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effective mass in the lower band (which is presumably
responsible for the high heat capacity observed below
13°K) does not appear to warrant drawing any detailed
conclusions concerning the nature of these energy levels.
We can conclude, however, that they are associated
with a rather complex sort of crystal defect. This would
seem to follow from the fact that if we insert in Eq. (2)
the value 700 millijoule/deg per gram-atom oxygen
loss (the average arrived at in Pt. III) we find that
the free-electron concentration corresponds to only one
electron for each eighteen oxygen atoms lost by re-
duction. It is thus possible that more than one set of
levels is involved, and that we observe the excess heat
capacity due only to electrons in one band with very
high effective mass. Its disappearance between 13 and
16°K would be expected if this band were (a) narrower
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than 13°K (about 102 electron volt), and (b) separated
by a gap of rather greater energy than this from the
next higher band of levels. Our data are consistent
with both of these requirements, since (a) the de-
generacy temperatures in the moderately reduced
samples are only about one-tenth of 13°K, and (b) at
least in the lightly reduced NBS sample, the gap corre-
sponding to the slope of the straight line in Fig. 4 is
about eight times larger than 13°K.
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The theory of self-diffusion in a crystal via the vacancy mechanism is investigated from a detailed dy-
namical model. It is shown that the parameters which determine the diffusion coefficient can be defined in
terms of the normal coordinates of the crystal. The effects of lattice imperfections are considered explicitly in
the formulation in the normal mode analysis, but no detailed analysis is given. The effects of the correlation
in motion of atoms is considered and some comments on the physical nature of the contributions to the

enthalpy and entropy of activation are presented.

1. INTRODUCTION

HE theory of diffusion in a crystalline phase is

usually developed by an application of absolute

rate theory. If it is assumed that the diffusing atom

moves by a series of “jumps” of length AX in the X

direction, and if the frequency with which these jumps

occur is denoted by I, then the diffusion coefficient may
be written in the form!

D=1T(AX)?, €y

the factor 4 arising from the possibility of jumps —AX.
To compute the frequency of jumps it is supposed that
the diffusing particle must surmount a free-energy
barrier. A simple application of the formalism of abso-
lute rate theory then leads to the relation?

D= (kT/k) (AX)? exp(— AG'/kT), @)

with AG' the Gibbs free energy of activation per mole-
cule, and the universal constants k2 and % have their
usual significance. Other formulations, substantially

1S. Chandrasekhar, Revs. Modern. Phys. 15, 1 (1943).
2 See, for example, C. Zener, in Imperfections in Nearly Perfect
Crystals (John Wiley and Sons, Inc., New York, 1952), p. 289.

equivalent to the application of absolute rate theory,
have also been presented. Thus Zener obtains for the
diffusion coefficient the relation?

D=+vya* exp(—AG'/kT), 3)

with @ the lattice parameter, ¥ a numerical constant,
and » a rather ill-defined vibrational frequency.

Note that both expressions (2) and (3) involve a free
energy of activation rather than an energy of activation.
It is necessary that the barrier be a free energy rather
than an energy in order to account for the inevitable
complimentary changes which occur in a dense medium
when a single particle is moved. That is to say, the
mean force acting on the diffusing atom is the gradient
of the local free energy, i.e., the potential of mean force,
and not of the potential energy of interaction. Equations
(2) and (3) have been used principally for the descrip-
tion of the temperature dependence of the diffusion
coefficient and to distinguish between alternative dif-
fusive mechanisms by means of the calculation of AG'.
Despite the ambiguity in the definition of various
fundamental quantities (such as the frequency ») this

3 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955).
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program has met with a considerable measure of
success.”

There are, however, several objections to the formal-
ism embodied in Egs. (2) and (3). To cite two, we
mention first that the basic assumption underlying the
application of absolute rate theory to diffusive processes
is that there exists a transition state whose existence is
sufficiently well defined and whose lifetime is suffi-
ciently long that it makes sense to define the thermo-
dynamic properties of the activated atom. It is usually
further assumed that the properties of the transition
state are substantially identical with the properties of
unactivated states except along certain reaction coordi-
nates. This last assumption is troublesome in that AGY
then refers to a ratio of partition functions with different
numbers of degrees of freedom and therefore does not
represent the work done in any simple process. The
postulation of a thermodynamically definable activated
state would seem to require either some experimental
demonstration of its existence, or at least a plausibility
argument indicating that its mean lifetime is sufficiently
long to achieve the equilibrium proposed. It is generally
believed, however, the diffusing particle spends most of
its time on one or the other side of the barrier and
actually crosses very rapidly (in a period covering at
most a few vibrations). Under these circumstances the
use of an activated state is probably a marked over-
simplification.

A second criticism may be directed against the usual
calculations of the entropic part of the free energy of
activation. These analyses ordinarily proceed by using
macroscopic parameters such as elastic constants and
with almost total neglect of the details of the local
dynamics. It is known that the inclusion of defects in a
crystalline lattice modifies the frequency spectrum of
the lattice, especially in the vicinity of an impurity.?
Since it is just the local environment of the lattice defect
which is expected to dominate its motion, the descrip-
tion of local dynamical behavior in terms of macroscopic
parameters can lead to errors. An extreme example of
this local behavior is the existence of a pulsating mode in
the vibrational spectrum of a one-dimensional crystal
with a vacancy.® This mode refers to the out-of-phase
motions of the neighbors of the hole and is localized in
the vicinity of the vacancy. In the course of time the
out-of-phase motions occasionally become in phase and
the vacancy thereby diffuses. Clearly, the neglect of this
localized mode will markedly alter the computed
diffusion coefficient.

From a mechanistic point of view, it would be de-
sirable to formulate the theory of diffusion in terms of a
dynamical model, rather than using a thermodynamic
description. The use of thermodynamic functions at the
very outset to describe molecular behavior results in an
averaging procedure which masks much of the physical
situation. It is probably advantageous to proceed from
the opposite point of view, even if this requires the
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introduction of approximate procedures. The purpose of
this brief communication is to outline the formal theory
of diffusion in solids by a method which proceeds
directly from a consideration of the lattice dynamics.
The formalism is based upon analogies with the theory
of unimolecular reaction rates and makes extensive use
of some calculations due to Slater.* The chief advantages
accruing from this procedure are that all average
molecular parameters become well-defined and the
origins of the energetic and entropic changes involved
can be identified. Subsequent notes will deal with the
application of the formalism to special models.

Before proceeding, we wish to mention an investiga-
tion by Vineyard® which treats the process of diffusion
in the complete phase space of the system. Vineyard
computes the velocity with which the phase point passes
over the barrier by a technique essentially identical
with that used by Pelzer* to discuss the theory of
unimolecular reactions. The advantage of performing all
the calculations in the complete phase space is that the
many-body character of the problem is emphasized. A
major point of departure between Vineyard’s treatment
and that presented herein is that Vineyard’s treatment
is in the sense of transition state theory and still makes
use of the assumption that the state at the top of the
col is sufficiently long-lived to permit the definition of
thermodynamic functions. The author cannot prove or
disprove this assumption, but his personal prejudice is
that it is not accurate for the case of diffusion. We do
not use this assumption in the development of this
paper. The treatment contained herein may be con-
sidered to be complimentary to that of Vineyard and
represents a different point of view.

II. SOME GENERAL CONSIDERATIONS

It is well known that if the restoring forces acting on
an atom in a crystal are linear in the displacement of the
particle from its equilibrium position, then it is possible
to make a normal mode analysis of the motion of the
N-body system.® In this harmonic approximation, each
of the normal modes is independent of all the others, but
the normal modes do not, in general, correspond to the
motion of atoms along arbitrarily selected paths in the
lattice. Any such motion along a particular trajectory is
composed of contributions from many different modes
of vibration. If there are no external interactions, any
given normal mode remains constant in time, unchanged
in energy or phase. However, the particular trajectory
mentioned above is composed of a sum of oscillating
functions with the result that its energy does change in
time, provided only that the individual contributions to
the sum are not everywhere in phase.

4 A. F. Trotman-Dickenson, Gas Kinetics (Academic Press, Inc.,
New York, 1955). N. B. Slater, Proc. Roy. Soc. (London) A194,
112 (1948); Proc. Roy. Soc. (London) A164, 161 (1955).

5 G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

6 An extensive analysis of this problem is to be found in M. Born

and K. Huang, The Dynamical Theory of Crystals (Oxford Uni-
versity Press, Oxford, 1955).
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Consider, for definiteness, the motion of an atom in
the first shell of neighbors of a vacancy and consider the
vacancy mechanism of diffusion. In order that the atom
or vacancy change its lattice position it is necessary that
the amplitude of vibration of the atom along the line
between the lattice points of atom and vacancy be
sufficiently large that the force tending to pull the atom
into the adjacent vacancy lattice position exceeds the
restoring force tending to return it to its own lattice
position. In addition to this requirement there are at
least two other obvious physical conditions which must
be satisfied. If attention is focused on one atom as the
migrating species, then the direction in which the
vibration occurs is important. For, if we temporarily
regard the shell of neighbors as static, only if the direc-
tion of the vibration falls into that solid angle corre-
sponding to the location of the vacancy can an exchange
of sites occur. Second, examination of hard sphere
models of close packed lattices reveal that if the posi-
tions of the atoms in the shell immediately surrounding
a vacancy remain unaltered, then the migrating central
atom cannot reach the vacancy site due to the small
cross-sectional area presented by the hole in the shell. In
order for diffusion to occur there must be an out of
phase motion of the atoms surrounding the vacancy or,
in macroscopic language, local expansion of the lattice.
Finally, if attention be focused on an atom in the crystal
chosen at random, diffusion is possible only if there is a
vacancy adjacent to the atom. The diffusion coefficient
therefore also depends upon the vacancy concentration.

The preceding paragraph has been couched in terms
of a normal mode analysis and of harmonic forces. This
is certain to be incorrect for the discussion of vibrations
with amplitudes large enough to cause an exchange of
lattice sites. However, the simplification introduced by
considering the thermal motion to be harmonic is so
extensive that we shall use it despite its obvious short-
comings. In justification, it will be recalled that in the
Debye model of a crystal the thermal expansion of the
lattice is explained as follows. If the forces acting on the
atoms were completely harmonic, there would be no
thermal expansion and therefore the particles must
move in nonlinear fields of force. At any fixed tempera-
ture, however, it is a reasonable approximation to regard
the thermal motion as harmonic with an origin and
frequency which differs from that at another tempera-
ture. That is, the thermal expansion is regarded as due
to the shift in the mean position of an atom due to the
asymmetry of the field, but the vibrations about the
shifted mean position are always taken as harmonic.
The procedure may be regarded as a perturbation treat-
ment in which the perturbation is sufficiently small not
to alter the character of the forces though it may
slightly shift their origin. The physical picture presented
in this paper does not require that the crystal be har-
monic. The long-term average frequency with which the
central atom achieves a critical amplitude may be
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defined for anharmonic forces, but in these cases, the
relation between the motions of the central atom and its
neighbors is much more difficult to analyze.

A second major approximation which will be made in
this note is the treatment of the crystal dynamics only
in the classical limit. This restricts the treatment to the
temperature range 7>20@p, where ®p is the Debye
characteristic temperature. In this temperature region
the deviation of the specific heat computed by the
Debye model from the classical value 3R is a maximum
of 159, at T=320p and smaller at larger 7. The
deviation of the energy from its classical value is much
smaller.

In the following, only the vacancy mechanism for self-
diffusion is discussed. The formalism presented can
easily be extended to other mechanisms and to more
complicated diffusion problems, but for the present
these extra complications are omitted to prevent
obfuscation of the general principles. Some extensions
will be considered along with the detailed effects of
lattice imperfections in a subsequent note.

The frequency with which an atom makes a jump of
length AX in a specified direction may be written in the
transparent form

I'= 3 p:;;0®({8}), 4
n.n.
where p;;® is the pair distribution function in coordinate
space, i.e., the probability of finding an atom at lattice
site 7 and a vacancy at lattice site 7, and ®({6}) is the
frequency of occurrence of a configuration in which the
central atom has large amplitude of vibration properly
oriented and there is an out-of-phase motion of the
surrounding atoms, the symbol {6} referring to said
configuration. The summation is to be taken over all the
nearest neighbors of the atom since the vacant site can
be located at any one of the positions of the first shell.
The pair distribution function (referring only to
lattice sites) is a function of the concentrations of atoms
and vacancies. Since the vacancy concentration is very
low, it is permissible to neglect the correlation between
vacancies and atoms and express p;;® as

N/L-N

pi .(2)—_——(_.——.)

k%] )
L\ L

where the crystal contains L lattice sites and NV atoms.
Equation (5) is an expression of the approximation that
the holes and atoms are randomly mixed. This ap-
proximation is likely to be quite adequate at the tem-
peratures ordinarily employed for self diffusion measure-
ments. It should be borne in mind, however, that the
attractive force acting between two holes in a lattice
will cause them to coalesce and separate as a distinct
phase at absolute zero.> The incipient clustering pre-
liminary to phase separation may occur in a measurable
temperature range, provided that the thermodynamics
of hole formation permits a sufficient concentration. To

)
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proceed, since L>~N>>>L— N, Eq. (5) may be written in
the abbreviated form

pi®=(L—N)/L=8, ©

where ¢ is the site fraction of vacancies. In the usual
manner, the site fraction of vacancies could be related to
their free energy of formation. We shall postpone the
introduction of this thermodynamic relationship for the
present.

To calculate the frequency with which a special
configuration occurs requires a consideration of the
lattice dynamics. In the next section it is shown that the
factor ®({6}) is of the form

oY =T [T VT ] gor®, (1)
7

k>1

where » is a weighted mean frequency, U, is the energy
required for the central atom to reach the critical
vibrational amplitude along the line connecting the
atom and vacancy lattice sites, the U; are the energies
required to shift the shell atoms from their equilibrium
positions, and the gi;® are the pair correlation functions
relating to the positions of atoms & and I. The product
is to be taken over all shell atoms required to move
before the diffusive displacement can occur, and the
gr1® include the correlations between all pairs of atoms,
especially the migrating atom and all the displaced shell
atoms. The weighting factors for the mean frequency
will be seen to be just the squares of the contributions
from the various normal coordinates. The substitution
of Eq. (6) into Eq. (4) leads to the relation

D=1LZv(AX)2peUo/*T [] e~ Uil kT H 2u1®, (8)
i £>1

with Z the number of nearest neighbors to an atom.
Note that the energy U, is not the energy of activation.

III. ROLE OF LATTICE DYNAMICS

Consider some one atom adjacent to a vacancy. The
conditions which must be fulfilled for a diffusive motion
to occur have been discussed in Sec. II. It is fairly
evident, from physical considerations, that the motions
which must be made by the shell atoms in order to
permit a central atom to migrate are vibrations of much
smaller amplitude than the particular very large ampli-
tude vibration which affects the translation of the
central atom from one site to the next. It is also physi-
cally clear that the frequency with which any atom
explores a given configuration decreases with decreasing
probability of occurrence of the configuration. We may
therefore safely conclude that the frequency with which
shell motions of the proper amplitude occur is probably
much greater than the frequency with which the
central atom reaches the critical vibrational amplitude.
These considerations permit us to make the following
physical approximation. It will be assumed that the
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frequency factor ®({d}) is equal to the frequency with
which the central atom achieves the necessary critical
amplitude multiplied by the multiparticle distribution
function describing the configuration of all the atoms
involved when in the critical spatial configuration. This
specific assumption about the rate-determining step
greatly simplifies the mathematical treatment. It is not
necessary to make this approximation but the mathe-
matical complications then completely obscure the me-
chanical situation. Note that this approximation in-
volves the assumption that the amplitude of the shell
atom vibrations is sufficiently small that the product of
a number of exponential factors, with negative expo-
nents — U ;/kT, is still much larger than the one term
involving in the Boltzmann factor the large energy Ul.
This assumption appears accurate on the harmonic
oscillator model for which the energy is proportional to
the square of the amplitude. We first focus attention on
the motion of the migrating atom.

In the following paragraphs we shall make extensive
use of Slater’s* results. We repeat many of them here
since they are unfamiliar to most investigators inter-
ested in solid-state physics.

We assume that a normal mode analysis of the crystal
has been made including the effects of lattice defects?
and that therefore the normal coordinates Q; and fre-
quencies »; are known. Consider some very large crystal
with a low density of vacancies. About each vacancy
site excise a volume element sufficiently large that the
motion of an atom in the shell surrounding the vacancy
in an arbitrary direction is essentially uncorrelated with
the motions of atoms outside the volume. Under these
circumstances the rest of the crystal serves as a heat
bath for the subvolume under consideration.

Let the displacement in the direction of the line be-
tween the occupied and vacant sites be denoted by gi.
Then ¢ may be represented as the superposition of
normal coordinates with various weights, a1,

=2i0104 9)
Q,': 61'% COS[ZW(VJ-}*&Z*)], (10)

with v, €;, and §; the frequency, energy and phase of the
1th normal coordinate. The {e;} and {6;} change only
through the interaction of the volume element with the
surrounding heat bath. However, although the energy
and phase of a single normal coordinate does not change
except due to external interactions, the amplitude of a
particular atomic motion does change due to the time
dependence of the superposition of the normal co-
ordinates.

The atom is assumed to jump from one lattice point
to another if and when the particular coordinate ¢
reaches a critical value ¢o. For this to happen, the
contributions to ¢; of the normal coordinates must
satisfy the relation

and

Z¢|a1¢|6;§>qo. (11)
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If there are # modes of vibration which contribute to the
coordinate ¢y, then the total energy is easily seen to be

U=3ia"e;, (12)

since there are no interactions between the normal
coordinates. The number of contributing modes, #, may
be very much smaller than the total number of modes of
vibration. Symmetry effects prevent certain modes from
contributing to ¢; and the establishment of a precision
to within which ¢; is to be specified provides a cutoff for
many others. From Eq. (11) it is readily found that the
minimum energy satisfying the condition expressed in
Eq. (11) is of the form

Ui=q/2 1" aud, (13)
where it must be emphasized that Uy is the minimum
energy required for the atom to achieve the critical
amplitude and is not the activation energy. We shall
discuss the choice of go in Sec. IV.

Due to the exchange of energy by the region of the
crystal under examination with its surrounding heat
bath, the subvolume fluctuates in energy. Let w be the
frequency with which these fluctuations in energy occur.
If the rate at which an atom jumps into a vacant lattice
site is small relative to the frequency with which the
energy of the subvolume (more particularly the #
normal coordinates contributing to the coordinate ¢;)
fluctuates, then the subvolume under consideration will
be essentially in thermal equilibrium with the sur-
rounding thermostat. Now, the combination of the
condition expressed in Eq. (11) with the expansion of
Eq. (9) leads to the following definition of the critical
configuration which must be realized for diffusion to
occur:

G1—qo= 2 avseit cos[ 2w (vit+0,) ]—qo=0. (14)

=1

Consider an ensemble of subvolumes of the type de-
scribed. The assumption that the frequency of fluctua-
tions, w, is very much larger than the frequency with
which ¢1—qo passes through zero from the region
g1—go<0 permits us to replace an ensemble average by
the long term time average behavior of the sum (14).
Let M ({e;}) be the long term average frequency of zeros
of Eq. (14) defined as

M ({e;}) =frequency of zeros of } lim

T>0

1=
X[— Z aueﬁ COS[ZT(VJ-’-&Z')]—QO], (15)

T =1

where the factor one-half arises from the fact that we
are interested only in the frequency of approach to zero
from the region ¢;—¢o<<0. As indicated, the frequency
of zeros is a function of the energies ¢;, the definition
(15) implying constant total energy in the # normal
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coordinates. The total rate at which an atom reaches the
critical amplitude is then equal to the probability of
finding the system with total energy given by Eq. (12)
multiplied by the long term average frequency of zeros
corresponding to that total energy, integrated over all
values of the energy larger than a lower limit, U,,

1 = de;  de,
F1= MCXP(——Z 6,,)-——
U>Us kT =1 kT kT

The frequency of zeros of the trigonometric sum has
been found by Kac to be*?

1. = pr*cos(qex) » .
M=— f f H {Jo(aueﬁx)
42 J_ J_ y2 i=1

- J() (ali[:ei(x2+47ry2u,-2)]%)}dxdy,

with Jo(x) the Bessel function of zero order. Equation
(17) automatically satisfies the condition that M ({e})=0
when U < U, so that the range of integration in Eq. (16)
can be over all values of the energy. Insertion of Eq.
(17) into Eq. (16), followed by the indicated integra-
tions, leads to the exact result

(16)

(17)

— yp— U0/ kT
I1=pe Uo/kT,

(18)

with the mean frequency » defined by the relation

n n
=3 a1 vd/ ) ard,

=1 i=1

(19)

and where Uy is given in Eq. (12). Note that the fre-
quency lies between the greatest and smallest frequencies
contributing to ¢i. The role of imperfections in de-
termining the rate of diffusion is contained in the
normal-mode analysis, presumed known. With this
knowledge a calculation of » can be made from physical
approximations to the normal-coordinate contributions
to q1.

To complete the specification of the frequency of
atomic jumps now requires consideration of the multi-
particle distribution function in configuration space. In
general, the probability density for finding molecule one
in the volume element dr; about ¢i- - - and molecule %
in volume element dr, about g is given by?®

CP(h)(qn"'gh)zf‘"fe—U/deTIH—l"'dTN/
f f e UGz, - dry.  (20)

In a crystal, the many-body probability density may be
expressed as the product of probability densities in pair

7M. Kac, Am. J. Math. 65, 609 (1943).
8 See, for example, T. L. Hill, Statistical Mechanics (McGraw-
Hill Book Company, Inc., New York, 1956).
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space. In contrast to the case of liquids, this superposi-
tion principle is correct in the harmonic crystal. To
illustrate, consider that only two shell atoms must move
to provide a large enough hole for diffusion. The proba-
bility density in triplet space may be decomposed as
follows®:

@ (q1,42) 0 (1,450 (¢2,3)
C®(g1,g2,95) = . (21
OD (g1)®W (g2) @ (g3)

It is convenient to define the pair correlation function
2ui® by the relation

@@ (Qk,QZ) =pD (qk)(;)(l) (Ql)gkt(z),
thus enabling Eq. (21) to be rewritten as
@ (g1,42,45) =P ()PP (g2) PP (¢5)g127815Pg25®,  (23)

and from Eq. (20) g is seen to be

g12(2)=v2f-"fe_U”CTd'rs---dfzv/
f- . 'fe_U”‘Td'rl- cdry, (24)

WP (gy) = e~ VU,

WP (gg) = eV,

(22)

and

(25)

where U; and U, are the energies required to place
particles one and two at distances ¢; and ¢» from their
lattice points and v is the volume available to an atom,
the volume of a cell. The pair correlation function de-
fined herein is normalized differently than the one used
in the theory of fluids.® The outstanding feature of a
fluid is the constant singlet density, ®®P~1/V, whereas
crystals have a periodic structure. The existence of this
periodic structure makes it convenient to define coordi-
nates in terms of displacement from lattice points. The
probability densities which we are using and the corre-
sponding pair correlation functions all are taken to refer
to displacements from lattice points and not to general
points in space. '

Let the total potential energy of the crystal be
written in the form

2U= 3 4945,

>7

(26)

where, as before, the ¢, are displacements from the
lattice positions and the a;; are coefficients. To compute
the integral in the denominator of Eq. (24), we make a
normal-mode analysis for all N atoms, which leads to
the well-known result

i)
w=11 2wmy 2 ’

where the spectrum of frequencies is to be determined,

27
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including lattice defects, from a more extended analysis
and m is the mass of an atom. To reduce the integral in
the numerator, we require a different normal-mode
analysis in which the coordinates of particles one and
two are omitted from the diagonalization of the
quadratic form.® To do this, transform Eq. (26) to the
equivalent form

3N 3N 3N
2U= Z diqu'q]"F Z alinQi"‘ Z @2;3929 ;
i>j=3 i>3 i>3

+(111Q12+ 2(11291Q2+ (122922~ (28)

Let the determinant of the matrix which diagonalizes
the first term of Eq. (28) be denoted by 4A¥—2, Then the
potential energy U is transformed to the form

3N
U=32 mofQi+32 2 a1:q1R Q0

i=3 1 i>3

+32 2 angeRinQu

I >3

F3augP+ 100192320027, (29)
where, w; is the angular frequency associated with the
ith normal coordinate Q; and R;; and Rj;, are the
normal eigenvectors corresponding to columns ¢ and j
of the transformation matrix. The integration indicated
in the numerator of Eq. (24) may now be performed by
completing the square, the final result being!®

1
g12(2) =1? CXP[ - ﬁ(allglz‘{' 20129192+ 022Q22)]
L2
XHIA(N~2) l—(azv—s)/2 exp(——————-———)

p Amew 2kT

2rkT)? 2rkT}
L/ o

Mo’ v Lmw,?

L,= (1/‘/2)2 i(ali91+02iQZ)Riw (31)

By decompositions similar to that expressed in Egs.
(21) and (22), higher order distribution functions may
also be decomposed. The final form of the diffusion
coefficient is thus seen to be, collecting Egs. (1), (4),
(18), (20), (23), and (25),

where

h
D=3 2 ¢I'®@PeV/ T (Ax)* [T 6(g;—gj0)dyg;
n.n. 7

=3Zv(Ax)pe Vo [T e Vi I gri® (qrgqy),  (32)
7 E>1

91 am indebted to Dr. R. M. Mazo for pointing out the possi-
bility of this transformation.
107, Van Hove, Phys. Rev. 95, 249 (1954).
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with the g¢;o’s the required critical amplitudes of shell
atoms, and where the factor eU*T has been inserted in
the first form to account for the fact that I'; contains as
a factor ®®(go) which also appears in the probability
density @,

IV. DISCUSSION

Itis of interest to transform Eq. (32) to a form similar
to Eq. (3) and to determine the activation energy. As-
suming that the details of the diffusive mechanism are
known, i.e., the numbers of atoms involved and their
directions of motion, etc., Eq. (32) may be rewritten in
the form

1 1
D=vya% exp(——z U0+U]~) exp(——— > sz)
kT i ET k>1

1
Xexp[—k—f(AHh— TASh)], 33)

where the constant 4 is composed of the number of
nearest neighbors and the geometric parameters which
convert the jump length AX to the lattice parameter a,
the potential of mean force Wy, is defined by

gk l(2) = e—Wkl/kT’

(34)

and AH, and AS; are the enthalpy and entropy of
formation of a hole. This latter factor is just the
thermodynamic relation between the site fraction of
holes and the energetics of formation. If the enthalpy of
activation is now defined by
dIn® AHY

=T (35)
a(1/T) k

we readily find that
AHT= UO"“Z U]+ Z AH“‘}-AH;,,
j E>1

7

(36)

where AHy; is the energetic contribution to the po-
tential of mean force. In a similar manner, an entropy
of activation may be defined as

AST=AS+ X ASi, (37)
k>1
W],,-l:AHkl—TASkl, (38)

where the new symbols have obvious meanings. The
total entropy of activation is composed of the entropy
of formation of the lattice vacancies plus the entropic
contributions to the potential of mean force. It is not
immediately obvious that the entropic contributions
ASy will be related to the temperature coefficient of the
elastic moduli.2 For, if this suggestion of Zener’s is

11 AHy; is defined by the relation 9 Ingy®/9(1/T)=—AH/k
with analogous formal definition of ASz:.
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carried to its logical conclusion, it is implied that the
total entropy of activation is due to the temperature
dependence of the elastic energy with the complete
neglect of the entropic changes due to changes in
vibrational amplitudes, etc. In a crude approximation,
this amounts to neglecting terms of order of magnitude
ASamp=R In(g®/Z{q:?)) for the migrating atom. The
mean square amplitude of vibration may be estimated
for a Debye crystal for which

3T hy\? 1
=T (Y
Ar'mkO@p? \2x/ 12mkT
When ©p=200° T'=300° m=>50 amu and go=a/2
=102 cm, we obtain ASamp=7.3 entropy units/mole.
The estimate is probably not too accurate but does
indicate that an appreciable error can be made by
considering only the elastic contribution to AST.

It is pertinent to point out that the energy U, calcu-
lated from Eq. (13) will be a very poor approximation to
the energy required to reach ¢o in a real crystal due to
the neglect of anharmonic forces. This does not detract
from the theoretical utility of Eq. (13) which expresses
a relationship between the energetics of the motion and
the contributions of the various normal modes. The
critical distance go is not given by the theory. It must
be assumed from some model of the lattice and the
diffusive process or calculated in a manner to be dis-
cussed below. If we choose go as half the distance be-
tween sites, the simplest procedure to use would then be
to calculate the ¢jo from the geometry and for hard
spheres. In view of the steepness of the repulsive po-
tential this is probably an adequate approximation. It
is important to note that the g¢jo are fixed by the
geometry and the choice of ¢o. We have shown that an
“activation energy” can be defined by the temperature
derivative of the diffusion coefficient, and this activation
energy contains U, additively. The remaining terms
should be amenable to fairly accurate approximation on
the harmonic potential model because they refer to
displacements of much smaller magnitude. If then an
experimental value of the activation energy (enthalpy)
is given, we can in principle calculate U, by difference
with reasonable accuracy. From U, and the normal-
mode analysis, go could be calculated. Owing to the
inaccuracy of the harmonic potential it is probably
preferable to calculate U, in the manner indicated
rather than from Eq. (13).

The necessity of choosing go from considerations ex-
ternal to the formal theory is an expression of the
unsatisfactory manner in which irreversibility has been
introduced. In this theory, as in all other crystal diffu-
sion theories, irreversibility is introduced by fiat. It is
assumed that once the top of the col has been passed,
or once a critical amplitude attained, the motion be-
comes irreversible. That is, the Einstein relation, Eq.
(1), is tacitly accepted and all that is computed by the
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theory is the frequency factor. To the author’s knowl-
edge, no general theory of irreversible processes has been
constructed for the crystal. The arbitrary nature of the
introduction of irreversibility is reflected in the necessity
for a col, or for go.

To proceed with the analysis presented herein, it is
in principle possible to evaluate AHy; and ASy; by
taking suitable derivatives of Wy; as defined by Egs.
(30) and (34). This procedure is, unfortunately, alge-
braically complicated. A crude approximation to the
activation energy may be obtained by neglecting the
terms AHy; relative to the other contributions. In that
case, if every displacement coordinate is represented as
the sum of contributing normal coordinates, it is easily
seen that

Uj=q;?/ 2. a;d,

=1

(39)

and is determinable from the normal-mode analysis. No
such approximation can be made for the entropy of
activation where the dominant terms are likely to be
just the ASy;. At present the best procedure would seem
to be the use of the suitable derivative of Eq. (30).
The dynamical analysis of diffusion presented in this
note has been based on several implicit assumptions not
mentioned in Sec. I. The first and most obvious of these
is the tacit acceptance of the Einstein relation, Eq. (1).
The analysis given is not a complete dynamical theory
of the diffusion coefficient, but only of the frequency
factor I'. In the process of evaluation of the frequency I’
it was assumed that the incidence of fluctuations in
energy of the subvolume considered is random. This
leads to the conclusion that the incidence of the critical
configuration is also random. So long as the frequency
of the fluctuations is large relative to I', it does not
matter whether or not this is rigorously correct. It may
be shown* that the frequency with which the central
atom reaches the critical configuration is, in general,
M (1—(e 7)) where the averaging is over the intervals
between zeros of the sum (14). The mean frequency of
zeros will be proportional to 771, and if w>>7~1, then
wr>1 and the frequency with which the central atom
achieves the proper amplitude and position is just M
independently of the actual distribution of fluctuations
or zeros. It is extremely likely that the frequency of
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energy fluctuations fulfills the condition w>T'. The
model considered exchanges energy with the heat bath
at every lattice point on the surface of the subvolume.
The frequency with which the energy of a surface atom
coupled to the heat bath exceeds the mean thermal
energy is clearly larger than M, and since there are N?
atoms on the surface, the condition w>>T is likely to be
satisfied.

Turning to a consideration of the thermodynamic
functions for vacancy formation, it should be noted that
Vineyard'? and Dienes have proposed that the entropy
of formation of a vacancy is just RZ In(»'/v), where »’
and » are respectively the frequencies (on an Einstein
crystal model) of the unperturbed atoms and the atoms
neighboring a vacancy. This estimate neglects the very
large perturbation which leads to the localized im-
perfection mode discussed previously. Further, the use
of an Einstein model would be valid if the spectrum of
frequencies remained unaltered in the vicinity of the
imperfection, but this is not the case. The formula
proposed by Vineyard and Dienes is a very useful ap-
proximation if the reservations mentioned are kept in
mind.

The dynamical theory presented herein is seen to
provide unique definitions of all the fundamental
parameters appearing in Eq. (3), as well as some
physical interpretation of the relationship between the
motion of a migrating atom and its surroundings. It is
in principle now possible to compute every parameter of
Eq. (3) from a microscopic model, though the calcula-
tions will involve considerable labor and the energy U
will be poor due to the harmonic potential. Further
investigation of the details of the effects of lattice
imperfections along with simplifications of the calcula-
tions will be presented later.
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