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for over three decades of velocity. The measured de-
pendence of the wall velocity on the electric held can
be shown under certain conditions to be consistent with
the well-known e I switching dependence of BaTi03.
A nucleation mechanism for the wall motion is sug-

gested by its Geld dependence, and the 6eld dependence
rules out the equation of motion usually applied to
domain boundaries.
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A theory is presented for the dependence of the galvanomagnetic parameters on the surface potential of a
semiconductor. The expression for the conductivity reduces to that given by Schrieffer when the magnetic
field is zero, Formal equations for the magnetoconductivity and Hall coefIIcient are derived. By using a
constant relaxation time, and a linear space charge region potential, one can obtain closed-form expressions
for the conductivity effective mobility and the Hall effective mobility. The Hall mobility is found to be
13% smaller than the conductivity mobility for large values of the surface potential.

INTRODUCTION
' 'N a recent paper, Petritz' derived a set of expressions
~ - for the Hall coeKcient and magnetoresistance which
depend on the surface potential of a semiconductor.
His derivation was based on an unbounded solution of
the Boltzmann equation. As a result, the expressions do
not explicitly describe the surface potential dependence.
In an earlier paper, SchrieBer' derived a formal expres-
sion for an effective conductivity mobility from a dif-
fuse-scattering boundary condition on the solution of
the Boltzmann equation. In this paper, we extend the
problem to include the presence of a magnetic 6eld.
Formal expressions are found for the magnetocon-
ductivity and Hall coefficient as functions of surface-
dependent terms. By using a linear potential in the
space-charge region we can evaluate the appropriate
integrals for these terms when the relaxation time is
independent of energy. The conductivity and Hall
effective mobilities are compared with each other.

GENERAL THEORY

in the specimen and fe is their equilibrium distribution.
We let

f=fo+fr, (2)

where f, is the perturbation function. Spherical energy
surfaces are assumed so that the equilibrium distribu-
tion function is given by

m 5~2 ey2 ez2

fs Cexp — —— +
2kT kT

(3)

The accelerations in the various directions are

u, = q(E,+ v„B)/srt, —
Gv= q(Eo —vgB)/5$,

a, = —qE, (z)/srt.

(4)

We assume that the magnetic field is in the s direction
and is constant in magnitude. Introducing Eqs. (2),
(3), and (4) into Eq. (1) and neglecting products of
frE. and f&E„, we obtain

We shall follow the general procedure used by i)fr qE* r)fr q& f r)fr r)fr'l
Schrieffer. The Boltzmann equation is assumed to have

gS 18 98z tg W gV~ 8V„/a relaxation time v in the collision term' so that

v grad„f+a grad„f= (fs f)/r, —
where f is the distribution function for the electrons

' R. L. Petritz, Phys. Rev. 110, 1254 (1958).' J. R. Schrielfer, Phys. Rev. 97, 641 (1955).
'A. H. Wilson, The Theory of 3Eetats (Cambridge University

Press, London, 1953). c= -',sttv, s—~(z). (6)

ft qo+—= ——(E-v*+E.vo). (5)
kT

By Lagrange's method, we obtain a particular solu-
tion of Eq. (5):
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Making use of this expression, we can transform f~ directions:
from a function of v, and z to a function of either e and
zor eandv, : I =—

q f&vQvQv„dv, ds,

f,(v„s)=f,( s, )o=f, ( v„)o. (7)

The latter transform was used by SchrieBer. Under
certain circumstances it is preferable to transform to e

and z. However, we shall not concern ourselves with
this problem here.

Introducing the transformed distribution function in
Eq. (5) and changing the variables by means of

8vz qr (vq c)Ez (vzq o)

I„=—
q tv„dvzdv„dvzds. (15)

We transform the integration over (v„v„,v„s) to an
integration over (v,8,o,AK). The Jacobian of the trans-
formation is rv/m. By using Eqs. (3) and (12), the
currents can be reduced to

mmC
I,= — ((A«(1 p'EP)+—2pHB«), , E,

kT
+ (2@HA Ir —(1 II,'H') B—«)z. z E„}, (16)

we find

v, =v sin8,

vy= v cos8)

We note that

af, q Haf, q,vf,
+ f~= — (E, sin8+E„cos8).

BE m B8 kT

~mC
I„= ((A«(1 —p, 'H')+2/JHB«)z, z Eo

kT
+(2yHA« (1—p—'H')B«)z Ez}. (1/)

(9)
For convenience we use the following notation

p'v' exp( —mv'/2kT)
(g). = ' g(, ) (e/kT)d

J J '
(1y&PHP)o

E=
"o qr(v, o)E.(v„o)

and that at the surface

Kp =K!zz =zzzq

(10)

Further,
(11)

(19)

where v„ is the z velocity of a carrier at the surface.
By making further use of Lagrange's method, it is

simple to show that for a disuse scattering boundary
condition, i.e., f~=0 at the surface, the distribution
function becomes

A« ——exp( —2Ko} cos2pHKo+2Ko —1, (20)

B«——exp( —2Ko} sin2pHKp —2pHKp. (21)

Upon setting I„=O, and using the usual definitions, the
Hall coefFicient is

1 ((2pHArI (1—p,'H')B«)z„~—
R=

Ho E(2pHB«+(1 —p' 'H)A )«. z)z
g

((1—eo«cosyHDK) (a~ sin8
k T(1+p'H')

fi=—

and the magnetoconductivity is
bq cos8 —e sin/IHDK b~ sin8 —uq cos8, 12

(22)'

where
hE=E—Ep,

v mC(1+R'o'Ho)
0' (A II(1—poH')+2pHB«)„, , (23)

gg= E —pBEy,

b~ Eo+pHE
IJ, = qr/m.

It is obvious that this solution vanishes at the sur-
face since there v, =v„and AE is zero. If we assumed a
specular scattering boundary condition, we would find
the usual bulk distribution function. If the scattering is
not entirely disuse, the distribution function would be
a weighted sum of the disuse and specular solutions.

CALCULATION OF THE COEFFICIENTS

In order to determine the galvanomagnetic coefh-
cients, we calculate the currents in the x and y

BII pH(2Ko 2Kpe '«——z) =pHB.—

Equations (22) and (23) then become

(25)

v.mC(1+R'a'Ho)
0' (A p'Ho(A+G —2B)),, „(2—6)

kT
v.mC(1+R'o'H')

R= (y, (2A —B)).„. (27)

If we assume that pH&(1, we can expand Eqs. (20)
and (21). Keeping terms of order p'H' only, we find

A«= (e P«+2Kp —1) y'H'(2Kp e '«o)—
=A p'H'G, (24)—
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LINEAR SPACE CHARGE REGION
POTENTIAL MODEL

Using the assumption that 7. is independent of
energy, Eqs. (26) and (27) reduce to

27/ kTpy C
o = (A)„ (28)

1 2m'kTjug3C
If.= —(2A —8)„

0 1S
(29)

////////J'///'///'/'/////
the m

pace
regi

where p& is the bulk mobility of the carrier defined as
qr/m, and where terms of order B' and higher are
neglected. If the potential in the s direction varies
linearly with distance, the field is constant and equal
to E„. Introducing this into Eq. (11) and noting
that at the surface v„= (2e/m)', and assuming that the
surface potential g, =fb, we find

Fro. 1. Variation of the potential ib(s) at the surface of a semi-
conductor. p, and tI'f, are the surface and bulk potentials, re-
spectively, Ey is the Fermi level and Eg is the band gap. The
specular reaction of minority carriers in the space-charge region
is indicated by the arrows on the path of the minority carrier.

There are several things to be noted at this point.
First, the expressions derived represent the sheet con-
ductivity and Hall coefficient. As such they yield the
conductivity and Hall coefficient per square of surface
for a sample of arbitrary thickness. In order to demon-
strate the eRect of the surface potential on these
quantities, a scheme must be devised to separate sur-
face and bulk eGects. Recently, the author has obtained
such a separation. ' The second point is that the assump-
tion of an energy-dependent relaxation time introduces
a serious computational problem: it has been impossible
so far to find a closed form solution of the appropriate
integrals using r(v, e) Without t.his assumption, the
magnetoresistance will vanish. In the remainder of the
paper we assume an energy-independent relaxation
time and treat the Hall coeKcient exclusively. The
third point concerns the form of the solution when H
vanishes. Comparison with SchrieGer's paper indicates
that our formal expression for the conductivity diGers
from his. However, this is due to our use of a negative
rather than a positive surface field.

Finally, in this paper we do not attempt to treat the
question of the minority carrier in the space-charge
region. As this carrier approaches the surface, it en-
counters a repulsive potential so that when the mo-
mentum is sufficiently low, the carrier will not reach
the surface but will be specularly reflected at the sur-
face barrier. This is indicated schematically in Fig. 1.
As a result only some of the minority carriers will suGer
a scattering collision with the surface. Thus, for this
case our treatment is inadequate.

' J. N. Zemel, Bull, Am. Phys. Soc. Ser. II, 5, 255 (1958).

t' e q
* (2mkT)'

&o= f-
t kT) qrE„

(30)

If we set y= (e/kT)' and n= (2trbkT)'/q7E„, then Eqs.
(28) and (29) can be integrated in closed form, leading to

o =NqybL1 —exp(rr') erfccr7, (31)

2n
R= Nqfjb' 1———(1—2rr') exp(rr') erfcn, (32)

2 7r2

where Ã is the number of carriers per square. X is
obtained from

N=) fsdvgv„dv, ds=
2+k Tpg

C(kT(~)4). (33)

Following the procedure suggested by Petritz, the eGec-
tive conductivity and Hall mobilities are respectively

(ref f/pb), =1—exp(rr') erfcn, (34)
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FIG. 2. The effective mobilities as a function of 0., where
n=(2mkT)&/qrE, . +rr/pb), is the conductivity effective mo-
bility and Qrr/pb)a is the Hall effective mobility.
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20!
(tteff/ttb)tr —— 1———(1—2n') exp(ns) erfcn . (35)

Thus the effective Hall mobility is some 13% less than
the eRective conductivity mobility.

In Fig. 2, these two terms are plotted for comparison.
For large values of o., corresponding to a shallow well,
the two mobilities are the same, i.e., approximately
unity. As the well deepens, the Hall term drops below
the conductivity term and quickly reaches a constant
fraction of the effective conductivity mobility. The
amount is readily calculated. When o. —+ 0, the eRective
conductivity mobility becomes

CONCLUSIONS

In this paper, we have derived formal expressions for
the one-carrier magnetoconductivity and Hall coeffi-
cient. By choosing a simple model for the space-charge
potential, an eRective Hall mobility expression is found
which is comparable to that for the eRective conduc-
tivity mobility.
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(tt tt/ttb)tt i o —n.
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Measurements of the complex shear compliance (J~=1'—iJ") of single crystals of quartz and fused
quartz at frequencies from 100 to 5000 cps have resulted in the discovery of sharp resonances in the com-
pliance similar to those recently found in polycrystalline metals and crystalline polymers. The number,
locations, and magnitudes of the resonances depend on crystal orientation with respect to the applied
dynamic stress and vary with temperature, external static stress, and, in some cases, with time. The presence
of numerous resonances in fused quartz may result from the existence of regions of long-range order (100
to 200 A) in this material. Analysis of the data on the basis of a generalized stress-strain relation involving
a linear combination of strain and its first and second time derivatives gives a close fit to the experimental
curves. An explanation of the resonances is suggested by calculations of Fermi, Pasta, and Ulam for non-
linear systems in which no tendency toward equipartition of energy among modes was found. Accordingly it is
proposed that (1) crystalline solids with nonlinear forces between atoms do not share their vibrational
energy among all of the available modes, but pass energy back and forth among relatively few modes,
(2) the frequency of the energy exchange among modes may be low, and in particular, much lower than the
frequencies of the lattice vibrations, and (3) the resonance dispersions observed in the dynamic mechanical
compliance of quartz and other materials occur at these various acoustic exchange frequencies. This lack
of energy equipartition will not necessarily be noticed in specific heat measurements of solids, but can be
expected to have some consequences in other areas.

I. INTRODUCTION

HE existence of multiple-dispersion regions of the
resonance type at audio-frequencies has been

demonstrated in previous investigations of the dynamic
shear compliance of polycrystalline metals' and crystal-
line polymers. "These measurements of complex shear
compliance (J*=j'—iJ") now have been extended to
single crystals of quartz and to fused quartz.

While a number of investigators have previously
studied the dynamic mechanical properties of quartz,
their measurements have not been made at closely

' E. R. Fitzgerald, Phys. Rev. 108, 690 (1957).' E. R. Fitzgerald, J. Chem. Phys. 27, 1180 (1957).
e E. R. Fitzgerald, J. AppL Phys. 29, 1442 (1958).

spaced intervals in the audio-frequency range. Deter-
minations of logarithmic decrement (cc J"/J') as a
function of temperature at frequencies in the neighbor-
hood of 21 and 42 kcps have revealed a maximum in
the vicinity of 250'C for quartz crystal bars in longi-
tudinal vibration. 4 ' The temperature variations of the
Q (Q

' ~ J"/J') of quartz bars in torsional and longi-
tudinal oscillation have also been studied at funda-
mental frequencies near 36 kcps and at the third and
fifth overtones. 'r A maximum in Q

' was observed at

e R. A. Artman, J. Appl. Phys. 23, 475 (1952).
b G. A. Alers, J. Appl. Phys. 24, 324 (1953).
i R. K. Cook and P. G. Weissler, Phys. Rev. 80, 712 (1950).
7 R. K. Cook and R. G. Breckenridge, Phys. Rev. 92, 1419

(1953).


