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A theory of the eR'ect of a constant magnetic field on the behavior of ultrasonic attenuation in normal
metals at low temperatures of the order of liquid helium temperatures is given. The ideas are of the same
kind as those suggested by Pippard to account for the attenuation in the absence of an external field. The
diferent geometries are specified by the directions of three vectors, the wave vector q of the acoustic wave,
the direction of polarization uo, and the external magnetic field Ho. The analysis shows that, for a transverse
wave polarized in the direction of Hp (i.e., up and Hp are parallel and both are perpendicular to q) the
attenuation decreases as

~

Hp
~

' for large fields. When up and Hp are perpendicular and q is perpendicular
to both, the attenuation increases as

~
Hp' for large

~
Hp ~. For a wave such that up and q are parallel and

Hp is perpendicular to q, the attenuation increases asymptotically to a constant value as
~
Hp~ increases.

The maxima and minima obtained experimentally by Morse and co-workers cannot be explained on this
model. An absorption similar to that occurring in cyclotron resonance absorption is obtained in the attenu-
ation of transverse waves (up perpendicular to q) when Hp is parallel to q.

I. INTRODUCTION

T low temperatures the main mechanism respon-
sible for the attenuation of ultrasonic waves in

metals is the scattering of conduction electrons by the
ultrasonic phonons. The attenuation can be regarded
as being the decrease, per unit distance travelled, in the
number of phonons in the ultrasonic wave as it pro-
gresses in the metal. The phonon-electron scattering
gives rise to a transfer of energy from the ultrasonic
wave to the conduction electrons which, in turn,
transfer their excess energy to the thermal phonons.
Thus, there is an irreversible Qow of energy from the
acoustical phonons to the thermal phonons.

Early measurements of ultrasonic attenuation in both
normal and superconducting metals have been per-
formed by BommeP and MacKinnon. ' In the region
where the electron mean free path / is short as compared
with the wavelength X of the sound wave, the attenu-
ation is proportional to the square of the ultrasonic
frequency. However, the attenuation becomes propor-
tional to the frequency when /)). The attenuation
also decreases with increasing temperature having
a Qat maximum at absolute zero. Recently, '4 it has
been observed that the attenuation changes if the
metal is in the presence of an external magnetic
Geld Hp. When ql(1, where It= 2sr/X is the propagation
number of the sound wave, the attenuation decreases
inversely as the first power of the magnetic field when

~
Hp~ increases. For ql) 1 the attenuation presents one

*This work has been assisted in part by the Once of Naval
Research, the Signal Corps, the Air Force OfBce of Scientific
Research, and the National Security Agency.' H. E. Bommel, Phys. Rev. 96, 220 (1954).

s L. MacKinnon, Phys. Rev. 98, 1181 (1955); 98, 1210 (1955);
100, 655 (1955).

~R. %. Morse and H. V. Bohm, Proceedings of the Fifth
International Conference on Low- Temperature Physics and
Chemistry, Madison, Wisconsin, August 26-31, 195'7 (unpub-
lished); Morse, Bohm, and Gavenda, Phys. Rev. 109, 1394 (1958).
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or several maxima and minima as a function of ~Hp~

before decreasing as 1/
~
Hp

~

for large fields. It has been
suggested' ' that this eGect is caused by electron reso-
nances similar to those occurring in cyclotron resonance
absorption. These experiments were all performed with
Hp perpendicular to the direction of propagation of the
wave.

The theoretical treatments of ultrasonic attenuation
in metals consist in calculations of the power loss by
the ultrasonic wave to the electron cloud. In the region
in which q/«1 the attenuation is interpreted as arising
from the viscosity of the electron gas. ' The electrons
travel between regions in the metal having diGerent
particle velocities, thus giving rise to shear stresses of
the same kind as those which occur in the propagation
of waves in a viscous Quid. The eGect of an external
magnetic field on the viscosity of the electron gas has
been considered by Steinberg. ~ A magnetic field applied
in the direction of polarization of a transverse wave
tends to decrease the viscosity of the electron gas. In
fact, the presence of the magnetic field shortens the
range of the electrons in a plane perpendicular to Hp,
thus rendering the number of electrons that transfer
momentum between two layers of the electron gas
smaller than the same in the field-free case. Because the
power loss by the ultrasonic wave is proportional to the
viscosity, the attenuation is, in this case, a decreasing
function of Ho. When q/&1 the absorption occurs
because of direct collisions between electrons and
phonons. Kittel' has calculated the decrease in the
number of ultrasonic phonons, caused by the collisions
with conduction electrons, as the wave progresses in
the metal. Pippard' has given a rather complete

s A. B. Pippard, Phil. Mag. 2, 1147 (1957).
e W. P. Mason, Phys. Rev. 97, 557 (1955).
7 M. S. Steinberg, Phys. Rev. 109, 1486 (1958).
e C. Kittel, Phys. Rev. 98, 1181 (1955); Acta Met. 3, 295

(1955).
P A. B. Pippard, Phil. Mag. 46, 1104 (1955).
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discussion of the problem in the absence of an external
magnetic field. His argument is as follows. If the
electron mean free path were infinite, the deformations
of the lattice as the ultrasonic wave travels through
the metal would produce adiabatic changes in the shape
of the Fermi surface. However, the collisions tend to
restore the Fermi surface to its original shape. But
this process can never be complete, particularly if the
relaxation time is long. Therefore, the total electronic
energy will, on the average, be greater than its thermal
equilibrium value. This excess energy is dissipated to
the thermal phonons thus producing an attenuation of
the acoustical wave. Pippard's treatment gives expres-
sions for the attenuation for all values of ql.

In this paper we shall give a theory of the magnetic
field dependence of ultrasonic attenuation in metals
along similar lines of argument as those given by
Pippard. A unified treatment based on the usual
transport theory in the presence of a magnetic field Hp
is given. The results of our work, in the case where the
external Geld Hp tends to zero, coincide with those
obtained by Pippard. '

We shall assume that the metal consists of a lattice
of ions embedded in a uniform sea of conduction elec-
trons, that there is one conduction electron per atom,
and that the electrons can be properly described as a
degenerate Fermi gas. The attenuation of sound waves
on this model is caused by the following mechanism.
When the wave propagates in the metal, the ions oscil-
late around their positions of stable equilibrium. The
electrons will be dragged by the ions in their motion.
However, there will always be a lag in the motion of
ions and electrons, which will give rise to electric
currents. These electric currents induce electromagnetic
fields which are able to transfer energy to the conduction
electrons. The power per unit volume 8" absorbed by
the electrons can be calculated to determine the
attenuation n by means of the relation

n= 2W/(p iud'm, ),

where p is the density of the metal, e the velocity of
sound, and u the particle velocity describing the sound
wave.

In Sec. II we develop the method of calculation of
the fields carried by the lattice and the power absorption
8'. The procedure consists in the simultaneous solution
of the Maxwell equations governing the electromagnetic
fields and the Boltzmann transport equation relating
the electron currents to the fields. In Secs. III and IV
we consider the special cases of shear and longitudinal
acoustic waves, respectively. In both these cases the
external magnetic field 80 is assumed to be perpen-
dicular to the direction of propagation of the ultrasonic
wave. The case in which the external magnetic held is
parallel to the direction of propagation of the wave is
treated in Sec. V. The results do not agree very well
with experiment. A detailed account of the results and

of the discrepancies with experimental information is
given in Sec. VI. The most important difference from
the experimental results is, perhaps, the inability of
our theory to account for the maxima and minima that
are observed when ql&1. Let us consider, to fix the
ideas, the case when Hp is perpendicular to both the
direction of polarization uo of the wave and to the
direction of propagation defined by the wave vector q.
Also assume a shear wave, i.e., that uo is normal to q.
It is argued' that, if the magnetic field is properly
chosen, the radius of the cyclotron orbit of a group of
electrons on the Fermi surface may be such that the
electrons are accelerated by the electric field associated
with the acoustic wave, thus giving rise to a power
absorption. However, if we consider a similar orbit
which is equal to the previous one except that it is
displaced in space, in the direction of propagation of
the wave by half of the wavelength, then, the same
amount of energy that the electronic cloud absorbed
from the ultrasonic field by means of an electron in the
first orbit is returned to it by an electron in the second
orbit.

A few words should, perhaps, be said about the
limitations of our treatment. We have assumed that
the electrons have a constant relaxation time over the
Fermi surface. This approximation is good for scattering
by lattice imperfections. However, no such relaxation
time for phonon-electron collisions can be defined at
the low temperatures considered here. We think,
nevertheless, that this limitation is not very important
because, at low temperatures and for the usual crystals
that can be obtained, impurity scattering is the domi-
nant mechanism. Also the inherent approximations of
the Boltzmann transport theory will be present in this
theory. For magnetic fields such that the cyclotron
resonance period is small compared with the relaxation
time, the validity of the Boltzmann transport, theory
is questionable.

u(r, t) =up exp(ia&t —iq r), (2)

where co is the angular frequency and uo is parallel to
the direction of polarization of the wave. The variables
3 and r are the time and the position vector, respectively.
The velocity of sound in the direction q is

(3)

While the wave propagates in the metal, the ions will
experience oscillatory motions around their positions
of stable equilibrium with velocities given by (2). The
electrons will tend to screen the local electric charges.
Thus, they will follow the ions in their motion. However,

II. GENERAL THEORY

Consider a sample of metal in which a sound wave
propagates in the direction of the wave vector q. The
wave may be characterized by the velocity u of the
ions which can be expressed in the form
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there will always be a phase diAerence between the
displacements of the two types of charges, thus creating
local electric currents which have the same space-time
periodicity as (2). These unbalanced local currents will
produce a magnetic field H(r, t) which will, in turn,
induce an electric field E(r,t). The field E is responsible
for the motion of the electrons and will, therefore, be
functionally related to the local currents. The fields E
and H are obtained in terms of u by means of a self-
consistent calculation which takes the screening prop-
erty of the electrons into account. If the sound wave
has a longitudinal component, i.e., if u q&0, there will
be other electric fields arising from local changes in the
electron density n. In fact, the distortions of the lattice,
produced by the propagation of a longitudinal wave,
cause local changes in volume. When the time
between lattice-electron collisions is much shorter than
the period of the sound wave (»p~&&1), the electrons
have time to distribute themselves with densities in
accordance with the local volume distortions in the
crystal. These local charge distributions produce an
electric field pointing in the direction of propagation of
the wave. The electromagnetic fields carried by the
lattice can be consistently calculated with the aid of
Maxwell's equations.

As all the electromagnetic vectors in the lattice have
the periodicity of u, it follows, from Maxwell's equa;
tions, that

and
cqX E=con,

cqXH=4m. ij,

(4)

(5)

where c is the velocity of light and j is the total current
density which is composed of the electronic and ionic
current densities, i.e.,

j=J—Neu, (6)

where J is the electron current density, N the number
of atoms per unit volume in the crystal, and e the
charge of the electron. In Eq. (5) we have neglected
the displacement current. The electron current density
J satisfies the equation of continuity

q J=e~lVi,

Thus, Ohm's law is not an appropriate approximation
here. The dependence of J on E is found by considering
the transport problem in detail.

I-et (1/4rp) f(r,k, t)drdk be the number of electrons
in an element of volume drdk around the point (r,k)
in p space at the time t. Here k is the wave vector of
the electron. The time rate of change of the distribution
function f, coming from the drift of the electrons and
the presence of the fields, is

e 1
vVf— E+—-vX(H, yH) V,f,

h c

e—+v V'f+ E+—vX (—Ho+H) Vj,f+
Bt c

=0. (9)

The local equilibrium value f of the distribution
function is not equal to the Fermi function fp(»),
because the electron density e= N+1Vi is not constant
throughout the crystal, and because the lattice as a
whole is moving locally with a velocity u. The function
f is given by

f(r, t) = {expL(»'—»p')/kT)+1} —', (10)

where 6p is the local value of the Fermi energy, and 6'

is the kinetic energy of the electron relative to the
moving lattice. Here k is the Boltzmann constant and
T the absolute temperature. To first order in u, we have

where v=hk/m is the velocity of the electron in the
state k and m its mass. We now take into account the
collisions of the electrons with lattice imperfections and
thermal phonons by assuming the existence of a
relaxation time ~ which is a function of the electron
energy»= A'k'/2m alone. The electron distribution
function f will relax towards its local equilibrium value

f with the characteristic time ~ (here, as before, it is
assumed that ~v&&1; this assumption will be retained
throughout this paper). The time rate of change of f
arising from the collisions is —(f f)/7-. T—hen, the
steady-state distribution function f must satisfy the
equation

where E& is the departure of the electron density
m=lV+Ni from its equilibrium value N. From Eqs.
(5), (6), and (7) we obtain »p'= »p+-', »p(1Vi/N). (12)

1Vi=Nu q/a&.

Equations (4), (5), and (6) permit us to determine E,
H, and J in terms of u once we know the dependence of
Jon E.

The point relation J=aE, where o is the conductivity
of the metal, is not valid in the problem at hand
because of the presence of the magnetic field, and
because, in the region of interest to us, the electron
mean free path is comparable to distances in which the
electric field E experiences radical changes in magnitude.

In Eq. (12)»p is the Fermi energy of the unstrained
metal. Thence,

f= fp(» mv u ', »plVi—/1V)——

p= fp(») — (mv u+-,'»plVi/N). (13)

This expansion is justified if (mv u)/kT and Lp»o(Ni/
N) j/kT are negligible as compared with unity. This is
indeed the case for all practical purposes. For an
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input power of 0.01 watt/cm' the strain in the metal is
of the order of 10 '. The copper and an ultrasonic
frequency of 50 Mc/sec we estimate I=0.7 cm/sec and
X~=10 'E. Thus, for a temperature as low as 1'K,
(mu v)/kT=10 and Lsssp(Xi/Ã)$/kT=10

The deviation of the electron distribution function
from its thermal equilibrium value fp is small as
compared with fp and is proportional to the field E.
We shall, as is customary, assume a solution of (9) of
the form

f= fp+fi,
where fi has the periodicity of u. We linearize the
equation resulting from (14) and (9) in the usual
manner to obtain

e7
(1+ioir iq v—r) fi Hp —(kXV'gfi)

mc

Using (17) and
e

J(r,t) = ~f, (k, r, t) vdk,
4~3.g

(19)

3 +e2 tIr (2r «(8 y) ~2r+rp

J(r, t) =—
~ d8 sin8 dy — ' dy'

4' ma, ~ p "p e' &—1

m ) 1mvp Xi
X n(8, y').

i
E+—u i+-

er l 3 er N .
r & 1+igr —iq. v"r

dy" . (20)Xexp —
~ I

we obtain the required relation between J and E. This
relation turns out to be

dfp f m
e7 V —ll 360

dp & er ) 1V

In Eq. (20), n(8, y) is a unit vector in the direction of
the electron velocity v having polar angle 8 and azi-
muthal angle y. To obtain (20) we have made use of
the fact that, for temperatures much lower than the
Fermi degeneracy temperature, dfp/ds b—ehaves as
the Dirac 8-function 8(p—sp). Once we have obtained
J and E in terms of u, the power absorption per unit
volume of the sample is given by

(15)

In this expression we have neglected H, being of the
order of 10 ' oersted. In the region of interest, when

~
Hp~ =500 gauss or more, H produces a tilting of the

cyclotron orbit by an angle of the order of j.0 4 radian.
It is now convenient to take polar coordinates (k,8, y)
in k space with the polar axis parallel to the external
magnetic field Hp. Here l'p is the radius vector in k space
and 8 and y are the olar an les of k. After some
transformations, (15)

W=-,' Re(J* E).

Bfi 1+i&or iq vr-
+

8p COc7

1 dfp

GOc7 d6-

p g
becomes We shall first consider the situation in which Hp is

perpendicular to g. This is also the important case from
the experimental point of view as the results of Hommel3
and Morse et ul. ' correspond to this geometry. Let us
take a system of Cartesian coordinates x, y, s with the

,
t' m ), &i s axis parallel to Hp and the y axis in the direction of q.

We shall assume that u is in an arbitrary direction.er
In this case Eq. (20) reads

where rp, = eHp/mc is the cy—clotron resonance fre-

quency of the electrons. Equation (16) can be solved
exactly by a procedure invented by Chambers. " The
solution is

dfp 1 1

ge2 $ p
m' p2m.

tss 2'
+P

J(r, t) =— d8sin8
~

dyn(8, y) dy'
4m mes, e"~—1~0 0

( m ) 1 mop Ei(r, t)
X n(8, y')

~
E(r,t)+—u(r, t) ~+-

er ) 3 er X

t' +" t' m
X ' dy' erv'

~
E+—u ~+-,'sp

er ) cV

XexpLy(y' —y)+i' sin8(cosy' —cosy) j. (22)

In (22), p and a are defined by the relations

with

& 1+ioir iq v"r—
Xexp —

~
d y", (17)

GPcT

y= (1+ivor)/rp, r,

a= gl/(1+srpr) .

(23)

(24)

1 r' 1+igr iq vr—
7— dp.

Or c7

The quantities v' and v" are the electron velocities
that have the azimuthal angles p' and p", respectively.

'P R. G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952).

Equation (22) defines a conductivity tensor relating J
to E. It is convenient, to determine the components of
this tensor, to introduce the expressions J~=J &iJ„.
When this is done, the components of the conductivity
tensor can easily be expressed in terms of integrals
containing Bessel functions. The integrations can be
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performed, in the form of a power series, to obtain

iumvo 2V~

A —u.*h*+~.whw+ 2~.w

ev. E

iumvo &a
tw =4rw*@*+4yww ~w+ 24yww

(25)

0 32y COth(2ry)
a sg gg

1+iv&r 4up

2r+1y r=o n=o

(26)

(27)
""

1+i~y 2up

3
coth (2yy)+-

g2

3 ~ ( 1)ru 2r 4(y+1) r

II (1+( ~ ')') (34)

In Eqs. (25), (26), and (27) the following symbols are
used

( 1)ru 2r 4r- —

+3 & - II (1+( & ')') (35)
2y+ 1 n~

m
S(r,t) = E(r,t)+—u(r, t),

( 1)ru2r

1+upr r=p (2r+1)(2r+3)

2r(r+1)'

(2g) 0 3% 32r( 1~
o,.= — —coth(~)+

~
1+ —

~
coth(pry)

1+ippr 4u 4u' & 4y2)

( 1)ru —2r—2

+3+ rr (1+(~v ')') (36)
r=p (2r+1) (2r—1) ~=p

30 ~ ( 1)rupr r4-2 1

&vv=
1+i4py r=p 2r+3 ~=p 1+(24y ')2

30 1 (—1)"u'"(r+1)

1+i4py y r=p 2r+3

(30)

(31)

In the calculations we have performed until this
point, we have kept the small term co~. From now on,
this term will be neglected, except in the discussion of
Sec. IV, whenever it appears in the combination
1+i4py Thu.s u=ql and y= (4p,r) '. Then, we see that,
for all practical purposes, the coe%cients 0, , , 0-„
are approximately real. It is convenient to give, for
reference in the following sections, the limiting values
of the components of the conductivity tensor for very
large magnetic fields (4p.y))1) and for zero magnetic
field (y= ~). For 4p,y))1, we have

( 1)ru2r30 II,, (32)
1+ippr r=p (2r+1)(2r+3) ~=p 1+(ny ')'

0'zz =
0 3 C2

pp, r 10 (4p,r)'.

0 ' 3 8
&su =

(4p,r)2 20 (4p,r)2

1 crG2

5 (4p, r)

3a u'+1

28 6
tan 'u —j.0'~s =0'zz ='

The Eqs. (29)—(32) are useful for the numerical compu-
tation of the coefficients of the conductivity tensor for
large values of Hp (i.e., ~

y ~
&&1) and for any value of u,

and for ~u~&&1 and any value of Hp. However, it is
important to know the behavior of the conductivity
tensor for

~
u~ )1 and fields Hp in the range in which

or, v 1. Expressions for the components of the conduc-
tivity tensor developed in a powers series in a can be

When HO=0 we find
found. The method to obtain this power series is
outlined in the Appendix. The results of these expan-
sions are

(3&)

(38)

(39)

(40)

(41)

P

0' 37K 3 3' t'0„= —coth(2ry) ——+ coth(2yy)
~

1+
1+ippr 4u u' 4u' 472)

o,u= —o.v, =o,

o„w= (30/up)(u —tan 'u).

(42)

(43)

(—1)"u-' 4

t
2(r+1)'(r+2)

1—3P 1+
r-p (2r+ 1)(2r+3) J

Equations (41) and (43) are valid for all values of u.

III. ATTENUATION OF TRANSVERSE WAVES IN
A TRANSVERSE MAGNETIC FIELD

r

X g {1+(24&-x)2~ (33) In. this section we shall apply the results obtained. in
J Sec. II to the particular case of the attenuation of
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transverse waves in a transverse magnetic Geld, i.e.,
the case when tl is perpendicular to both up and Hp.
For a transverse wave, X~=0. Two cases will be
considered. The first will be that in which uo is parallel
to Hp, and the second that in which up is at right
angles with Ho.

When up is in the direction of Hp, the only non-
vanishing component of the current density is

J.=a.,8.=otPE,+. (ml/er)j,

0.7

Oz6

with
ozz= fo (45)

0.5

In this geometry, E =E„=0 and B' /0 while the other
components of H vanish. From Eqs. (44), (45), (4),
(5), and (6) we obtain

0 04

0.3

qo is defined by

m (1-g)iqp'
Ez= Np

er q'+ilqps

q +sqp
J,=Nell'

q'+@qp'

(46) 0.2

O. I

I 2 4
ucT

qps =4prppo/cs. (48)

The attenuation 0.« for this situation is obtained from
(1), (21), (46), and (47). The result is

Fio. 1. Ratio (nn/ap), de6ned in Eq. (51), as a function of pz r
for the values of pl=0. 1, 1, 3, and 10.

Nm f (1—f.)q,'

pr'Vz q +t' qp

(49)

This requires space charges which cannot be in equi-
librium inside a conductor. Charges of this sort decay
exponentially in a time much shorter than the period
of the acoustic wave. Then, we have

(52)

(53)

ni(pp, r) ( 1 ) ( 1

(0) &5( ~ ) & &l (0)
(54)

Nm (1
pr Vz Ef' (50)

after the same approximations used before to derive
(50) have been made and where we have defined
o =op(po. r). The behavior of ni(pp, r) is similar to that
Of n[[ ((ozr) ~

For ~,7.&&1 and e, we obtain the approximate
expressions

holds. The dependence of all on the magnetic Beld
comes in through the dependence of f' on oi,r In Fig. 1.
we have given a graph of

n&~(pp, r) f 1 ) ( 1

n(O) &i.(+,r) ) (g(O) ) i c(0) &

n(0) 5(po,r)' E1—l (0)i
as a function of or.v and for several values of gl.

I et us now turn to the case where uo is perpendicular
to Hp, i.e., when up is along the x axis. In this case the
only nonvanishing components of the fields are E and
H, . One might think at first sight that there will be a
Hall field in the y direction. Such a field cannot be
sustained within the metal. In fact, a 6eld of this nature
would have the periodicity of (2); therefore, it would
change direction after a distance of half a wavelength.

(~.r)' ( 0(0)

n(0) 1+—g' 41—f'(0) J
(56)

When the external magnetic field vanishes, the attenu-
ation is

Nmf' 1
n(0)=

i

— —1 ),
Drnz Eg(0) ) (57)

In deriving (49) we have assumed that l' is real. As
we have remarked before this is approximately true if
cur«1. In this expression the symbol v, stands for the J„=o„,(E,+mg//er) .
shear velocity of sound. For an ultrasonic frequency
i =co/2pr=26 Mc/sec, with o = 2X 10" esu and n,-=3 The attenuation turns out to be given by
X ios cm/sec, (qp/q)'= (2o/i) (v,/c)' turns out to be of
the order of 10'. As l is of the order of unity, the
approximate relation
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where |(0)=
2Q Q

But, J„=Kepi as can be seen from (7) and (8). Of
3 8+1 course, this is only valid when the displacement current

is neglected. At the acoustic frequencies that are of
interest to us the displacement current is extremely

is result agrees with that obtained by Pippard. ' For small as compared with &el. Proceeding as before,

8«1 it can be shown that
)

Emvp'oi'r ( 8 22
n(0) =

I
1——ti'+ ' —"

I (58)
5pv s ( 35 175 j

For" Q& 1, For ~,r))1,

Xm -1
eg=

p8gr g 3
(64)

n (0)=4Emvpoi/ (3rrpv, s)

IV. ATTENUATION OF LONGITUDINAL WAVES
IN A TRANSVERSE MAGNETIC FIELD

Em Q'

pv~r 15

(1+ltr') (1—pti')
(65)

In the case of a longitudinal wave propagating in the

y direction and in the presence of a magnetic field in
the z direction, there will be a Hall field directed along
the x direction. Here up and q are parallel to each other
and Hp is perpendicular to both up and q. The argument
given in Sec. III holds only for drift currents that
originate in the y direction. Because the fields have a
space-time dependence of the form exp(ippt —i'); at
each instant they are constant on any plane which is
transverse to the direction of propagation of the wave,
Therefore, a Hall field can be sustained by surface
charges on the boundaries of the sample and no internal
charge densities are required. We determine the Hall
field E, by setting J,=0 and remembering that u is
directed along the y axis. From Eq. (28) and setting
J,=0, it follows that

Equation (65) tells us that the attenuation of a longi-
tudinal wave increases asymptotically to a constant
value as (co,r) increases. When Hp ——0,

Em Q' tan 'Q

n, (0) =
pvir 3(a—tan —'u)

(66)

for Q«1, and

for Q&)1.
ni (0)= prNmvpip/6pvtP (68)

which again is in agreement with the result given in
reference 9. Once more we give the expressions for the
limiting cases of Q« 1 and Q&)1. They are

4Emv p'oP r 9 23
ni(0) = 1——a'+ a'—

15pv)' 35 175

0 ~y $Q mvp Eyg„+-
o» 3 8r iV

Substituting (60) into (26), we find

mQ f t',Q vp)
J„=crtt Ev+ ( 1+——

er l 3 vt&

where v~ is the longitudinal velocity of sound and

(60)

(61)

(62)

V. ATTENUATION OF ULTRASONIC WAVES IN
A LONGITUDINAL MAGNETIC FIELD

The attenuation of acoustical waves in the presence
of a magnetic field Hp pointing in the direction of
propagation of the wave has been considered by
Kjeldaas. "Let us consider a wave propagating in the
z direction with the particle velocity u in an arbitrary
direction. The case of a transverse wave is particularly
interesting as we shall see later. If we consider the
portion of the Fermi surface corresponding to electrons
having a component of velocity ep cos8 in the z direction,
then if Hp is such that

The attenuation n& can now easily be obtained.
From (61), (24), a,nd (3) we get

ml p s(ql)'
Jv=«&v+ I 1+

er & 3cur(1+i(or))
n It may be argued that the attenuation given in (59) is inde-

pendent of the Coulomb interaction between ions and electrons
as the expression does not contain the electronic charge as a
parameter. However, we must remember that (59) is an approxi-
mation in which the large ability of the electrons to screen
unbalanced charges has been considered. If the charge of the
electron were much smaller than what it actually is, the better
approximation (49) should be used. It is seen that, if the electron
charge tends to zero, so does the attenuation.

co,=m& gsp cosO, (69)

"T.Kjeldaas, Jr., Bull. Am. Phys. Soc. Ser. II, 3, 1gp (195/).

we find an absorption that is very similar to that
obtained in cyclotron resonance. In fact, the electrons
travelling with velocity %vp cosa along the z axis will
experience an electric field having a frequency
= vL1& (vp/v, ) cos8$. Then if the field Hp is such that
(69) holds, the electrons we are concerned with will
observe a field E which is always in the same direction.
Therefore, an absorption of energy results.

To develop the theory quantitatively, we start from
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Eqs. (18) and (20). These equations become

1+iair iq—l cos8

Mc7
(70)

d0 sin30J,=-;.a„t'
~ o 1+ioir zql —cos8+iio, r

where 8 is defined as in (28) and

J~=J +iJy,

(71)

(72)

with a similar expression for h+. The s component of
the current density J, turns out to be completely
independent of the presence of the magnetic field. The
attenuation in this case, is simply that given in Eq.
(66). It only remains to consider the transverse waves.
From (71) we get

3o Sg
t

d8 sin'8
J+——

4(1+ioirWzoi, r)" s 1—za~ cos8
(73)

with a~ defined as

Cy=
1+z (o)W~o,)r

(74)

Performing the integration in Eq. (73), we find

3 a~'+1
tan —'a —1 . (75)

The attenuation is now calculated as before.
A more detailed analysis of the situation encountered

here is desirable. However, it turns out to be no simple
matter to get an expression for the attenuation for the
interesting range of values of the parameters q/ and co.~.
As we have stated before, electroacoustic resonances
should occur for electrons satisfying (69). The impor-
tant values of the parameters are q/& 1 and co,v- 1. An
order of magnitude estimate of the e6ect is given in
the next section.

VI. DISCUSSION

The present theory of the attenuation of acoustic
waves is unsatisfactory from the experimental point of
view. In fact, the behavior both at very large fields
(&e,r))1) and in the region where maxima and minima
of the attenuation as a function of ~Hs occur, is not
obtained on this model. The attenuation for large fields
in a transverse wave such that up is parallel to Hp

(q being perpendicular to u&) decreases inversely as the
square of

~
Hs~ while the experimental result shows a

decrease as ~Hs~ '. This result probably arises from
the limitations in the validity of the Boltzmann
transport theory for large magnetic 6elds, and is also
encountered in other galvanomagnetic phenomena such
as magnetoresistance. " The failure of the theory to

"R.G. Chambers, Proc. Roy. Soc. (London) A238, 344 (1957).

account for the oscillations in n before decreasing with
~Hs~ is a more serious one from our standpoint. We
have discussed the reason why our treatment fails to
show the oscillations in Sec. I. Similar difhculties arise
when us is perpendicular to both q and Hs, with us
again normal to q. Here, for large fields, the attenuation
increases indefinitely as ~Hs~'. The difference in the
large magnetic field behavior for the two possible
directions of polarization of the transverse wave can
easily be understood on the electron gas viscosity
picture. In fact, in the case of Hp parallel to up we
expect the attenuation to decrease with increasing

~

Hs
~

because the presence of such a field decreases the vis-
cosity of the electron gas. The electron gas viscosity
decreases in this case because

~
Hs

~

makes the electrons
less effective in the transfer of momentum in the
direction of propagation of the wave. When up is
perpendicular to He, for large

~
Hs( the electrons which

are accelerated in the direction of up are immediately
bent by the magnetic 6eld so that their direction of
motion is reversed. This produces large shear stresses
in the electron gas and therefore a large attenuation
results. This process creates a drift of the electronic
cloud in the direction of propagation of the wave. This
drift has the periodicity of u. If the drift were stopped
by a Hall field, for example, then the attenuation would
decrease with. co,v- for large fields. The experimental
result in polycrystalline copper' is that the attenuation
decreases with ~He~. We believe this effect to be
probably caused by Hall fields that can be maintained
inside the metal if the size of the grains is smaller than
the ultrasonic wavelength.

The most interesting case is, perhaps, the one con-
sidered in Sec. V. Here we have an absorption that
can, with justice, be called cyclotron resonance absorp-
tion. Let us assume that we have a circularly polarized
transverse ultrasonic wave. The eGect of the presence
of such a wave will be to set up a screw of radial electric
fields in the metal. The pitch of the screw is the wave-
length X of the acoustic wave. The system of fields as
a whole will be travelling along the direction of propa-
gation of the wave with the velocity of sound. The
electrons, in the presence of the external magnetic field,
move in helical paths the pitch of which depends on
the region of the Fermi surface in which they are. If
the electrons turn in the same sense as the sense of
polarization of the wave, and they have a component
of velocity ~p cosOp along the direction of propagation
of the wave such that in one cyclotron period of time
the electrons travel a distance X, i.e., if

(2zr/ro, )ss cos8e= X,

then the electrons will experience a field which acceler-
ates them away from the axis of the helix in much the
same way as in cyclotron resonance absorption. We
observe that we can separate the contributions to the
attenuation coming from carriers with charges of
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~

var cos8 rior cos8s
~

(—X/2. (7g)

If q/))1 this range LB of 8 satisfying (78) is approxi-
mately given by

LN= 2'/(ql sin8s). (79)

The number of electrons contributing to the effect is
proportional to the portion of Fermi surface in between
the angles 80&-,'d 0, i.e., proportional to —,'sin0068. Thus,
the change in attenuation from the value in the absence
of cyclotron resonance is roughly

different sign by using circularly polarized acoustic
waves with the planes of polarization rotating in
different directions. To give a detailed account of the
ultrasonic attenuation in this case, we need to express
(75) in terms of simple functions of the parameters ql
and co.v. This is not easy and we prefer to give a rather
crude calculation of the effect.

From Eq. (71) we see that the electrons which give
rise to the cyclotron resonance are those having a polar
angle Oo in the Fermi surface such that

cos8s ——(o~&te,)/qso = %re,r/ql (77)

We see that in order to obtain a resonance we must
have ( cdr/ql) ~ 1. For fields such that 1 &q/&&re, r
«(qo/q)' the attenuation becomes independent of the
field, but when ce,r))(qs/q)' the attenuation decreases
as (ro, r) '. When rd, r &q/ there will always be a portion
of the Fermi surface around the polar angle 80 which
will give an extra power absorption. The number of
electrons that contribute to the power absorption
depends on the relaxation time. If the relaxation time
is very large, few of the electrons remain in phase with
the electric field. The criterion to decide how many
electrons contribute to the cyclotron absorption is the
following. All those electrons with polar angle 0 on the
Fermi surface such that they do not get out of phase
with E by more than X/2 in their mean free path will
contribute to the power absorption. Therefore, the
range in 8 for the electrons giving cyclotron resonance
is defined by

tudinal magnetic field may, thus, give information
concerning the extent of the Fermi surface in the
different directions. For a successful application of this
technique single crystals should be used. However, we
do not believe that the distribution of effective masses
for different sections of the Fermi surface can be
resolved by an experiment based on this geometry.
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MATHEMATICAL APPENDIX

We shall briefly indicate here how Eqs. (33)—(36)
were .obtained from (29)—(32), Let us consider o..„
which is the simplest example. We are interested in
expanding the function

( 1)rrist'
P(o,~)=-'E, , II, (A1)

=o (r+s)(r+s) .=o1+(~v ')'

in a power series of a '. The product in the right-hand
side of (A1) can be expressed in terms of I' functions. "
Then we have

(—1)"l'"
F(~,v) =

4 sinh(sy) . s (r+-,') (r+s)

X (A2)
I (i~yry1)I ( i~yry1)—

with I,=ay. Consider now the function of the complex
variable s defined by"

1' 1 i1
Tpse f (f ] q$

(80)
xt2Z

P(s) =
(s+-',) (s+-',) I'(iy+s+1)1"( iy+s+—1) sins s

where g is defined in (45). We see that Err is inversely
proportional to both co and l, as we expect. In fact, the
larger l is, the fewer is the number of electrons that
contribute to the absorption. Also, if m is very large the
screw of fields E we have considered can, in a relatively
short time, get out of phase with the resonant electrons.

According to the argument presented above, if we
change the magnetic field slightly the attenuation n
will remain practically unchanged. However, if we are
in the region where co,=qvo an increase in the magnetic
field will obliterate the increase in the attenuation.
An experiment of ultrasonic attenuation in a longi-

(A3)

This function is analytic except at the poles at a=0,
~1, ~2, . and s= ——,', —2. Take now the integral
J'„"+&P(s)ds, where the contour of integration is a
curve that runs from —~ to 0 below the real axis, turns
around the origin, and goes back to —~ above the real
axis. The integral of P(s) along a circle of infinite radius

' E. T. Copson, An Introduction to the Theory of Functions of u
Complex Variable (Oxford University Press, London, 1935), pp.
205-232.

'~ The consideration of a function of this type was suggested to
the author by G. Dresselhaus.
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3 3a f' 1
Ii(a,y) =—coth(zy)+

i
1+ i coth(zy)

4u 4tt' ( 4y')

and centered at the origin, which is complete except for We get
a small angle around

~
args

~

=z. gives zero (see reference
14, p. 219). This shows that

t
(s+)

P(s)ds=
2+i~ „

4 sinh(z y) 4 sinh(~)
F(a,y) —— . (A4)

3~7
'

3 xv
( 1)r+—2r-2

+3+ II D+(~~ t)'3 (A5).=o (2r+1) (2r—1) a=v

The integral on the left can be performed directly. This is the result we needed to prove (36).
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Superconductivity and Ferromagnetism in Isomorphous Compounds
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Isomorphous germanides of some of the rare earth metals are observed to become either ferromagnetic or
superconducting. It is concluded that there is a close relationship between the two phenomena.

INCE the discovery of ferromagnetism in ZrZn2, '~

~ ~

~ ~

~

~

it has become increasingly more likely that the
relation between superconductivity and ferromagnetism
may be a much closer one than had until now been
anticipated, We have recently found a number of iso-

TABLE I. Transition temperatures of rare earth germanides.

and either germanium or silicon. Superconductivity or
ferromagnetism was discovered in the germanides listed
in Table I. In Table II measurements of the correspond-
ing silicides are reported.

From Table II it becomes evident that if any of the
silicides aside from PrSi2 should ever become super-

TABLE II. Transition temperatures of rare earth silicides,

ScGe2 superconducting
YGe2 superconducting
LaGe2 superconducting

CeGe2 ferromagnetic

PrGe2 ferromagnetic
NdGeq ferromagnetic

Transition
temperature

1.30'—1.31'K
3.8'K
1.49'K

Curie point

~4.5'K

19'K
3.6'K

Crystal
structure

?
tetragonal ThSi2
orthorhombically

distorted ThSi2

orthorhombically
distorted ThSi2

tetragonal ThSi2
tetragonal ThSiq

ScSi.„
YSi2

LaSi2
CeSi2
PrSi2

NdSi2

normal above 1'K
normal above 1'K

normal above 1'K
normal above 1'K
Ferromagnetic curie

point at 10.5'K
normal above 1'K

Crystal structure

orthorhombically
distorted ThSi2

tetragonal ThSi2
tetragonal ThSi2
tetragonal ThSi2

tetragonal ThSim

morphous compounds which are either superconducting
of ferromagnetic and which illustrate this point of view
further. These compounds are being formed between
elements of the third column of the periodic system

' B.T. Matthias and R. M. Bozorth, Phys. Rev. 109, 604 (1958).

conducting or ferromagnetic, this could only happen
at a much lower temperature than the corresponding
germanides. From this, one might ask whether an
electronic configuration favorable to superconductivity
is also favorable to ferromagnetism?
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