into Eq.
(2.3) for (M )fp, one can immediately sum on k; to
obtain

(V. )ifis (V.') i pi p

(M ho= (V.)&i&p + . (2.5)
E(kp) —E(kf)aE, hv

The right-hand side of (2.5) can be further simplified by
noting that (2.5) is to be used in conjunction with the
energy conservation condition

ti(Ef Ep) = 8I E(kr)——E(kp) —»&E ] (2.6)

when one calculates the transition probability 8"
according to the prescription (2.2). The first energy
denominator on the right-hand side of (2.5) can
therefore be replaced by (—hv), so that (M')fo becomes

Mro= (V,)irr~pl (V,)irpirp —(V,)~pr]/hv. (2.7)

Hence, for any scatterer which can be treated adequately
in second-order Born approximation, the first order-
scatterieg matrix elenseet between initial aed final electro'
states appears as a factor ie the second order rrtat-rig

element &~0. The absorption superscript a has been
omitted from (2.7) because the matrix element (M') fp
for induced photon emission is identical to (M')fp.

It is now a simple matter to express the absorption
cross section (2.1) in terms of first-order matrix
elements. One introduces the second-order matrix
element (2.7) and the energy conservation condition
(2.6) into Eq. (2.2) to calculate the transition probabil-
ity W for photon absorption The transi. tion probability

The summation on s runs over all types of scattering
processes; the summation on p performs the subtraction
8' —8"'; the sign of E, is that appropriate to a given

scattering process.
The radiation part of the formulation (2.8) of

eve(v) is now completed by inserting specific forms for
(U„)i piro and (V„)iti r. These matrix elements are
derived in Appendix A under the assumption that the
energy valleys can be described by a single mass
dyadic for all states of importance to free-carrier
absorption. This assumption will be valid provided
that the electronic states of importance to free-carrier
absorption lie within a set of ellipsoids, drawn about
the energy minima in the Brillouin zone, whose axes
are small compared with the radius of the Brillouin zone.
An estimate of the size of these ellipsoids can be made
with the aid of the energy conservation condition
appearing in (2.8). From this condition, one obtains

E(kr) & (hv) . . (2.9)

where

(V.)i pi o= po(v, n) e(v,n) mp
—' (ko—Ko), (2.10a)

(V,)i' f Qp(v, n)e—(v,u) mr '(kf —Kr), (2.10b)

yo(v, n) =iefisl 2ore(v, n)/(shv)]i; (2.11)

e(v, n) is the unit polarization vector belonging to

'B. N. Brockhouse and P. K. Iyengar, Phys. Rev. III, 747
(1958). The estimate is actually ~33 p.

s Dresseihans, Kip, and Kittel, Phys. Rev. 98& 368 (1955)r

[The maximum value of hv of interest here corresponds
to a wavelength 10 p, . Both E(ko) and E. correspond
to much longer wavelengths. The initial electronic
energy E(kp) is ~kT; on the wavelength scale, the
room temperature value of kT lies at ~50 p, . As for
the energy E, exchanged with phonons or isolated
impurity scatterers, the maximum phonon energy in
Ge occurs at ~35 p, ' while the recoil energy of an
isolated impurity is negligible. ]Employing the cyclotron
resonance mass' values in (2.9), one finds that the long
semiaxis of the ellipsoids which bound the important
final states is about two-tenths the radius of the
Brillouin zone.

From (A.11), one obtains
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mode (v,n) of the radiation field, mp ' is the reciprocal
mass dyadic of the initial valley whose minimum lies
at Kp, and mr ', Kr are the corresponding quantities
in the final valley. (One sees from the arguments of
the preceding paragraph that the important electronic
states can be assigned unambiguously to one valley or
another. )

From Eq. (2.10), one can form the expression

L&(v,~)c/"7 'l (V.)» —(V.)l I )s

(yi/hv) {(mp ' (kp —Kp) —m,
(k —K)7'(, )}', (2.»)

where

I
I

Or lrO
4n' Di

J,I"'

I

/
, r

(-1,-1;1)-, ~ ]t' =
~ (-1,+1q-l)=2~ = 2~

'l

y, = 2pre'h'/eic. (2.13)

V)A 8 V)CX Q) = 3 (2.14)

This procedure accounts for the unpolarized state of
the incident beam and also yields the isotropy of the
cross section in a cubic crystal. With (2.12) and (2.14)
the cross section (2.8) becomes

ovc(v)

= (2rr/h)Lyi/3(kT)'(2x) s7 p Avp p
S f

X
~
(V,)~r, l p ['Lmp-' (kp —kp) —mr-' (kr —kr)7'

X Q (—1)v8{[E(kr) —E(kp)7/kTW2s —(—1)v2x},

Before inserting (2.12) into the cross section (2.8), one
can sum the dyadic e(v, n)z(v, n) on the two values of
the polarization index n and then average on all
orientations of v.

FIG. 1. Filling of the Brillouin zone. It is shown how the elec-
tronic Brillouin zone is completely and uniquely filled by final
states under phonon transitions starting from the energy minimum
at Kz= (z./o)(1, 1,1). The solid hexagon is the cross section of
the electronic zone in the (—1,0,1) plane passing through the
zone origin. With the initial electronic state at the minimum A,
the points 8, D, and C are respectively the first-, second-, and third-
neighbor minima. The stippled areas are those which lie in the initial
octant of the Brillouin zone and the third-neighbor octant. The un-
stippled areas belong to first- and second-neighbor octants. The
dashed hexagon represents the phonon Brillouin zone whose origin
has been placed at the initial state A. The phonon propagation vec-
tor e must lie within this hexagon. The horizontally lined area of
the phonon zone is the region in which e has values such that
Kz+s+(2s/o)( —1,1,—1) falls in the horizontally lined area of
the electronic zone. The other lined areas correspond to analogous
umklapp processes; the vertical lines go with the umklapp vector
x=(2s-/o)( —1,—1,—1) and the diagonal lines with r.=(4z/a)
(0,1,0). The unlined area of the electronic zone is the region of
overlap with the phonon zone, i.e., only direct (ip=0) transitions
occur here.

where the definitions
(2.15)

2m= hv/kT, 2s=E,/kT (2.16)

have been introduced for later convenience.
Equation (2.15) represents the furthest point to

which one can carry the calculation of o.vo(v) without
mentioning specific scattering mechanisms. One may
note that the computation of orc(v) from (2.15) is
simplified by expressing the average on initial states
ko and the sum on final states kj in integral form; in
addition, electronic energies are written

E(k~) = (h'/2) (kz —K~) .mz ' (k~—Kz). (2.17)

3. PHONON SCATTERERS

In treating the eGect of electron-phonon collisions
on o Fo(v), one must consider all the different types of
scattering matrix element (V,)Ihip permitted by the
location of the energy valleys in the Brillouin zone and
by the vibrational spectrum of Ge. Briefly, the presence
of a number of well separated valleys allows intravalley
transitions (kr and kp in the same valley) and intervalley

transitions of two kinds. Direct and indirect intervalley
transitions can readily be understood when one recalls
that the final electronic momentum hkr is the sum of
phonon and initial electronic momenta hz+hkp.
(Photon momentum is negligible. ) Some phonons of
large momentum are suitably oriented so that the
electron is scattered directly from one valley into
another. Other phonons are so oriented that (~+kp)
falls outside the (reduced) Brillouin zone. ln this case,
the final electron state kr is brought to a new valley
inside the zone by an umklapp process, i.e., by addition
of a reciprocal lattice vector x. Figure 1 shows how final
electron states fill the Brillouin zone when the electron
starts from a given initial state. The filling is seen to be
unique; a transition between two definite electron states
proceeds either directly (san=0) or by the only available
indirect process (srWO).

In addition to these complications, the phonon itself
can belong to any of the six branches of the vibrational
spectrum.

Despite the profusion of disinguishable types of
electron-phonon scattering process, it is possible to
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represent the appropriate matrix elements by only two
general forms. Derivation of the matrix elements is a
lengthy aGair, and will be reserved for a separate paper
on a generalized deformation-potential theory. Certain
results useful in the present work will simply be quoted
here. For the sake of plausibility, the connection with
Bardeen and Shockley's' deformation-potential theory
will be made.

Typical of the scattering matrix elements (V,)ye to
be used in the cross-section formulation (2.15) is the
matrix element (V, )fs for electron scattering via
phonon absorption (superscript a):

Acv(~, t)
(V )1'o= 5(kf, ks+s+2')e(e, f) ' Y(g,f), (3.1)

2p Ve)(~, t) .

where c is the phonon propagation vector and t is the
branch" index of the mode; 1V(~,t), fied(~, t), e(~,&) are
respectively the (equilibrium) excitation number,
energy and unit polarization vector of mode (v,t); V and

p are the volume and density of the crystal. Except for
Y, all the factors on the right-hand side of (3.1) are
immediately recognizable from the Bardeen-Shockley'
theory. The "interaction vectors" Y(~,t) embody the
generalization of their theory to a many-valley band.
As one might expect, Y contains a deformation param-
eter which measures the strength of electron-phonon
interaction in each type of scattering process. For the
simple band structure treated by Bardeen and Shockley,
Y reduces to their value Ei~.

For the present many-valley case, the following
approximate forms of the interaction vector Y result
from the generalization of deformation-potential theory:

Long-wavelength acoustic modes. — &Fo (&)= Q rrrn(&)p (3 5)

not yet been discussed: Because the conduction band
minima in Ge most probably lie on the zone boundary,
one should, in principle, average the initial electron
states and sum the final electron states on domains
bounded by the surface of the Brillouin zone. On the
other hand, one would like to perform the equivalent
integrations on unrestricted domains. It turns out that
the latter procedure is correct for scattering by long-
wavelength phonons in Ge. For these phonons, third-
neighbor indirect scattering processes are indistinguish-
able from intravalley processes. Both types of scattering
are exactly taken into account if one integrates intra-
valley processes on complete valleys. The integrations
can also be performed on complete valleys in calculating
the remaining (intervalley) contributions to oFo(p).
These contributions have a wavelength and temperature
dependence which is quite insensitive to the exact
limitations on the domains of integration. These
contributions are furthermore indistinguishable from
that due to long-wavelength optical modes at tempera-
tures at which phonons are the dominant scatterers.
For the purpose of comparison with experiment, then,
there will be no need to consider fine details of the
diferent energetic-mode contributions.

The contributions to oio(1) made by the various
phonon processes can now be computed from the
cross-section formula (2.15), the scattering matrix
elements (3.1), and the interaction vectors (3.2) and
(3.4), with the aid of a few physical approximations
discussed in Appendix B.The resulting phonon contri-
bution a sop(v) to the total cross section follows:

Y(~,t) =.LA 11+22(3esep —1)]' c,

ep ——Kp/Ep.

(3.2)

(3 3)

oi(1)=I'1(kT)—'x—' sinh(x)E2(x),

&2(v)/01(1) = f 2/f I,

(3.6)

(3.7)

Energetic modes. —
Y(~,t) = B„(Kg,Kp). (3.4)

' J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).' t= I,2,3: acoustic branches
4,5,6: optical branches
3,6: longitudinal branches
1,2,4,5: transverse branches

The subscript 22 on B„runs over enough integers to
encompass all the types of energetic-mode scattering.
The value n=0 is reversed for scattering by long-wave-
length optical modes; the remaining values of n apply
to scattering by shorter wavelength modes.

The matrix element (V, ')fs for electron scattering
via phonon emission is obtained from (V, )~s, Eq. (3.1),
by replacing E(~;3) with E(~,t)+1 and by changing the
sign of g in the Kronecker delta.

When one calculates the absorption cross section
(2.15) with the aid of the electron-phonon matrix
elements (3.1), one meets a complication which has

22, =tao, /AT,

P=s,/x.

(3.9a)

(3.9b)

The contributions o-~ and o.2 arise from processes
involving, respectively, transverse and longitudinal
long-wavelength acoustic phonons; 03 lumps together
all energetic-mode contributions. This lumping is
justified by the numerical values of the ratio 02/01,
Eq. (3.8). Despite appearances, the right-hand side of

"G. N. Watson, A Treatise on the Theory of J3esse/ Functions
(The Macmillan Company, ¹wYork, 1945), second edition,
p. 78.

os(1 )/o 1(1)= 22(re,)fi '(P) (A@2/0, &)2s, (sinhs, ) '

(1+()2E2Lx(1+5)3+(1—5)2E2Ex
I
1—513

X (3.8)
2E2(x)

where E2(x) is the modified Bessel functions as defined

by Watson, "and
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(1+P)
— 1(l—P& ( P

(2+P)(1—P) 3 (I+P) EI—Pi

(I p—'t '
Xtan-'!

&p)
(3 «)

(3.8) is effectively independent of wavelength and
temperature when X&40 IL1 and when T is large enough fp(p)=(2~(m )) J

~~&(u'

(&300'K) to make phonons the dominant scatterers.
This behavior is a consequence of the long wavelength,

35 p, of the Raman line in Ge. The parameters which
carry the phonon index r in (3.8) will therefore be
interpreted as referring to some mean mode whose
energy and deformation parameter fit a number of
experiments.

The constants I', and I"p in (3.6) and (3.7) are = 1.25,

4 e'
I

2 detm) '*(m—')f1(P)-„'

3 ac ( ~p ) aper'
(3.10a)

where

n —=ep ml u/! ml u!. (3.15)

I' (mr) P

1
I 1 (pL)

The function pp(u, ) which occurs in the energetic-
mode contribution (3.8) is the combination

(p(pp, ) = (B,Q, '*/=„)'(Aa), ) ' (3.16)
( Zrd) Pig

&& !,
—

I +—fp(p)+2fp(p) -fr(p) (3 10b)
~Q Mg

Also, '

=3A2, (3.11a)

(3.11b)

(detm) =
mmmm

'= 1 58 (0.082)'m'= 0.011m', (3.12a)

(m ')=-'(m1 '+2rnp ')=8 3m '.
P =nap/m1= 0.052.

(3.12b)

(3.12c)

The functions f1(P) and fp(P) come from angular
integrations which enter the cross section (2.15)
through the mass-dependent part of the electron-photon
inatrix element (A.II), and through the orientational
restriction imposed by the Kronecker delta of the
electron-phonon matrix element (3.1).The integrations
are on orientations of the unit vector u= (kr —kp) ' m '*/

[ (kr —kp) .m—&!:

f1(P)—= (4 (m-'))-' "da (u m-'u)(n ' n')—
3 p

(1+5P+2P )!
(2+P) (1-P)'- &1—PJ

where vz and el, are respectively the velocities of sound
for transverse and longitudinal modes. Equations
(3.10a,b) are expressed in terms of deformation param-
eters de6ned by Herring' and Vogt. The relations
between their parameters ~, , and the deformation
energies A~, A2 which appear in the interaction vector
(3.2) are

„=16.4 ev,

~~g/E~ = —0.23.

(3.17a)

(3.17b)

Any other choice which is in reasonable agreement with
the aforementioned information and with the shift of
band gap with dilatation will lead to nearly the same
values of absorption cross section as do (3.17a) and
(3.17b).

The function p(pp, ), Eq. (3.16), has been evaluated
by combining Herring and Vogt's' analysis with
Herring's' treatment of energetic-mode scattering
based on an isotropic electron relaxation time. If
Herring's ratio wp/u1 (relative strength of energetic
mode to long-wavelength acoustic mode scattering) is

chosen to be 3, one finds

of deformation parameters and phonon energy which
is most conveniently evaluated from Herring's' work.
The volume 0, of unit (two-particle) cell has been
introduced to form certain quantities with dimensions
of energy in (3.8) and (3.16). Lcomparison of the
interaction vectors (3.2) and (3.4) shows that the
B's must have the dimensions of force since the A 's are
energies. j

Before the result (3.5)—(3.8) can be compared with
experiment, one needs numerical values of the deforma-
tion parameters „, q and the function pp(~, ) defined in
(3.16), the velocities of sound pr and 11„and the
normalized phonon energy 2s, .

The deformation parameters „and ~ for acoustic
modes have been selected from Herring and Vogt's
paper' on transport properties in many-valley semi-
conductors. Piezoresistance and magnetoresistance
information lead to the choice

=0.132,

ti-Py ' P
Xtan '! ! ——(13+11P)Epd

pp(cu, )~1.3X10"erg '. (3.18)

The velocities of sound which enter the constants
(3.13) (3.10a,b) actually come in as mean values on vr ' and
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()
0

NO. 8
T=4S0

NO. 4
T=293'K

(c)

NO. 8
T=78' K

00'
0.5—

tr)
L3z

O.05

0.02 i- .

05 1 4 2 4 6 4
x= hs/axT

&0 20

Fro. 2. Comparison of the calculated cross section with the
data of Fan, Spitzer, and Collins. 2 The points are experimental
free-carrier absorption cross sections reported by FSC for typical
samples numbered 4 and 8. The curves have been calculated
theoretically from Eqs. (3.5)—(3.8), (3.10), (3.13), (3.14), and
(3.16) for phonon processes and from (4.4), (4.6), and (4.11) for
ionized impurity processes. To the right of the arrows, Herman's'
estimate of a 0.18-ev energy separation between L111)and L100)
minima in Ge leads one to expect additional absorption, not
included in the present theory, due to electronic transitions to
L100j valleys.

vL,
' The values

vv ' ——10 " (cm/sec) ', (3.19a)

vr,
—'/vr '——0.36, (3.19b)

'~ S. L. Quimby and P. M. Sutton, Phys. Rev. 91, 1122 (1953).
rs H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).

employed here have been averaged by the method of
Quimby and Sutton" with the aid of room-temperature
values of the elastic constants measured by McSkimin. "

The results (3.19) are rather insensitive to whether
the mean is taken in all directions of propagation or
only on selected directions.

The energy Ace, has been chosen to agree with the
fundamental optical vibration somewhere near 35 p.7

One thus employs the maximum possible value of s,
in the energetic-mode contribution (3.8) to the cross
section. Nevertheless, one finds that to within an
accuracy of a few percent, the factor s, (sinhs, ) ' and
the factor in curly braces in (3.8) are both unity at
room temperature and above in the experimental
wavelength range.

With the above numbers, transverse and longitudinal
long-wavelength acoustic modes contribute about
equally to the absorption cross section, and their
combined contribution is matched by energetic-mode
scatterers at room temperature and above. In this
range o Fo (v) varies almost exactly as ) '.

Figure 2 (a) compares the calculated cross section
(3.5—8) with the data of FSC under conditions where

impurity scattering is relatively unimportant. Tote
that the excellent ft, t has been obtained without adjusting
any parameters T.he parameters are those which
agree with other measured properties of Ge. If one
accepts this 6t as a verification of the phonon calcula-
tion, the burden of the discrepancies at 293 K and 78'K,
Figs. 2 (b,c), falls upon some other scattering mechanism.
This suggestion will be discussed after the calculation
of impurity eGects.

The arrows in Figs. 2 (a)—(c) are seen to occur at the
noticeable break in the observed cross sections. The
positions of the arrows indicate where one expects
the next higher conduction band to provide additional
states into which an electron can be scattered. [From
the 'observed'4 variation of optical absorption edge
with composition in Ge —Si alloys, Herman" estimates
that the [100j minima in Ge lie about 0.18 ev above
the [111)minima. The arrows have been drawn where
ht =0.18 ev —kT.j No attempt has been made here to
take these additional states into account. Hence, the
divergence of high-temperature theoretical and experi-
mental results at the arrow is in agreement with the
estimated energy gap between [111)and [100]minima.

U =a (e'/e) r ' exp (—br), (4.2)

taken between electronic Bloch waves belonging to
states k~ and ko. The factor e ' accounts for dielectric
shielding; the screening radius 5 ' is given the familiar

4K. R. Johnson and S. M. Christian, Phys. Rev. 95, 560
(1954).

'5 G. Herman, Phys. Rev. 95, 847 (1954).

4. IONIZED IMPURITY SCATTERERS

An estimate of the eR'ect of ionized impurity scatter-
ing on the free-carrier absorption cross section can be
made by using the same formalism as for phonon
scattering. Starting with the cross-section formula
(2.15) derived in second Born approximation, one
inserts the first-order scattering matrix element (V,)t fk0
and the transferred scatterer energy 2s and makes the
calculatioo. This procedure is apparently too naive,
as one sees from Fig. 2 (c). The resulting theoretical
curve is too low by a factor of 2—4, and furthermore has
the wrong wavelength dependence at a temperature
T= 78'K, where ionized impurity eGects may be
expected to predominate.

The above conclusions stand in apparent contradic-
tion to the work of FSC,' who feel that impurity eGects
are understood. A brief sketch of the present calculation
of osor(v) (index I means ionized impurity scatterers)
will therefore be given, and the contradiction will

subsequently be discussed.
The scattering matrix element,

(Ur)fo= ~(4ve'/eU) fs[(ltr ks)'+—8') ', (4—.1)

used in the present treatment is the matrix element of
the screened Coulomb potential,
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Debye-Huckel form

3'= 4vrn, e'/(ekT), (4.3) CURV
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where e, is the concentration of free carriers.
In general, the matrix element (4.1) should be

written as a summation on reciprocal lattice vectors x
of the expression fit[(ki —ks —v)'+b'J ', where f~ is
the ~th Fourier component of the product of periodic
parts of the Bloch waves. The term x=0 happens to be
sufhcient in the present calculation for the following
reasons. Just as in the phonon case, intravalley (sr=0)
and third-neighbor intervalley (x=ky —ks) processes
are complementary when the energy minima lie on the
zone boundary. In addition, all other processes can be
shown to be negligible. Hence, oFor(r) is obtained by
using just the matrix element (4.1) for the case st=0
in the cross section (2.15) and performing the sum on
k~ and the average on ks on unrestricted domains.
When this procedure'6 is followed, one finds that all
integrals but the last can be evaluated in closed form.
In terms of the final integral, the cross section (2.15)
becomes

o po (r ) =I'r (kT) rl'x ' sinh(x)F(x 6' b) (4 4)
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where x is the normalized photon energy defined in
(2.16), b ' is the mass parameter P defined in (3.12c),
and

LP =O'bs/(2mskT), ms= 0.082m.
107- l
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The constant coefFicient

I'r = s (2a)'" ] fs ~'ere'0'/[ee"'(detm)"'1 (4.6)

contains the density ez of ionized impurities because
one must count all scattering centers whose potential
is (4.2).

The complicated function F in (4.4) is

Fin. 3. Plot of f(x)=G '(0)(b —1)F(xn', b~) sxinhx ss x=hu/
2kT. The part cryo of the free carrier absorption cross section
which arises from scattering by ionized impurities has the wave-
length dependence of /(x) according to the present calculation,
where the parameter for the family of curves is n'=fr b /2msb2',
b is the inverse screening radius given by (4.3), and ms is the small
principal mass of the conduction band. F(x,a,b) is given by
(4.11).The parameter b is the reciprocal of P (3.12c).The constant
G(0) is found from (4.8). The two groups of curves are scaled
according to the nearest ordinate, and connect smoothly.

G(y) =(1+y) ' (b —1)(b+1+y)(b+y) '

fb —Iq & f'b —Iq &

+(b—1—y)( l tan ']
) y (4.8)

&1+yJ ~1+y)

X=2x/6' (4.9)

The form (4.8) of G(y) has been accurately approxi-
mated on the interval 0 &y &b —1 by a sum of decreas-

'6 The transferred scatterer energy 2s is omitted from the energy
conservation condition in the cross section (2.13) because of the
negligible size of the ion's recoil energy.

F(x 0'b)=-'G(0)(b —1) '
J 0

x( 1) (r) )
Xexp ——

( if+—
[ G( —

) G(0), (4.7)2( „) &X&
where

ing exponentials:

G(q/X)/G(0) =0.476 exp( —2.4rf/X)

+0.443 exp (—0.68rf/X)
+0.081 exp( —0.13rf/X). (4.10)

The approximation (4.10) enables one to evaluate the
integral in F, (4.'/), in closed form to within a 5%
error (probably smaller) in the parameter ranges
T&300'K) e,&10" cm ', X&50 p. The function Ii
defined in (4.7) is thus

F(x&lV, b) ~G(0) (b—1) 'X {0.476Ãs[(x'+2.4lV)'j
+0.443Es[(x'+0.686') '*)

+0.081Ep[(x'+0.136')l$) (4.11)

where Eo is a modified Bessel function as defined by
Watson. "The present evaluation of o.sor(r ) is given by
the cross section (4.4) with the constant I"r and the
auxiliary function F(x,h, b) given respectively by (4.6)
and (4.11).Figure 3 is a plot of the product G '(0) (b—1)
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)&p(x Lg $)x ' sinhx[=G '(0)(b—1)I'r '(kT)7~ o For(v)7
vs x for a variety of values of A2 which span the data
of FSC.' One sees that for large x (short wavelengths
and/or low temperatures), all the curves asymptotically
approach the X'~' behavior typical of unscreened ions.
For smaller values of x, an increase in screening (i.e.,
in 6') drastically reduces the value of the function, and
the curves asymptotically approach the A' behavior
typical of phonon efFects.

In plotting the curves of Figs. 2 (a)—(c), it has been
assumed that fs [see (4.6)), the overlap integral of the
periodic parts of two Bloch waves, is unity. The true
value is probably smaller, which would only make the
fit at T=293'K and 78'K poorer.

The comparison of theory and experiment leads the
writers to believe that phonon efFects on free-carrier
absorption are satisfactorily understood while ionized-
impurity effects are not. It is clear from the first three
figures of FSC' that impurity efFects are negligible at
450'K but not at 293'K and 78'K. At the latter two
temperatures, the experimental cross sections show a
marked increase with increasing impurity concentration.
At 450'K, where theory and experiment are in excellent
agreement, the experimental cross sections are virtually
independent of impurity concentration.

The partial agreement which FSC' achieve between
theory and experiment at lower temperatures can be
explained as follows. Examination of Fig. 2(c) shows
that one has to increase both magnitude and slope of
the theoretical curve to improve agreement with the
data. Both types of increase are appreciable when one
neglects screening entirely (see Fig. 3), as did FCS.
FSC also get an increase in slope by neglecting induced
emission of photons, which ofFsets photon absorption
most strongly at long wavelengths. Another increase in
magnitude enters FSC's theory through their adjustable
mass parameter m*. Their selected value of m* yields
a 25% increase in the calculated cross section above the
cross section produced by the "correct" efFective mass.
The "correct" mass can be found from the present
results [(4.4), (4.6), and (4.11)$ by ignoring screening
and proceeding to the limit of isotropic mass; one
obtains

ACKNOWLEDGMENT

The writers are indebted to Dr. R. J. Collins for
enlightenment on experimental aspects of the problem.

APPENDIX A

Matrix elements are derived here for the interaction
between a photon and an electron which lies in valley 3
of a many-valley band. For the sake of brevity, the
effective mass approximation is employed. In this
approximation, the unperturbed Hamiltonian EP near
an energy rrunimum at K& is

gP=-'i'ss(A-'p —Kg) mg-' (A 'p —I ), (A.1)

and the eigenfunctions of H' are the plane waves

if' ——V 'exp(iit r) (A.2)

normalized to the volume t/' of the crystal.
In the presence of a radiation 6eld whose vector

potential is A, one replaces p by p+(%)A in the
unperturbed Hamiltonian (A.1), and obtains the
following perturbation to terms linear in 3:

H'=h(%)A m~ '(h 'p —K~). (A.3)

5. SUMMARY

The observed free-carrier absorption cross section
in Ge has been satisfactorily explained at high tempera-
tures without adjusting any parameters. Parameters
which appear in the present work are chosen to agree'
with other experiments. Theory and experiment at
450'K indicate that impurity efFects are negligible at
this temperature. About half the cross section at 450'K
arises from processes involving scattering by long-
wavelength acoustic modes: energetic-mode scattering
is responsible for the remaining half. Constributions to
o.so(v) from the various types of phonon scattering
processes all have the same wavelength and temperature
dependence above room temperature in the experi-
mental wavelength range.

At room temperature and below, impurity scattering
has a signi6cant effect on oFo(|). It appears that no
no adequate theory of this efFect exists.

or

2/m*& = lim [(detm)-&G(0)/(b —1)g, (4.12)
For present purposes, it will be sufficient to replace A
in (A.3) by one term of the expansion of A in the normal
modes of the radiation field:

while
mn...~t*/m =0.096, (4.13a)

ms so*/m =0.083. (4.13b)

I
c'is ) &

A=i
~ ~

s(v,n)rf(hv, cr) exp(iv' r), (A.4)( sVp

For these reasons, and because of other objections'~ "
which have been raised against treating low-temperature
impurity effects in Born approximation, the writers
believe that a valid calculation of o.+or(v) has not yet
been done.

'r R. Wolfe, Proc. Phys. Soc. (London) A67, 74 (1954).
"N. Sclar, Phys. Rev. 104, 1548 (1956)."F.J. lllatt, J. Phys. Chem. Solids 1, 262 (1957).

where v, n, and s(v,a) are, respectively, the vacuum
propagation vector, polarization index, and unit
polarization vector of the mode; v'=e&v (s=infrared
dielectric constant) is the propagation vector in the
crystal; and the destruction operator has the usual
matrix element in photon excitation numbers Ã,

(A.5)



The factor o ' on the right-hand side of (A.4) normalizes
the 6eld to the interior of the crystal.

Upon inserting the vector potential (A.4) into the
perturbing Hamiltonian (A.3) and taking matrix
elements between eigenfunctions of the electron (A.2)
and of the radiation field Lsee (A.5)j, one obtains
the matrix element for photon absorption (superscript
a):

H BA= (Vy )BA yo(v~n)e(v~n) mA Cap, (A.6)

t 2orn(kv, n) q
'*

po(., ) =ieA'I
okv

(A.7)

A 'pexp(ikg r)=kg exp(ikg r),

Eq. (A.8) becomes

(A.9)

Co~= (k~—K~) V—' expL —i(ko —4—v') rjdr

= (k@—Kg)8(ko, kg+ v'). (A.10)

To a very good approximation in the ranges T&78'K,
A. &10@ of interest here, v' can be ignored in the
Kronecker delta of (A.10), so that with (A.10), the
matrix element (A.6) becomes effectively

(V;)eg ——yo(v, n)s(v, n) mg-'
. (kg —Kg)5(ke, k~). (A.11)

The matrix element (V.') eg for induced photon emission
has precisely the same form, except that &0 is replaced
by go*.

APPENDIX B

Certain properties of Ge can be used to simplify the
computation of the cross section (2.15) when one uses
the phonon scattering matrix element (3.1) in conjunc-
tion with the forms (3.2) and (3.4) of the interaction
vector Y. The discussion of approximations can be
made most simply by writing down the scatterer-
dependent parts of the cross section (2.15). One puts
the absolute square of the matrix element (3.1) into
(2.15) and sums on scatterers (v, t):

Z l(V. )fol'

)&8{LE(kf)—E(ko) j/kT —2e,—(—1)v2x)+e. t.
AN(~, t)

&(kt, ko+v+ v.)
v. i 2pVoo(r, t)

ye(v, t)e(v, t): Y(v,t) Y(v,t)

)&&(L&(kt)—&(ko)j/kT —2& —(—1)v2&)

+e.t., (8.1)

Cog ——V ') expl —i(ke —v') r)(A-'y —Kg)

yexp(ik~ r)dr. (A.8)

In the coefficient (A.7) the photon density n(lgv, n) has
been written in place of V 'N(hv, n).

Since

where the notation (:) means double scalar product,
and e.t. means phonon emission terms. The emission
terms are obtained from the absorption terms by adding
unity to the phonon excitation number N(v, t) and by
changing the signs of z in the Kronecker delta and of
2e, =Ao&(v, t)/kT in the Dirac delta function.

Long-wavelength acolsti c nzodes. —The phonon angular
frequencies oi(v, t) for these scatterers are given to a
good approximation by

oi(v, t) =or, (8.2)

where v is the velocity of sound for longitudinal (ol.)
or transverse (vr) modes. The energy Aio(v, t) is then
small enough so that 2s, can be ignored in the Dirac
delta function of (8.1), and so that the usual high-
temperature approximation can be made on the
equilibrium excitation number N(v, t):

N(v, t) kT/Aor. (8.3)

Inspection of the appropriate form (3.2) of the interac-
tion vector Y shows that with (8.2,3) the summand of
(8.1) contains

i v) only in the Kronecker delta. As a
result, the Kronecker delta produces only an angular
dependence on v=kf —ko —x in the remainder of the
summand.

It is also assumed that the unit polarization vector
s(v, 3) of the longitudinal mode is parallel to ~. This
approximation is apparently good" over the entire
phonon spectrum. With this assumption and the
additional assumption that the transverse branches
have the same energy Aoo(v, t) for each ~, one can sum
the right-hand side of (8.1) on the two transverse
branches to obtain

Q s(v, t)s(v, t) =1—(vv/rs). (8.4)

~ W. P. Dumke, Phys. Rev. 101, 531 (1956).

The derivation of oi(v) and . (o)s, vEqs. (3.6) and (3.7),
from the cross section (2.15) is now straightforward.

Long wavelength opti-cal ntodes. —Near v=0, the
energies Ao&(~, t) of the three optical modes in Ge are
nearly independent of z and are all equal to the 6rst-
order Raman energy Ao~o. The interaction vector Y is
the constant Bo Lsee (3.4)j, and the summation on
branches t=4,5,6 replaces ss in (8.1) by the unit
dyadic. The phonon excitation number N(v, t) in (8.1)
has its exact equilibrium value

N(v, t) =
l exp(2s, ') —1j ' 2e '=Acro/kT. (8.5)

In the summand of (8.1), the only dependence on v

occurs in the Kronecker delta itself; the summation on
c thus yields unity. With these approximations, the
cross section (2.15) reduces to the contribution os(v),
Eq. (3.8).

Short-maveleegth modes. —The remaining scattering
processes are all intervalley processes involving phonons
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of large momentum A~ (see Fig. 1).One need only show
how these processes simulate transitions caused by
long-wavelength optical modes.

Energetic considerations have already been used to
demonstrate that electron states of importance to
free-carrier absorption in the ranges X&10p, , T(450'K,
lie rather close to the energy minima, i.e., near the
boundaries of the Brillouin zone in Ge. The earlier
argument is reinforced by noting that states near the
elongated ends of the constant-energy ellipsoids are
not nearly as important to absorption as lower mass

states. It follows that ~, e(~,t), and cp(~, l) are nearly
independent of (~,l) for those short-wavelength modes
which contribute most to absorption. The above-named
quantities can therefore all be replaced by mean values
to a good approximation, e.g. ,

rp(~, t) =tp(i Kr —Kp —x i, t). (8.6)

In these cases, the product e(~,l) B„can be regarded
as the deformation parameter. The resemblance to
processes involving long-wavelength optical modes is
thus established.
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Role of Traps in the Photoelectro1nagnetic and Photoconductive Effects*

R. N. ZITTER
Chicago Midmay Laboratories, The University of Chicago, Chicago, Illinois

(Received June 6, 1958)

When carriers recombine through traps, the excess concentrations of mobile electrons and holes are not
necessarily characterized by a single lifetime 7.. Under the assumption that electrons and holes have separate
lifetimes which in general are different, expressions for the steady-state photoelectromagnetic and photo-
conductive currents are obtained which show that in certain cases the photoelectromagnetic current is deter-
mined by a lifetime different from the one determining the photoconductive current. The results of the
photoelectromagnetic and photoconductive measurements can be used to evaluate the parameters of any
particular model which might be postulated for the recombination process. However, the theoretical treat-
ment of the photoelectromagnetic and photoconductive effects presented here is independent of such models
and so can be used as a method for testing their validity.

I. INTRODUCTION

'N the course of recent photoelectromagnetic (PEM)
~ ~ and photoconductive (PC) measurements on InSb
at 77'K performed at this laboratory, it was found that
when the measurements are analyzed according to
Kurnick and Zitter's' theoretical model, the carrier
lifetime deduced from PEM data is much smaller than
the lifetime deduced from PC data. This inequality is
inconsistent with the theory, which in eGect assumes an
interband recombination process as opposed to re-
combination through traps, and therefore predicts that
the same value for the lifetime will be obtained in both
experiments. Rose' has pointed out, however, that if
excess carriers are trapped at localized levels in the for-
bidden band for a significant time before recombining,
then one expects the PKM lifetime to be smaller than
the PC lifetime.

The purpose of the present paper is to generalize
Kurnick and Zitter's model to include the eGects of
trapping. This will be done in a manner which is
independent of any models and statistics of the trapping
process itself, i.e., there is no need to mention con-

*This research was supported by the U. S. Air Force through
the OfBce of Scienti6c Research of the Air Research and De-
veloprnent Command.

' S. W. Kurnick and R. N. Zitter, J.Appl. Phys. 27, 278 (1956).
2A. Rose, Proceedings of the Conference on Photoconductivity,

Atlaltic City, november 4-6, edited by R. G. Breckenridge et al.
(John Wiley and Sons, Inc. , ¹wYork, 1956), p. 17.

centrations of traps, their positions in the forbidden
energy gap, etc. The theory will show how the PEM
eGect, in conjunction with the PC eGect, can indicate
whether trapping of excess carriers occurs, and, in fact,
can provide data from which the parameters of a par-
ticular trap model may be inferred. This approach is
particularly valuable in those cases where the carrier
lifetimes are so short that they can be measured best,
if at all, by the steady-state PEM and PC eGects.

The equations derived here have been applied to
PEM and PC measurements on p-type InSb from 77'
to 300'K; the results are to be published shortly.

II. TRAPPING EFFECTS

Over considerable temperature ranges recombination
of excess carriers by way of trapping levels in the for-
bidden energy gap is the predominant recombination
mechanism in the bulk semiconductors Ge, Si, and
InSb, 3 as well as in many thin-61m semiconductors and
photoconductive insulators.

For recombination through traps it is instructive to
consider the following two limiting cases (which Rose'
rigorously distinguishes in terms of the position of the
Fermi level with respect to the trap level and the trap
capture cross sections):

' G. K. Wertheim, Phys. Rev. 104, 662 (1956);R. A. LaB and
H. Y. Fan, Bull. Am. Phys. Soc. Ser. II, 2, 347 (195'I).


