PHYSICAL REVIEW

VOLUME 112,

NUMBER 3 NOVEMBER 1, 1958

Electron Self-Energy Approach to Correlation in a Degenerate Electron Gas™*t

Joun J. QuiNN AND RicHARD A. FERRELL
University of Maryland, College Park, Maryland

(Received June 9, 1958)

A new method of computing the correlation energy of a de-
generate electron gas is presented in which the interactions are
studied by considering the self-energy of a lone particle impurity
in the system. The self-energy results as in quantum electro-
dynamics from the action of the proper field set up by the charged
particle back on itself; the Feynman space-time formulation of
quantum mechanics is employed in the self-energy calculation,
which is carried out along lines already laid out by Lindhard.
The Feynman propagator, which takes the particle from one point
in space-time to another, is derived. A slight but essential change
in the particle propagator is needed to allow for exchange effects
when the particle impurity is an additional electron in the de-
generate electron gas. This gives the electron gas a dual role:
it acts as a dielectric medium which can be polarized and also as
a vacuum from which electron-hole pairs can be created and
undergo exchange with incident electrons. The polarization
propagator for the effective potential set up by the impurity in
the electron gas, considered as a dielectric medium, is derived
heuristically in the text from Lindhard’s dynamic dielectric
constant and more rigorously in an Appendix from the momentum-
exciton model. The electron self-energy is a Feynman integral
involving the particle and polarization propagators and defines
an optical potential which is found to have both real and imaginary

parts. For momenta less than the Fermi momentum, it is shown
in a second Appendix that the optical potential is simply the
negative of the self-energy of a hole in the Fermi sea. The imagi-
nary part of the optical potential for an electron of momentum
2 is proportional to (p/po—1)? (where po is the Fermi momentum),
and gives rise to damping. Thus the concept of a one-electron
state is only valid for small excitation energies and breaks down
when the electron is appreciably far removed from the Fermi
surface. The mean free path for high electron density is given
(in units of #%/po) by 3.987,7% times the above function of mo-
mentum. (7, is the unit-sphere radius in Bohr radii.) The deriva-
tive of the real part of the optical potential with respect to
momentum, evaluated at the Fermi surface, gives a correction to
the specific heat in agreement with Gell-Mann. The value of the
optical potential itself is related by Seitz’s theorem to the deriva-
tive of the correlation energy with respect to density. Integration
over density yields an expression for the ground state energy
which agrees with the results of other investigators. Finally a
brief discussion is given of Bethe’s theorem, which directly
relates the optical potential to the ground state correlation
energy per particle. Although Bethe’s theorem is not valid for
the idealized electron gas with uniform positive background, it
does apply to actual metals in equilibrium.

I. INTRODUCTION

HE correlation energy of a degenerate electron

gas has been computed by Wigner,! Macke,?
Pines,® Gell-Mann and Brueckner,® and many other
investigators.® All of these investigations quite naturally
concern themselves, from the outset, with all the
myriad interactions which simultaneously take place
between the infinitely many pairs of electrons in the
gas. The present paper presents what is believed to be
a somewhat simpler approach to the correlation prob-
lem, in which one individual electron at the surface of
the Fermi sea is singled out for close attention. The
polarization of the gas around the electron is studied
in detail. The action of the polarization cloud back on
the electron, resulting in a self-energy, is computed.
This self-energy is related, by Seitz’s® theorem, to the
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derivative of the correlation energy with respect to
density. An integration with respect to density then
gives an expression for the correlation energy per
electron in agreement with results of the above authors.
The self-energy is calculated by means of perturbation
theory, using Feynman’s” time-dependent formulation
of quantum mechanics. The propagator for the electron,
both in “positive” and “negative’” energy (relative to
the Fermi energy) intermediate states, is exhibited in
Sec. II.

The present work forms a continuation of an earlier
investigation into the collective interactions in a
degenerate electron gas by means of the “momentum-
exciton model.”® In this earlier work the strength of
the transition matrix element between the ground state
and the excited states of an interacting electron gas
was studied by considering the inelastic scattering of a
fast incident electron. This approach is used in Appendix
T of the present paper to evaluate the Green’s function
or ‘“polarization propagator” of the electron gas.
Section IIT contains an alternative derivation of the
polarization propagator, in which use is made of
Lindhard’s® frequency and wave-number dependent
dielectric constant. The propagator describes the
Coulomb field set up by the electron gas as a result of
its being excited into the spectrum of higher energy
states by an incident electron. The self-energy of the
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incident electron is evaluated as a function of its
momentum in Sec. IV, along lines already laid out by
Lindhard.® Use is then made of the derivative of this
result with respect to momentum in Sec. V to compute
the correlation correction to the specific heat of the
electron gas. The result is identical to that already
obtained by Gell-Mann® in a somewhat different way.

In Sec. VI it is noted that the self-energy contains a
negative imaginary part, which leads to damping of the
one-electron state for momentum vectors appreciably
far removed from the Fermi sea. The mean free path
is evaluated at the end of Sec. VI. So far as the present
authors are aware, this is a new result, although the
idea of damping by electron collisions is certainly not
new and has been investigated quantitatively in various
ways by Landsberg' (for the Auger broadening of
x-ray band emission spectra), Lee-Whiting®? (for the
moderation of positrons), and many others.’®

Section VII contains a discussion of the self-energy
in terms of an optical potential, such as is familiar in
nuclear physics. The properties of the optical potential
are further discussed in Appendix II. The calculation
of the correlation energy from the self-energy of an
electron at the Fermi surface is also carried out in
Sec. VII. It is further noted that if one is dealing with
real metals at equilibrium then Bethe’s* theorem
applies, and the correlation energy is exactly equal to
the self-energy at the Fermi surface, with no integration
over density necessary. A short summary constitutes
Sec. VIII.

II. ELECTRON-HOLE THEORY

In calculating the self-energy of a point charge
moving through a degenerate electron gas, we can
think of the quiescent unperturbed electron gas as a
kind of vacuum. It is actually very similar to the
vacuum state in quantum electrodynamics, in which all
the negative energy states are filled, if the Fermi energy
is considered as the zero level of energy. We can picture
the self-energy as arising from the following process:
the approach of the point charge is followed by a
virtual excitation and subsequent de-excitation of the
vacuum, that is by virtual creation and reabsorption of
a quantum of excitation in the electron gas. The
propagation of the disturbance in the electron gas,
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which can be treated as a dielectric medium with
specific dynamical properties, is studied in Sec. III
below. In the present section we concentrate on the
propagation of the external point charge itself, from
the time it excites the medium and recoils into some
intermediate state to the time the medium acts back
on the point charge and gives up its excitation. For the
calculation we will use Feynman’s” time-dependent
formulation of quantum mechanics.

The propagator for the passage of a particle which
can be distinguished from the electrons in the degenerate
Fermi gas from the space-time point 1 to the space-
time point 2 is

o) fdxkdw ;
) 0n)t o— B 2m+is

eik-xn—iwlzl (1)

where 6 is an infinitesimally small positive quantity.
(Throughout this paper we use units in which #%, the
reduced Planck’s constant, equals unity.) There is a
slight but essential change in this propagator if the
point charge, -of mass m, is not a distinguishable
particle, but rather an additional electron. Because of
the exclusion principle, no electron of energy less than
the Fermi energy can propagate through the vacuum
state of the electron gas. On the other hand, a vacancy
in the Fermi sea can propagate through the gas as a
positive energy hole. The modification in the propagator
which is necessary to take this into account is analogous
to that discussed by Feynman? for the theory of the
positron and yields

@k i
J em)t o—E®) (1—1d)

eik-xn—iwtzl, (2)

where E(k)= (k2— p¢?)/2m is the energy measured
relative to the Fermi energy and takes on both positive
and negative values. po is the Fermi momentum. § is
again an infinitesimally small positive quantity, but
now we have written it so that the product of E(k)
times & replaces the § of Eq. (1). Thus the imaginary
part of the denominator changes its sign when the
energy itself does. This modification in the propagator
has the important consequence that only positive
frequencies are propagated forward in time and only
negative frequencies backwards. The phase factor
representing the change in the wave function of the
system when it passes from an earlier time to a later
time, regardless of the temporal sequence of points 1
and 2, is consequently always of the form e—élolltal,
This is required by quantum mechanics and by the fact
that the vacuum is the lowest energy state of the
system (taken for convenience here to have zero
energy). Thus the intermediate state has always posi-
tive energy and consists of an electron for #2;>0 and a
hole for #5;<0. These two cases are illustrated by the
Feynman graphs of Figs. 1(a) and 1(b), respectively.
The direction of time is taken as upwards, so that the
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(a) (b)

F16. 1. Feynman graphs for the self-energy process. In graphs
of type (a) the particle in the intermediate state propagates
forward in time. (Flow of time is upward.) Inclusion of graphs of
type (b) when the particle considered is an additional electron
and can propagate backward in time accounts for exchange
effects. The process (b) represents the simultaneous creation at a
space-time point 2 of a disturbance and an electron-hole pair.
The hole propagates forward in time to 1 (represented by back-
ward electron propagation) and annihilates with the incident
electron absorbing the disturbance.

intermediate state in Fig. 1(a) is an electron while in
Fig. 1(b) it is a hole. The dashed lines represent the
propagation of the polarization through the gas, and
will be discussed further in the next section.

The explicit form of K, (2,1) is quite simple, and is
easily obtained by carrying out the integration over
the frequency variable w in Eq. (2). As illustrated in
Fig. 2, the contour is along the real axis in the complex
o plane. For k such that E(k) is positive the integrand
has a pole in the fourth quadrant, while for E(k)<0
the pole is in the second quadrant [ Figs. 2(a) and 2(c),
respectively ]. Let us first consider #5;>0, in which case
the factor e~ damps out in the direction of the
negative imaginary axis. The contour can therefore be
displaced downwards, according to Cauchy’s theorem,
and will leave only the residue at the pole as shown in
Fig. 2(b):

e—iwtn: e—-iE’(k) 121. (3)

1 dw
Zf w—E(k) (1—i5)

This result holds only for both #y; and E(k) positive.
For >0 but E(k) <0 the downward displacement of

x [0}
(a) (b)

* ©

(c) (d)

F16. 2. Contours of integration in the complex w plane for the
particle propagator K,(2,1). The propagator is defined as an
integration along the real axis as shown in (a) and (c). For
positive particle energy, E(k), the integrand has a pole in the
fourth quadrant as indicated in (a), while for negative E(k) this
pole occurs in the second quadrant as shown in (c). For 5, >0 the
factor e~*»%1 in the propagator damps out in the direction of the
negative imaginary axis, and the contour can be displaced in-
definitely downward leaving only the residue from the pole
indicated by (b). On the other hand, for #x <0, the contour can
be displaced upward leaving only the residue from the pole
indicated by (d). Consequently only positive frequencies are
propagated forward in time, negative frequencies backward.
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the contour yields zero. On the other hand, for ¢z <0,
the integration is effected by displacing the contour
upwards which yields zero for positive E(k), as seen
from Fig. 2(a). For negative E(k), Fig. 2(c) is trans-
formed into Fig. 2(d) and yields the residue

; deo
2 w— ER) (1—d)

e—’iwtu: —_ e—iE(k) t21‘ (4)
The negative sign which appears in this case is required
by the fact that the hole, which propagates in the
intermediate state of the system, eventually annihilates
with a different electron than was associated with its
creation. Before the probability amplitude for this
process can be added coherently to that for the processes
involving intermediate states with E(k)>0, it is neces-
sary to interchange the two electrons, resulting in the
minus sign in Eq. (4).

Substitution of the right-hand members of Eq. (3)
and (4) into Eq. (2) gives

1
K, (21)=——- APk etk-xa—iEIM 4> ()
27)3 1 >po
—1
= f APk eil-xa—iEM 4y, <0, ()
(27r)3 k<po ’

These expressions can be further reduced by carrying
out the indicated integrations over momentum space,
yielding

Ki(2,0)=— (Zf )é ‘*P(’%)ii exp(%z)
X {G(t)— (%i)*@([%o—z r" F;]*)
- (%z')*e([%%r—l-[%?];) Lo

where
0(H=1, t>0
=0, #<0,
= t21, X= lel ,
and
° ?
C(v)= (2/1r)§f exp(—i?)du=—-I[C(*)—1iS(+?)].
0 0]

The C and S functions are the well-known Fresnel
integrals’® and the € function is represented by the
familiar Cornu spiral’® when the latter is interpreted
as an Argand diagram. Because of the inversion sym-
metry of the Cornu spiral, the second and third terms
in the bracket of Eq. (6) cancel one another in the

15 E. Jahnke and F. Emde, Tables of Functions (Dover Publi-
cations, New York, 1945), fourth edition, pp. 35-37,
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limit of p¢—0, and one obtains the familiar'® propagator
for the single-particle Schrédinger equation:

—im

$
K(Z,l) = ( ) exp(imxn?/Ztg]). (7)

7I't21

This expression can, of course, be found directly by
carrying out the integrations in the right-hand member
of Eq. (1). These integrated, explicit expressions for the
propagators have been presented only for the sake of
definiteness. In actual application the integral forms
given by Egs. (1) and (2) are more useful, and no
further use will be made in this paper of Egs. (6) and
(7). We now proceed in the next section to describe
the propagation of the polarization disturbance through
the electron gas, considered as a dielectric medium.
The degenerate gas thus plays a dual role: (1) it serves
as a sort of reference state, or vacuum, from which
electron-hole pairs can be created; (2) in addition it
has particular electrical properties which will be de-
scribed by a dielectric constant dependent on frequency
and wave number.

III. POLARIZATION PROPAGATOR

To find the self-energy corresponding to the Feynman
diagrams shown in Fig. 1, we must know the effective
potential acting on the electron at space-time point 2
as a result of the disturbance in the medium which it
causes at 1. This is a problem which has been studied
thoroughly by Lindhard.? Considering the electron at
1 as setting up the external source function p(xy,#),
and designating the electric scalar potential at 2 by
@(Xa,05), we have the following simple relationship
between the Fourier transforms:

47 p(k,w)
kw)=— .
o(k,w) P o) (®)

This equation can be considered a definition of the
dielectric constant!” e(k,w) as a function of the wave
number k and the frequency w. This function was
computed by Lindhard? for a degenerate electron gas
and found to be represented by

3 [ (u—2)*—1

u—1—z
ln( )

6472z2l. 2z ut+1—zg
(n+2)2—1 u+1+z
2z u—1-+43

where u=w/kvy and z=%/2p¢. vo=po/m is the Fermi
velocity and y=p¢*/2mw, is the ratio of the Fermi

e(kw)=1—

16 W. Pauli, Handbuch der Physik (Verlag Julius Springer,
Berlin, 1933), Vol. 24, Part 1, Chap. 2, p. 104.
17 For a recent discussion of the general theory of the dielectric
((:ongtz;nt see P. Nozieres and D. Pines, Phys. Rev. 109, 762
1958).
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energy to the classical plasma frequency. In terms of
7s, the unit-sphere radius in units of the Bohr radius
of the hydrogen atom, v is given by

y=1.0617,". (10)

The medium is thus characterized by the single param-
eter v, which is a measure of the density of the gas.
In the limit of infinite density (y—c) the gas becomes
rigid or unpolarizable, and e—1. Returning now to
Eq. (8) and re-expressing it in terms of the space-time
functions gives

o (K fz) = f Pt G2 DpGet), (1)

where the polarization propagator, or Green’s function,

is
@Pkdw 4w
cen= [
(2m)* R2e(k,w)

eik~x21—iw521

(12)

There are some interesting properties of the propa-
gator which it will be worthwhile to exhibit. First of
all, in the limit of infinite density, or alternatively, in
the complete absence of a dielectric medium, e—1 and
the integration can be carried out explicitly, giving

G(2,1)=x21‘16(1521), (13)

where 6 is the Dirac delta function. This is just the
instantaneous Coulomb interaction. Another simple
limiting case is that of long wavelengths, for which the
dielectric constant reduces to

(14)

where w, is the classical plasma frequency. This
expression vanishes at w==w,, leading to poles in the
denominator. The Green’s function is consequently an
improper integral and is not completely defined without
a prescription for dealing with the poles. This question
is discussed further below. For the moment, the
following rule suffices: e is considered to have an
infinitesimally small imaginary part, of the same sign
as w itself. The integration then yields

G(2,1)%xgrlfé(tm)—()(tzl)wp sinwptzl:l, (15)

where the 6 function has already been defined in Sec.
II. The first term in the brackets represents, again, the
instantaneous Coulomb interaction while the second
expresses the dynamic screening of the medium. The
inertial nature of the gas is clearly portrayed by the
behavior of this term, which represents a lagging
response to the external forcing charge density. If p(1)
is applied as a pulse, the resulting ¢(2) contains in
addition to the instantaneous direct interaction, a
term proportional to sinw,fs;, which attains an appreci-
able magnitude only after enough time has elapsed for
the electron gas to respond. On the other hand, when
p(1) is very slow and does not vary appreciably over a
time w, !, we can set the second term in brackets also

e~1—w2/w?
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equal to 6(¢21), since
fﬂ(tgl)wp sinw,,tndtm: 1.

Then G(2,1)=0, corresponding to complete screening.
This result holds only for functions p(1) which also do
not vary appreciably over distances equal to the
screening length, since Eq. (14) is valid only in the
long-wave length approximation.

A further feature of Eq. (14) appears if p(1) oscillates
at the frequency w,. This is the case of resonance, and
the integral

o(2)= f Bty G(2,1)p(1)

diverges as the integration is carried out over the time.
The amplitude of the scalar potential field produced in
the medium builds up to larger and larger values as
the external charge density continues to act. This is,
of course, just the condition for a natural oscillation
of the medium itself, and showed up already in the
fact that the integrand in Eq. (12) had a pole at this
frequency. In general, for any wavelength, the condition

e(k,w)=0 (16)

yields the Bohm-Pines dispersion relation'® and deter-
mines the frequency of plasma oscillation as a function
of the wave number. In this manner, furthermore, one
can also fix the cutoff, or minimum-wavelength oscil-
lation which can be sustained by the gas.!®

By means of Eq. (16) it is now possible to give a
more complete discussion of the poles in the integrand
of the Green’s function. The normal modes of oscillation

—_ s
(a) (b)

(¢) (d)

F16. 3. Contours of integration in the complex w plane for the
polarization propagator. The propagator G(2,1) is defined as an
integration along the upper side of the real axis as shown in (a).
The cut along the real axis is required by the logarithmic nature
of the dielectric constant and corresponds to the continuum of
single-electron excitations. For #,;<0 the factor e~*¢f in the
propagator damps out in the direction of the positive imaginary
axis, and the contour can be displaced indefinitely upward to
give G(2,1)=0. For 5,>0 the contour can be displaced downward
leaving the residues and the loop around the cut shown in (b).
Consequently G(2,1) does not satisfy the quantum mechanical
requirement that only positive frequencies propagate forward in
time. The contour for the true quantum-mechanical Green’s
function G,(2,1), is given by the modification shown in (c) for
the case #2;>0. The contour (d) is equivalent to (c) for {5, >0
and in addition correctly describes the case 2 <O0.

18D, Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
B R. A. Ferrell, Phys. Rev. 107, 450 (1957).
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to which they correspond must eventually be damped.
Let the mean life be designated by A~!. Then the
electric potential must contain terms with the time
dependences e~#Fer—iNDt where w, is a real number,
and 4+w,—i\/2 are the roots of Eq. (16). Thus the
poles are shifted below the real axis in the complex
w plane, which is easily seen to be equivalent to the
prescription which led to Eq. (14). In the ideal limiting
case of infinitely long lifetime the poles can be regarded
as lying on the real axis and the prescription can
alternatively be taken to consist of a path of integration
parallel to the real axis but displaced an infinitesimal
amount upward. The situation is illustrated in Fig.
3(a), where it will be noted that a cut along the real
axis has also been introduced. This is required by the
logarithmic nature of e(k,w). The branch points occur
at w=d(kvo+£%%/2m). The quantity in parenthesis is
the maximum energy which can be absorbed by the
electron gas when a single electron is given the addi-
tional momentum k. For real values of w of magnitude
smaller than this limit, e(k,w) contains an imaginary
part, representing the absorptive behavior of the
medium. It is easily seen that Ime changes sign if one
(a) crosses the cut, or (b) stays on the same side of the
cut but passes the origin (i.e., if one changes the sign
of the real variable w). Thus, as established by Lind-
hard, the dielectric constant satisfies the reality
condition

e*(k,w)=e(—k, '—w)=e(k? ——w)y (17)
where the asterisk signifies the complex conjugate. The
last result follows from the isotropy of the gas.

Just as with the poles, there is clearly some additional
ambiguity in the definition of the Green’s function,
depending upon which side of the cut the path of
integration passes. This was already settled by Lind-
hard, however, who specified that Eq. (9) correctly
yields the imaginary part of e, with the right sign, if
is considered to have an infinitesimally small positive
imaginary part. Thus, as with the poles, the path of
integration should be taken along the upper side of
the cut [Fig. 3(a)]. It may further be noted that this
choice is consistent with the requirement of causality.
Returning to Eq. (12), we see that for £, <O the factor
e~ damps out the integrand for large positive
imaginary values of w. Therefore the contour of Fig. 3(a)
can be displaced indefinitely upward, giving G(2,1)=0
for the case of 2 preceding 1. Thus the Green’s function
is causal, and does not give any disturbance in the
medium until after the external charge density has
been applied. For the case of positive ¢, on the other
hand, the contour can be closed below and yields the
residues and the integral around the cut shown in Fig.
3(b). Since the left-hand half of this diagram represents
negative values for the real part of w, it is clear that
the Green’s function G (2,1) does not satisfy the require-
ment discussed in Sec. IT in relation to the electron-hole
propagator, viz., that only positive frequencies should
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propagate forward in time. G(2,1) is thus not the
actual quantum-mechanical propagator for polarization
in the electron gas, but bears a close relationship to it
as can be seen as follows: The electron gas is excited
out of its ground, or “vacuum,” state ¥, by the dis-
turbance at 1 and into the state ¥y+¥’, where ¥’
represents the small perturbation. This perturbed part
of the wave function disappears at 2 by virtue of the
interaction of the electrons of the gas with the addi-
tional single electron. If this total interaction is desig-
nated by the Hermitian operator Hy, the true quantum-
mechanical propagator, which we denote by G, is
proportional to (¥o,Hr¥’). On the other hand, the G
function determined above refers to a measurement of
the scalar potential, and is hence proportional to the
expectation value

(Hp= ((¥o+¥"), Hr (Y+¥"))

= (\I'Q,HI\I’I)_*"C-CW (18)

where the complex conjugated term results from the
Hermiticity of Hr. (The vacuum expectation value of
H; is zero.) Thus for {5;>0, we can write

G(271)=G+(271)+G+*(2y1))

where, as previously, the asterisk signifies the complex
conjugate. Because of the conjugated term, G contains
both positive and negative frequencies, even though
Gy has only positive frequencies. We can solve for G4
simply by selecting the positive frequency part of G.
This is accomplished as shown in Fig. 3(c) by choosing
a loop along the positive real axis which passes through
the cut at the origin. For #5,>0 an equivalent contour,
designated henceforth as C, is that shown in Fig. 3(d),
where the path follows the lower side of the real axis
for negative frequency and the upper side for positive
frequency. An advantage of C over the path of Fig. 3(c)
is that it also correctly reproduces the behavior of
G4+(2,1) for the reversed time sequence #2; <0. Here we
are now including the additional effect, previously not
considered, of the disturbance originating at 2 and
being received at the later time 1. Thus, rather than
requiring G4 (2,1) to vanish in this case, we impose the
condition

(19)

G+(2,1)=G4+(1,2), (20)
which is clearly satisfied by the integral
G+(2’1) =f Phde __ieik.xzx—iwtzl_ (21)
¢ (2m)* Pre(kyw)

It should further be noted that, with the present
convention that —w is on the opposite side of the cut
as 4w, the relation

ek, —w)=¢e(k,w)

replaces the previous reality condition [Eq. (17)],
which required €*(k,w) as the right-hand member.

(22)
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Thus, by changing to the contour C we have effectively
changed functions. Lindhard has, as a matter of fact,
distinguished this new function by a special subscript,
and in the Appendix of his paper? has given what is
essentially a derivation of Eq. (21)—in, however, a
quite different way. An alternative derivation of the
polarization propagator G can be constructed from the
momentum-exciton model® and is presented in Appendix
I. This method simply involves computing the excita-
tion matrix elements for the positive energy continuum
states encircled by the loop in Fig. 3(c). It may have
some advantage since it avoids the restriction inherent
in the concept of the dielectric constant and what has
been called the “strong random phase approximation.”
It is for example, quite straightforward to compute the
exchange correction to the Bohm-Pines dispersion
relation in the exciton-model,?® while the dielectric
constant approach does not lend itself very well to this
problem. We are also aware that the polarization
propagator can be derived® in the manner of Gell-Mann
and Brueckner! by summing graphs in perturbation
theory. Although this method is, of course, quite
effective, we feel that it is not as satisfactory as the
others discussed here because the series which is
summed is actually divergent for some values of the
variables.??

IV. SELF-ENERGY

From the work of Feynman?” it is easily seen that
the self-energy corresponding to Fig. 1 for an electron
of momentum p and zero-order energy E(p) is

S.E.(p)= ﬁfdsxldtl e~ ip-x2+iB(p)t2

X K4 (2,1)G(2,1)eipmiBmn,  (23)

Substituting from Egs. (2) and (21) and carrying out
the space-time integration reduces Eq. (23) to

S.E.(p) ezfd‘"‘kdw 4

. . p = —————
¢ (2m)* Re(k,w)
1

X .
E(p)—w—E(p—k) (1—1d)

(24)

On the other hand, the self-energy of the electron when
it is moving in a true physical vacuum, in the complete

W R. A. Ferrell (to be published). The result agrees with the
time-dependent Hartree-Fock treatment of reference 19 when the
latter has been corrected for an error of omission. Terms which
were inadvertently omitted considerably reduce the magnitude of
the effect of exchange. H. Kanazawa and S. Tani [Progr. Theoret.
Phys. Japan 19, 153 (1958)], seem also not to have included all
of the important terms.

2 D. Dubois and M. Gell-Mann (private communication).

% For an alternative approach which is free of this difficulty
see K. Sawada, Phys. Rev. 106, 372 (1957); Sawada, Brueckner,
Fukuda, and Brout, Phys. Rev. 108, 507 (1957); and G. Wentzel,
Phys. Rev. 108, 1593 (1957). This approach is, however, inherently
restricted to the strong random phase approximation and, conse-
quently, seems not to lend itself to further refinement of the theory
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(c) (d)

Fi6. 4. Contours of integration in the complex w plane for the
self-energy. The self-energies of an electron in vacuum and in the
electron gas are given by the path integrals illustrated in (a)
and (b), respectively. The difference which exists in the contours
for negative-energy intermediate states is removed by shifting
the path as shown in (c). The resulting residue, summed over the
intermediate states, constitutes the exchange energy. On the
other hand, for positive-energy intermediate states the pole of
the electron propagator falls above the real axis and the contours
for the self-energies in the gas [now illustrated by (d)] and in
vacuum agree without further modification.

absence of any dielectric medium, is

d3kdw 4
@)t R

[S.E.(p)To=e* f
7

X . (25)
E(p)—w— E(p—k)+i8

This result has been obtained by replacing K in Eq.
(23) by K [from Eq. (1)] and by setting e=1 in Gy.
What we are actually interested in here is the difference
in these self-energies, or the change

AE(p)=S.E.(k)—[S.E.(k)]o

in the energy of the electron when it is “transplanted”
from the actual vacuum into the electron gas. The
subtraction indicated in Eq. (26) corresponds to the
“mass renormalization” of quantum electrodynamics
and is most easily carried out by taking the difference
within the integral sign. Before doing this, however,
it is desirable to make the integrands as nearly alike as
possible by shifting the pole at w=E(p)—E(p—k)-+15
in the vacuum self-energy so that it agrees with the
position w=E(p)— E(p—k)(1—143) of the pole in S.E.
An equivalent procedure is to shift the path of inte-
gration in Eq. (25) up from the real axis past the pole
so as to leave the pole below the new contour. This is
necessary only for values of k such that E(p—k) is
negative. Figures 4(a) and 4(b) compare the path of
integration in Eq. (25) with that in Eq.  (24), while
Fig. 4(c) shows the residue which results when the
contour of Fig. 4(a) is deformed in the desired way.
Figure 4(d), on the other hand, shows the S.E. inte-
gration for a typical positive value of E(p—k). Here
the pole occurs above the contour, as in Fig. 4(a), and
the electron-propagation factors in the integrands of
Egs. (24) and (25) agree without any modification.
The contribution of the residue illustrated in Fig.

(26)
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4(c) to the integral over frequency in Eq. (25) is

dw 7
f— —=1. (27)
2r E(p)—w— E(p—k)+14

As is clear from the discussion of Sec. II, the residues
can be attributed to the exchange of the additional
electron with the indistinguishable electrons of the
medium. Their total contribution to the energy shift
will therefore be denoted by the subscript “ex,” and
amounts to

d®k 4w
(27)® k2

Eex(p)=—¢ f

Ip-kI<po g3y’ 4
(2m) [p—p')?

where we have put p’=p—k. Equation (28) is the
familiar equation for the exchange correction to the
single electron energy. The integration is quite straight-
forward® and yields

Eunlp) Epoy PP—pd  |p—po
ex(P)=——
27 Pho p+po

an expression whose logarithmically singular behavior
at the Fermi surface has received a great deal of
attention. It is of course, precisely because of the
infinite slope of this function at p=p, that the effect
of correlation is so essential in computing the specific
heat. Without the correlation correction the density of
states at the Fermi surface is drastically reduced,
resulting in a specific heat very much smaller than the
Sommerfeld value, and with a temperature dependence
quite different from the experimentally observed simple
linear behavior of the latter. The contribution of
correlation, which will be designated by the subscript
“corr,” is defined by the equation

AE(p) = Eex(p) +Ecorr(p)

as the part of the energy shift which is left over after
the exchange contribution is separated out. According
to Egs. (24), (25), and (26),

=—¢
19’ 1< o

, (28)

In

+z), (29)

(30)

Bkdw 47
Ecorr(p)= _-eZL (2’"_)4 ;2—
X[ ! 1-I i (31)
e(k,w) _Iw— (E—E'-*—iE’é)’

where we have introduced the abbreviations E= E(p)
and E'=E(p—k). Equation (31) exhibits the inherent
dependence of the correlation correction on the polar-

28 See, for example, F. Seitz, reference 6, p. 340 or the appendix
of Pines’ paper (reference 3).
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izability of the gas since, if e is replaced by unity
(nonpolarizable medium), E.o.r vanishes identically.
Before proceding to carry out the integration in the
right-hand member of Eq. (31) it is well to note that
the electron propagator has a pole at w=E— E'41E’S.
This pole occurs in the second and fourth quadrants
except for special values of E’ falling in the interval
0< E'<E (except in Sec. VII we deal only with positive
E). This complication can be eliminated by again
pushing the contour up, or, alternatively, by bringing
the pole down to the position (E—E’)(1—15). In either
case, a further residue contribution results of the form

. &k 47r[ 1 1]
o<m<r (2r) Blek, E—E'+is) 1

where E'=FE(p—k) and § is a positive infinitesimal.
The restriction on the integration is equivalent to
o< |p—k|<p. The second term in brackets is most
easily handled by combining it with the integrand of
Eq. (28). This yields

PR L.
. p<p Qmp p—p |2 T

The remainder can be split up into the imaginary part

&k An
Ecorrim(p) = e2f —1

o<E<E (2m)® k?

(32)

3)

m: , (3
e(k, E— E'+415)

and the real part

&k 4r 1
Econres(p)ge2f — .
o< lp—k|<p (2m)® B? €(k,0)

(34)

Since the imaginary part of e vanishes for zero frequency
we have inserted into Eq. (34) the static dielectric
constant. This approximation is valid for small excita-
tion energies E. In the remaining line integral, which
we designate by Eeor!'"°(p), we may now set =0 since
the path of integration is already completely prescribed
by the contour C. Thus Ee..'"¢(p) is identical to the
right hand member of Eq. (31), except for the absence
of the 2E'6 term in the electron propagator. A further
simplification in this line integral is suggested by the
work of Gell-Mann and Brueckner.* The contour C can

R P N WY
- A

(a) (b)

F16. 5. Contours of integration in the complex w plane for the
self-energy of an electron outside the Fermi sea. For special
intermediate-state energies the pole in the integrand occurs in
the first quadrant as shown in (a). (b) illustrates the deformation
of the contour into a line integral along the imaginary axis. The
line integral has simple analytic properties, while the residue
arising from the change in the contour has a singularity in its
slope at the Fermi surface which cancels the undesirable singu-
larity in the exchange energy.
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be deformed into the imaginary axis of the w plane by
the substitution w=14w, where w is a real number. This
transformation is illustrated by Fig. 5(b), which also
shows the residue. Figure 5(a) shows the original con-
tour integral with the pole above the positive real axis.
Because e(k,iw)*=e(k, —iw)=e(k,iw), [see Eq. (22)],
it is clear that the line integral is real and is given by

Phdw
Eoorsine(p) = __4,,,,62[
2 (2m)"
1 ] E—FE
x[ 1 . (35)
ekiw) w4 (E—E')

where the w-integration runs from — o to 4,

Collecting terms, we find that the sole contributor
to the imaginary part of the correlation energy is
Eqorri™(k), while the total real part is

ReEcorr= (Eex’_Eex)+Ecorrres+Ecorrline- (36)

It should be noted that the term E.x'— E. has, except
for sign, the same singular behavior as E... But adding
Ecx to the correlation energy gives the smoothly varying
function E..'. Thus the customary break-up of the
total energy into exchange and correlation energy is
quite artificial. The total energy has no pathological
behavior as a function of the electron momentum. It is
also of interest that in the present method of treating
the interaction of the electrons the exchange energy is
automatically included in a very natural way, and does
not have to be included “as an afterthought,”?* as in
the calculation of Gell-Mann and Brueckner.

V. SPECIFIC HEAT

The low-temperature specific heat of a degenerate
Fermi gas is proportional to the density of single-
particle excited states per unit energy interval. Conse-
quently if the zero-order energy E is shifted by AE as
a result of the interaction the specific heat per electron
¢y is changed from the Sommerfeld value for non-
interacting fermions?

w2 KT
Cs= K (37)
2E,
by the factor
dAE -1 1 dAE
cv/cs=(1+~— ) ~l——— (38)
dE |g—o % dp |p=po

K is the Boltzmann constant and 7" the temperature.
The right-hand member of Eq. (38) can either be
greater than unity, representing an enhancement of the
specific heat, or less than unity, corresponding to an
inhibition. These cases arise when the slope of the

% This feature of the Gell-Mann-Brueckner calculation has
been remarked by L. Onsager [Bull. Am. Phys. Soc. Ser. II, 3,
146 (1958)].

% See, for example, F. Seitz, reference 6, p. 150.
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curve AE(p) vs p is negative or positive, respectively.
As seen below, the contribution to the slope arising
from the Coulomb interactions of the electrons is
positive, at least at high density. But since contributions
to the self-energy are additive, a further term must be
included for real metals because of the motion of the
ions and their response to the polarizing field of the
electron. This electron-phonon self-energy has gener-
ally a stronger slope than that resulting from the
electron-electron interactions. It has been computed for
sodium and found to give about a 209, enhancement to
the electron specific heat.? Since it is planned to
publish separately the details of the electron-phonon
calculation, we shall limit the present discussion to the
electron-electron interactions. Although the result of
this work is identical to that of Gell-Mann, it is
presented as an example of the method of the self-
energy. Because of the considerable simplicity of this
method it should be possible to improve the accuracy
of the result with a reasonable expenditure of additional
labor.

In Sec. VI it will be shown that the derivative of the
imaginary part of AE vanishes at the surface of the
Fermi sea. Therefore for AE in Eq. (38) we can substi-
tute Eex+ReFcorr, where the second term is given by
Eq. (36). If we neglect correlation and keep only the
E,x term, we find an infinite slope for dEcx/dp|p=npo
and, as already mentioned, the specific heat is reduced
to zero. But already including the correction term
E../—E,, gives the finite slope [see Eq. (32)] dE'/dp
=—¢2/w. Of the other correction terms, it will be
shown in Sec. VII that the line integral contributes a
slope of higher order in the density parameter .. With
the customary simplification of restricting the calcu-
lation to high density, this contribution can be neg-
lected. The only remaining term in Eq. (36) is

o dk
ke(k,0)

@ o
Ecorrresz - - 39
| (39

Here we have already integrated normal to the Fermi
surface over a spherical shell of thickness (p—po) and
have also performed the angular integration about the
direction of p. From Eq. (9)

3
e(k,0)=14+——F(2), (40)
16252
where
1 1—22 |1+
F(z)=—+ In|— (41)
2 4z 1—23

For small values of 2, F(z)=~1 and e=~1+43/16y*22=1
+@*/k2, where g= (4ko/ma0)?=0.815(r;)*%,o is the re-
ciprocal of the screening length. This expression can be
derived from the Fermi-Thomas statistical model and
yields a Yukawa-type potential for the screened

26 R, A. Ferrell, Bull. Am. Phys. Soc. Ser. II, 1, 217 (1956);
3, 203 (1958).
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Coulomb field about a fixed point charge impurity.
Setting F(z) equal to unity is not permitted when large
momentum transfers, or short wavelengths, are im-
portant.?” This is not the case here, however, and the
approximation is justified. Substituting into the integral
of Eq. (39) and using Eq. (10) gives

fl zdz 11 (1-!-3/1672)
=-In
243/16y' 2 \ 3/16y*
~—1 Inr,+0.898,

(42)

where consistent with the high-density approximation,
the term of order 7, has been dropped. Thus we have

e2
Ecorrms = (1’“ ?0)_(11178* 197)9 (43)
. . 27
givin
& dAE é
———— = ——/(lnr,+0.203), (44
dp |p=no 2r
and a specific heat inhibition of
¢v/cs=1+4-0.0837,(In7,+0.203), (45)

in complete agreement with Gell-Mann.’ Although
this expression gives a reduction for small values of 7,
the correlation correction vanishes for 7,=0.816 and
changes to an enhancement for values larger than this.
Since terms of higher order in 7, must also be included,
it is clear that not even the sign of the effect can
presently be predicted for the electron densities actually
occurring in metals (7,2 2). Equation (45) is thus of
no practical value without the higher order corrections.
Its interest is mainly theoretical, in connection with
the limit 7,—0. This limit can be effected either by
increasing the density to infinity or by keeping the
density fixed and reducing the electron charge to zero.
Thus, by including correlation, one has a theory which
continuously approaches the Sommerfeld theory of free
electrons as the interaction is turned off. This is not
the case when only the effect of the interaction through
exchange is included and correlation is neglected.

VI. DAMPING OF ONE-ELECTRON STATES

It has been noted in Sec. IV that the self-energy of
an electron of momentum greater than the Fermi
momentum has an imaginary part as well as a real part.
In addition to an energy shift there is consequently an
attenuation of the one-electron state, with a mean life
of minus one-half of the reciprocal of the imaginary
part of the self-energy. After this time the one-electron
state will have passed most of its original excitation
energy to the electron gas. This damping is a conse-
quence of the fact that a single-electron excitation is
not a stationary state of the combined system of

277J. J. Quinn and R. A. Ferrell, Bull. Am. Phys. Soc. Ser. II,
3, 53 (1958).
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electron and degenerate gas, and results from inelastic
collisions of the original electron with the electrons of
the gas. The damping is, however, greatly retarded by
the collective screening of the Coulomb field of the
electron by the gas, acting as a dielectric medium.
Without the screening the effect of the collisions would
be so drastic that the mean life would be vanishingly
small, and the concept of the single-electron excitations,
which is at the basis of the specific heat calculation of
the preceding section, would have no validity.

The imaginary part of the self-energy is to be calcu-
lated by substituting into Eq. (33). For the sake of
simplicity we shall consider only small excitation
energies E. Consequently we are near the static limit
for the dielectric constant, where the imaginary part
vanishes, and can make the approximation

Ime(k, E— E'+i8)!

~—¢(k,0)2 Ime(k, E— E'+145). (46)
From Eq. (9), for 0<#< <1—z we have
3ru 3w
Ime(k, w+1i8) = — 4n
327222 128E0'y2z3

where Eo=p¢®/2m is the Fermi energy. Substituting
into Eq. (33) and carrying out the integration normal
to the Fermi sphere gives

E2 E02 P 2
f dk,,(E—E’)=———=2—(——1) , (48)
0<E'<E 299 % \po

which leads to
2 1 dZ
—1) f —_— (49)
0 Zle (k,0)2

Without the screening represented by the dielectric
constant the integral would be severely divergent and
result in an infinite damping rate, as mentioned above.
But with e(k,0)~14-3/(16v%2?), [Eq. (40)], the integral
takes on the finite value 16my?/3V3, so that

06
(),

Multiplying by —2 and taking the reciprocal gives the
mean life. Including an additional factor of the Fermi
velocity gives the mean free path A. In units of the
reduced de Broglie wavelength p¢! (essentially the
interelectron spacing), we have

7y taopo(p/po— 1)
=3.987"3(p/po—1)2

As pointed out in the preceding section on the specific
heat, by including correlation the present theory passes
continuously to the Sommerfeld case of no interaction
as the interaction is turned off. This behavior is ex-

3?062 P
128v*\ po

Ecorr1m= -

Ecorr. - (50)

)\?0——4
(51)
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Fi16. 6. Optical potential of an electron of momentum p moving
through a degenerate electron gas of Fermi momentum po. The
real part is represented by the curve labeled RE and has a finite
value and slope at the Fermi surface. The curve labeled —IM is
the negative of the imaginary part and gives rise to a damping
of single-electron states. It has zero value and slope at the Fermi
surface. The optical potential for p<p, is defined as the negative
of the self-energy of a hole.

hibited also by Eq. (51), which yields an infinite mean
free path (in units of the deBroglie wavelength) in the
limit 7,—0. The mean free path also becomes infinite
as the excitation energy is reduced and p—po. The
damping approaches zero sufficiently rapidly that
AEcore™/AE| g_o=0. This would seem to be an a priori
requirement on any reasonable theory of the seli-
energy, since without it the specific heat correction of
Eq. (38) has no meaning.

VII. OPTICAL POTENTIAL AND GROUND-STATE
CORRELATION ENERGY

Figure 6 is a plot of both the real part and the
negative of the imaginary part of the renormalized
self-energy of an electron in a degenerate electron gas,
AE(p), as a function of the electron momentum p.
This self-energy constitutes an effective potential
similar to the optical potentials used in nuclear physics,
where the real part gives rise to elastic scattering and
the imaginary part to absorption. As emphasized above,
the electron gas has a dual role: it acts as a dielectric
medium which can be polarized and also as a vacuum
from which electron-hole pairs can be created and
undergo exchange with incident electrons.

In Sec. VI the imaginary part of the self-energy of an
electron whose momentum is slightly greater than the
Fermi momentum was determined and interpreted in
terms of a damping of single-electron states. The curve
labeled —IM appearing in Fig. 6 demonstrates the
behavior of the negative of the imaginary part of the
optical potential, which we designate by the function
IM(p—po)=ImAE(p). So far we have discussed only
the self-energy associated with momenta $> po, corre-
sponding to a particle outside the Fermi sea. As shown
in Fig. 6, the optical potential can be extended to
momenta p<po, inside the Fermi sea. Since the state
of momentum p is normally occupied when | p| <po the
optical potential in this case is defined as the negative
of the self-energy of a hole of momentum —p. In
Appendix IT it is proved that the renormalized hole
self-energy is indeed correctly represented by the
negative of the function AE(p) and furthermore that
the imaginary part of this function has the following
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property for small values of p— po:

IM (= |p—po|)=—IM(|p—po|).

This change of sign at the Fermi surface is illustrated
by the upper curve in Fig. 6 and has the consequence
that holes inside the Fermi sea damp out in the same
way as electrons outside. The mean free path of holes
is thus also given by Eq. (51).

The extension of the real part of the optical potential,
RE(p—po)=ReAE(p) for momenta p<p, is given by
the curve labeled RE in Fig. 6. It is established in
Appendix II that RE(p—po) is continuous and has
continuous slope at the Fermi surface. Therefore, for
small values of p— po,

RE(—|p—20|)—RE(0)
=—[RE(|p—po|)—RE(0)].

Since the real part of the self-energy of a hole of
momentum p is the negative of RE(p— py), it follows
from Eq. (52) that the correlation correction to the
density of states for holes is the same as for electrons.
This was tacitly assumed when writing down Eq. (38)
of Sec. V since holes and electrons contribute equally
to the specific heat.

The sum of the real part of the potential at the
Fermi surface together with the kinetic energy £,
= p*/2m, represents the amount of energy needed to
introduce into the system one additional electron of
momentum po while keeping the volume constant. The
negative of this quantity, which is just the energy
required to remove a particle of momentum p,, is often
used in nuclear physics and is called the separation
energy. The value of the separation energy, which we
designate by —Ej, is given by

ES = (P02/2m) +Eex (PO) +Ecorr1ine(P0) .

From Eq. (29), Eex(po)= —é*po/m. The residue contri-
butions have been omitted; they vanish at the Fermi
surface. Only FEcorr!'"*(po) remains to be evaluated.
Introducing v=w/(2kwez) and P=p/p, into Eq. (35)
and simplifying gives

y €2P 0 © 1
Egorr “‘e(p)=——2—f dv| dz{ ——1
TV _p 0 €

Xf Py ot z)2+v2 9

Performing the integrations over u and z exactly gives
an expression of the form F In7,+G, where the functions
F and G may be expanded as power series in 7, with
coefficients which depend only on » and P. Integrating
over z exactly is lengthy, but to obtain only the leading
term in the expansion simplifying approximations can
be made. Since the main contribution to the z integra-
tion arises from very small values of z, the z integration

(52a)

(52b)

(53)
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may be cut off at an upper limit of unity and the
expression obtained from the u integration may be
expanded in powers of z, with only the lowest order

terms retained. To terms of order less than 2, the
result of the integration over u is given by
1 Pu—z 23
f m =— . (55)
1 (Pp—2)*+2 P22

Before performing the integration over 3, the expression
for the dielectric constant can be simplified by expand-
ing in powers of z and keeping only the lowest order
terms. In terms of the parameters z and v, this approxi-
mate expression for the dielectric constant may be
written

3
e=1+16'y (1—v tan~1y 1), (56)

252
Substituting Eq. (55) and Eq. (56) into Eq. (54),
integrating over z from zero to unity, and keeping
only the leading term gives

Ecorl‘line(p) = r}’

41Inr, p* 1—vtanv!
f dv.  (57)
0

P2+ 7}2

i

Differentiating Eq. (57) with respect to P and evalu-
ating at the Fermi surface gives

dEconline
apP

=—Ty
P=1 ™

8Inr, ® 1—vtan~lv1
f dv,
0

(1427

3

=—ryr 2 Inr,, (58)
which (as stated in Sec. V), is of higher order in 7,
than the terms included in the specific heat.
Evaluating the right-hand member of Eq. (57) at
p=poor P=1 gives Ecors!"®(po) =272 ry (1—1n2) Inz,.
This is only the leading term in 7, of an expression for

Eg— Ex(po) of the form (Adot+Ady+---) Inr,
(Bo—l—Blrs-l- -). Thus
Ao=272(1—1n2) ry. (59)

To determine the higher order terms the following
corrections to Eeorr1i2¢(p0) must be taken into account:
(1) the 5 integration in Eeor'i"°(po) must be performed
more accurately, (2) contributions of higher order self-
energy graphs must be included, and (3) the dielectric
constant must be evaluated to higher order in the
expansion parameter ¢2. Although the first item involves
no essential difficulty the second and third steps
introduce greater complications, depending on the
accuracy desired, and have not yet been carried out.
Consequently we do not attempt to go beyond the
lowest order term here, although, as explained below,
computation of the constant By term would be equiva-
lent to the calculation of Gell-Mann and Brueckner
and should not be too difficult. By carrying it along we
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will be able to determine it from comparison with their
results. Collecting terms, our expression for the negative
of the separation energy is

1 2 2
Es(r,)zry[——-——«f——(l—an) lnrs-l—Bo}, (60)
ar? war, w

where, following the above authors, we denote the
number (4/97)} by «.

A theorem of Seitz?® relates the correlation energy
of a particle at the top of the Fermi sea to the average
correlation energy per particle. We shall determine the
total ground state energy per particle in the same way,
that is by relating it to the total energy of a particle
at the Fermi surface, or the negative of the separation
energy. The average energy per particle of a degenerate
Fermi gas consisting of V particles enclosed in a volume
V, depends only on the density and can be expressed
as some function g(r;). The total energy of the system
is therefore Ng(r,). Both V and V are essentially infinite.
Introducing one additional particle of momentum pq
into the system while holding the volume constant
changes the density and consequently the average
energy per particle by an infinitesimal amount. Let 7.’
describe the density of the system of V-1 particles in
the volume V'; then 7/’ is related to 7, by the equation

r=r,—r,/3N. (61)

The average energy per particle for the system of N1
particles is g(r,) and is related to g(r.) by the equation

7s
r)=g(rs) ——2g'(rs), 62
g()g()sNg() (62)

where the prime on g(r,) signifies differentiation with
respect to 7,. The total energy of the system of N1
particles is (N+1)[g(rs)—3N"'r.g'(rs)]. The change in
the energy of the system caused by introducing the
additional particle is the difference between this
quantity and Ng(7,), and must equal Eg:

g(r)—3%r:g (r)=Es(rs).

By means of the integrating factor 7,~% the left-hand
member of Eq. (63) can be written as —§7,*d[rs~3g(r.)]/
dr,. Solving for the ground state energy per particle
gives in general

g(ro)= —3rs3f Es(r)r/~4dr.

(63)

(64)

A shortcoming of the self-energy method appears at
this point: because of the constant of integration in
Eq. (64) the coefficient of 7.® in the expansion for g(7,)
remains undetermined. This will not, however, consti-
tute any practical disadvantage until all the lower order

28 See reference 6, p. 343.
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terms have been evaluated. In principle the constant
of integration is fixed by replacing the indefinite
integral — /'7s by the definite integral /7., since g(7)
must vanish in the limit 7,—. It does not appear
feasible to use this prescription, however, because of
the difficulty of computing the separation energy in the
low density (strong interaction) range. In connection
with the integration over the series expansion of the
separation energy, a peculiar feature of Eq. (64) may
be noted. When one carries out the integration, the
term Agr,® Inv in Eg(rs) leads to a term — (3/2)Asr®
X (In7,)? in g(r;). The appearance of such a term in
the expansion for the ground-state energy does not
seem to have been allowed for by Gell-Mann and
Brueckner.? Its absence would require 4;=0. For the
special case of the electron gas, substituting from Eq.
(60), integrating, and neglecting higher terms, we obtain

3 1 3
g<r3>zry[~ .

5 a?rs?

2mar,

2
-{-—;(l—an)(lnrs—l-%)—l—Bo]. (65)

The 7,72 and r,7! terms represent the average kinetic
and exchange energies, respectively, while the Inz, term
in the correlation energy is in agreement with well-
known results of other investigators. By identifying
the constant term with that computed by Gell-Mann
and Brueckner, we obtain Bo=—0.117. Alternatively,
it is clear that a computation of By by means of the
self-energy method presented here would be equivalent
to the work of these authors. ,

The significance of the second term in the left-hand
member of Eq. (63) is easily seen by considering the
pressure, which is the negative of the derivative of the
total energy with respect to the volume:

d[Ng(rs)] 7s
Pr)=——— =g (),  (66)
av 3

where n=N/V is the average particle density. Thus
Eq. (63) can be written in the form

Es(rs)=g(rs)+n1P(rs). (67)
An alternative derivation of Eq. (67) is provided by
keeping the density instead of the volume constant.
Then the additional term represents just the work re-
quired to expand the system against the external pres-
sure in order to make room for the added particle.
If, instead of the electron gas with a uniform back-
ground of positive charge, we consider actual metals at
equilibrium, then the pressure is zero and Eq. (67)
reduces to

Es(ro)= g("s); (68)
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where 7, corresponds to the equilibrium density. This
equality between the negative separation energy and
the energy per particle is simply Bethe’s theorem.!* By
means of it the separation energy gives the ground state
energy directly, without an integration over density.
Of course, for real metals the effect of the lattice on Eg
must be included, perhaps for monovalent metals by
the Wigner-Seitz cellular method.?® The integration
over density is required only for the determination of
the equilibrium value of 7,. Once this is fixed, either by
minimizing the function g(r;) defined by Eq. (64) or
by referring to the empirical density, the correlation
energy is given by Eq. (68). Furthermore, differenti-
ating Eq. (63) shows that at equilibrium all higher
derivatives of g(7;) can be expressed in terms of deriva-
tives of the separation energy. For example, the
compressibility depends upon the first derivative:

3
g" (7'3) = _‘_‘Esl("s)-

¥s

(69)

VIII. SUMMARY

The correlation energy of a degenerate electron gas
at high density has been evaluated by a new simplified
method in which attention is focused on a single
electron at the surface of the Fermi sea. The self-energy
of such an electron was evaluated by making use of
Lindhard’s frequency and wave-number dependent
dielectric constant. In the less ideal case of a real metal
it might be possible to substitute an empirically deter-
mined function, or perhaps a simplified approximate
one which would make the integrations easier. The
self-energy led to the high-density expression for the
correlation energy, while the derivative of the self-
energy with respect to momentum yielded the corre-
lation correction to the specific heat. Although these
results were already known, an interesting by-product
of the calculation was the optical potential, in analogy
to the similar momentum dependent quantity in nuclear
physics. The imaginary part of the optical potential
gave a mean free path inversely proportional to the
square of the distance (in momentum space) of the
electron or hole from the Fermi surface. Thus the
concept of a single-particle excitation of the electron
gas is valid for small values of the excitation energy
but breaks down for larger values. Although the
calculations have been carried through only for lowest
order in the density parameter 7,, the relatively simple
and intuitive nature of the self-energy approach should
make it feasible to carry the calculations to higher
order, corresponding to lower density.

In conclusion, one of us (RAF) wishes to acknowledge
several valuable and stimulating discussions with D. F.
Dubois during initial states of this investigation.

% E. P, Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46,
509 (1934).

QUINN AND R. A. FERRELL

APPENDIX I. MOMENTUM-EXCITON AS PROPAGATOR
OF THE POLARIZATION

The external charge distribution p(x1,£) discussed in
Sec. III sets up an electrostatic potential

Zk @(k,tl)eik'“.

The Fourier transform ®(k,) is related to the charge
distribution by the equation

4n
® (k) = f e~ Xp (xy,t1)dPxs. (70)

The interaction Hamiltonian representing the pertur-
bation on the electron gas caused by this electrostatic

potential is
H= —eZk Q(k’tl)zi eik.ma (71)

where the sum over the index ¢ is over all electrons in
the gas. The action of H’ on the electron gas can cause
a transition from the ground state ¥, to an excited
state ¥,. According to the momentum-exciton model®
the excited state wave function ¥, is a linear super-
position of one-electron excited states ®,:

V,=3"; Ain(k)®;. (72)
The matrix element H o' is given by
o' = — e (k,t1)Co* (k), (73)
where
C.(k)=2"; A (k). (74)

Although Eq. (72) holds only when the backward-
going graphs are neglected, Eqgs. (73) and (74) are
independent of this approximation. 4;,(k) of Eq. (74)
is the sum of the forward and backward propagating
amplitudes 4;,% (k). The amplitude of the intermediate
state » at time ¢, is given by

t2
Q@n (k,tz) =— 1f H,,,ole_iE"tmdll. (75)
Substitution from Egs. (73) and (70) gives
4dare e 1
@n(k,tz) = ’l«"—‘fd3x1f dt; —e k- x1—iEnta1
14 - K
XCo*(k)p(xs,tr).  (76)

The effective electrostatic potential at point 2 in
space-time can be determined from the scattering of a
test charge. The gas is in some excited state ¥, with
amplitude @, (k,’;). The test charge can cause a
transition back to the ground state ¥, in the scattering
process. The effective electrostatic potential acting on
the test charge is given by

[
Wo, 2 ~———-’an(k,t2)\1rn). )

i |xXe—x;

o(Xal) = 2.
n,k
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By means of Eqs. (72) and (76), ¢(Xs,t2) can be written

t2 47|_ P
¢(X2,t2)=fd3x1f dtl[—i(_l;) &

1
X3 _k;_eik.xn—iEnm,Cn(k) ]2]p(x1,tl). (78)
k,n

The quantity in the brackets appearing in the integrand
of Eq. (78) is by definition the propagator G4 (2,1):

a3

4 oo
G.(2,1)=— zf 2 ~—k2M(k)e’
X l Cn (k) lzemiE"m, (79)

where the sum over k has been replaced by an integral
and M (k)=4we®/F2V [Eq. (4) of reference 8].

Let us now concentrate on the continuum contri-
bution, set E,=w, and replace the sum over #» by an
integral. This gives

4
Gyoomt(2,1) = _@f;;[Cn(k)lz

&Pkde
X 2mp(w) M (k) ei—ivtn—— (80)
(2m)*
where p(w) is the density of states. The quantity
|C.(k)|? can be determined from the momentum-
exciton model. The coefficients 4;.(k) are defined by
the equations 4 ;,= A4 ;4 4., and

M (k)C. (k)
Aptk)=—— (81a)
+E,—T*
where T =E(k;£k)—E(k;) [Eqgs. (17) and (18) of
reference 8. Although the wave function ¥, is normal-
ized according to

2Lt (k) |*— [ As (k) [*]=1

[Eq. (20) of reference 8], it is easily seen that the
backward propagating amplitudes do not contribute to
the normalization for the continuum states. Conse-
quently |C,(k)|? is given by

(81b)

lCn(k)l2=M(k)—2[Z ]_1. (82)

i (En=T3)

By performing a summation over ¢ on both sides of
Eq. (81a), one arrives at the relation

1
z[ -
i En‘— T,'+

]= M) (83)

En+ T‘i—

Since the propagator can be expected to be independent
of the detailed spectrum of the 7', we may assume for
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convenience that they are uniformly spaced® in the
vicinity of E, corresponding to the density of states
p(E). The deviation of the spectrum from this constant
state density is expressed by a Cauchy principle value
integral :

1
e morrd
E,~T¢  EATr

14 1 1
Pfd%i[ - ], (84)
(2mr)? E,—Ti  E 4T

where A= (E.— E')/AE, T;= E'4+mAE, m is an integer,
AE=p(E,)" is the spacing between consecutive energy
levels, and E’ is one of the T'; in the vicinity of E,.
Solving Eqs. (84) and (83) for the sum over m gives

© 1
=—p(Es) 2 ——

m=—c0 Jp—\

+

@ 1 1

14
> =~—-{ E—— Y
m—wm—\  Mpl  (2r)

1 1 el(k;w)
x[ - ] |-~ . (85
E,—T#+ E,+T;: M (k)p(w)

where the quantity in curly braces has been identified
as Lindhard’s expression for the real part of the dielec-
tric constant. Now a well-known expression for the
above sum as a function of the variable A is

o 1
———=—7 cotm],

m=—c0 g —\

(86)

which by substitution into Eq. (85) fixes the eigenvalues
A precisely. Differentiation of Eq. (86) followed by
substitution from Eq. (85) leads to the useful result

«© 1 612
=72 csC?rA =n>+ X
m=—wx (m—N\)? M?p?

(87)

The sum in the right-hand member of Eq. (82) can
consequently be expressed as

© 1
S BTy = 3 —
i m=—a0 (m— )\)2

=M[(vMp)*+e]

=M?e|?, (88)
where we have substituted from Eq. (87) and have
used the equality

ee=mMp. (89)

€» 1s the imaginary part of ¢ the complex dielectric
constant. Inserting this result into Eq. (82) gives

|Cnle) 2= | e(kyw) | 2. (90)

3 This treatment is suggested by a simplified model of radiation
damping which is worked out in the paper of V. Weisskopf and
E. P. Wigner [Z. Physik 63, 54 (1930)].
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Returning now to the Green’s function, we substitute
from Egs. (89) and (90) to obtain

Bkde 4w
1 (2m)t RPe(kyw)

eik-le—iwtzl

Gy (2,1)= 1)

The subscript L on the integral sign signifies that the
w integration is to be carried out over the part of the
loop shown in Fig. 3(c) which encircles the cut. In
arriving at Eq. (91), we have used the fact that e,
changes sign across the cut while ¢; remains unchanged.
For those values of k for which plasma oscillations
exist there is an additional discrete contribution to
G, (2,1) corresponding to plasmon excitation, whose
energy we denote by E;. According to Egs. (79),
(81a), and (81b), the magnitude of this contribution to
the propagator is determined by

1C1(k) [ 2=M &)L L (Br—T )2 (Er+Ti) %], (92)

which differs from Eq. (82) in that the effect on the
normalization of the backward propagating amplitudes
in the excited state of the gas can no longer be neg-
lected. The sum in Eq. (92) must be evaluated some-
what differently from that in Eq. (82). Again we
consider the real part of Lindhard’s expression for the

dielectric constant:
1
) o9
w+ T»;_

a(kw)=1—M (k)P Z(
but now for w in the vicinity of £; we are clear of the
continuum and can drop the P which indicates the
principal value sum. Designating the partial derivative
with respect to w by a prime, we then have

& (kw)=M &)X (0— T2~ (o+Ti7)72],

1

w— T,'+

(94)
SO

[Ci(k)|*= (95)

Mél, (k,El)‘

Substitution into Eq. (79) gives for the plasmon
contribution to the Green’s function

ack 4
(27!')3 k2€1’ (k,E1)
@Pkdw  4r

= i (k-x21—wt
et (k-xor wzx),

ow (2m)* Re(kw)

ot (k-x21—E1t21)

G+plasm (2,1) =—3 f

(96)

where the integration is clockwise (cw) on a small
circle about the root of the dielectric constant and is
illustrated by the right-hand portion of Fig. 3(b).
Addition of the continuum and plasmon contributions
yields a contour of integration equivalent to that shown
in Fig. 3(c) and consequently leads to Eq. (21) for the
polarization propagator.

QUINN AND R. A. FERRELL

APPENDIX II. PROPERTIES OF THE
OPTICAL POTENTIAL

In Sec. VII the optical potential, which we write as
RE(p—po)+i IM(p— po) was defined for p<py as the
negative of the self-energy of a hole. The latter quantity
is’ represented by the Feynman graphs which result
from reversal of the directions of the arrows in Fig. 1.
Consider specifically the process which is represented
by reversing the direction of the arrows in Fig. 1(a).
Let the initial and final states consist of a hole of
momentum — p and the intermediate state of a hole of
momentum —p’ and in addition the disturbance in
the electron gas of momentum p’—p. Also interchange
the labels “1” and “2” on the space-time points of
interaction. What actually happens at time #, is that
an electron of momentum -+ p’ makes a jump into the
vacancy in momentum state 4p while at the same
time giving rise to a disturbance in the electron gas.
At time #; the electron jumps back into the state of
momentum -+p’ and absorbs the disturbance. The
factor in the matrix element for the entire process due
to these jumps is

> [eip-=iB(p)taT*gin - xa—iE (p")iz
»'<po ’

X[eip'-x1—iE(p’)n]*eip-xx—iE(p)tx’ (97)
where we have summed over the intermediate states.
Consequently the self-energy of a hole of momentum
—p, distinguished from the corresponding quantity
for an electron by a prime, is given by

S.E. ( - p) = ﬁfd“xldtl e—tp-x2HiB(p)t2

X[ S e miBeHeG, (2,1)

?»'<po

Xeir-x—iE(p) .. -, (98)
where the dots indicate a similar integral in which the
sum is over positive energy intermediate states. The
quantity in brackets in Eq. (98) can be identified with
the negative-energy portion of — K, (2,1), the negative
of the electron propagator. With a similar identification
of the positive-energy terms, Eq. (98) becomes

SE/(—p)=— e2fd3xldt1 e—ip-xeHiB(p)t2

X K4 (2,1)G (2,1)eir-m—E®n_ (99)
The right-hand side of Eq. (99) is simply the negative
of the function S.E.(p), which has been found [Eq.
(23)7] to represent the self-energy of an electron of
momentum +p for the case p> po. This function can
be extended into the interval p<po, and Eq. (99) can
be written

S.E/(—p)=—S.E.(p). (100)
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This must be compared with the negative of the
vacuum self-energy of an electron of momentum p,
which we can term purely for convenience the “vacuum
self-energy of a hole,” and which we define formally by
the equation

[S.E./(=p)Jo=—S.E.(p)o. (101)

The difference represents the observable self-energy of
a hole of momentum —p:

SE/(—p)—[SE/(—p)Jo=—{S:E.(p)—[S.E.(p) Jo}
=—AE(p), (102)

where the renormalized self-energy function AE(p) has
already been studied for p> poin Secs. IV-VII. Because
of the minus sign in the definition of the optical po-
tential for p<po, we have the equality

RE(p—po)+i IM(p— po)=AE(p) (103)

for all values of p. The real and negative imaginary
parts of Eq. (103) are the quantities plotted as functions
of p in Fig. 6.

The function RE(p— po) is, according to Egs. (103)
and (36), given by

RE(p—90) = Ecors"*(p)+Eex (p)+Ecors™*(p).  (104)

As shown in Sec. VII the slope of Ecor!'**(p) at the
Fermi surface is negligible in the high density limit.
Therefore, for momenta p for which p—po is small,
Eorr'i7¢(p) can be set equal to its value at the Fermi
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surface. The second term is given by Eq. (32) and
clearly exhibits the continuity at the Fermi surface
required of RE and its derivative. For p> po, Ecor:™*(p)
is defined by Eq. (34) but for p<p,, the pole which
gives rise to Ecor"%(p) is in the third quadrant and
deforming the contour encircles this pole in a clockwise
direction. This contributes an additional minus sign to
the integral which is otherwise a function only of the
absolute value |E|=1o|p— po|. Consequently Eq. (39)
holds in general for all momentum vectors near the
Fermi surface, inside as well as outside, and all the
terms in RE(p—po) have the required continuity of
value and slope expressed by Eq. (52b).

The imaginary part of the optical potential for < p,
is given by

IM (P'_ PO) = Ecorrim (p)
, &k 4w

= m y
e<i<o 2x) k2 e(k, E—E'—1d)

(105)

where as explained in the preceding paragraph, the
additional minus sign relative to Eq. (34) results from
encircling the pole in the opposite direction. By means
of Eq. (22) it is readily seen that the integrals in Egs.
(105) and (34) are the same function of the absolute
value | E|=1|p—po| and consequently that near the
Fermi surface IM is an odd function of p—po, as
expressed by Eq. (52a).



