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c+ebp varies by about 3%, from its average value
over the complete experimental range. For small values
of the reaction order, #, it can be stated that for experi-
ments considered in this work, a defect concentration
reaction of the type of Eq. (3) will result in a variation
of resistivity which obeys Eq. (4).
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The Hall effect in ferromagnetic substances is computed on the basis of a simple model, making use of the
transport theory of Kohn and Luttinger. The calculation is rigorous, but assumes a slowly varying scattering
potential, a simple band, and very few conduction electrons. None of these assumptions are very realistic
for a true ferromagnet, but we are interested here in only giving a discussion of the types of contributions
which can occur. Terms related to those previously found by Smit and by Karplus and Luttinger, and some
new ones, are found. In addition, some comments of Smit on the general problem of the ferromagnetic Hall

effect are discussed.

1. INTRODUCTION

N recent years there has been considerable dis-
cussion of the anomalous Hall effect in ferromag-
netic substances, from several points of view. All
serious attempts to explain this phenomenon have
used as a basic model magnetically polarized electrons
moving under the influence of an external field, and
have attributed its origin to the presence of spin-orbit
coupling. The difference has been in the effect of the
spin-orbit coupling considered. Karplus and Luttinger
looked for contributions which arise from a modification
of the acceleration effects due to the electric field, and
from off-diagonal parts of the density matrix. Smit,
on the other hand, considered the modification which
occurs in the scattering processes within the framework
of conventional transport theory. Both of these theories
give results which are not in contradiction with experi-
ment, though neither of them fits all the data. On the
other hand, some of the conclusions of the theory of
Karplus and Luttinger have been seriously questioned
by Smit, so that the entire subject has recently been
shrouded in a thick fog.

For this reason, we thought it worth while to con-
sider the subject anew, from a somewhat different
point of view. There exists a model (for impurity-
limited resistivity) in which the entire transport theory
can be put on a rigorous and systematic basis. This is
the theory of Kohn and Luttinger,! which develops the
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1'W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
We shall refer to this paper as KLI in what follows. As in KLI,
we shall not indicate_explicitly here the vector character of & or
7. Thus ¢*'" means ¢’*'* and 2%’ means k>k’ throughout.

stationary-state density matrix of the system in powers
of the strength of the scattering potential. Using this
model, we have calculated the entire anomalous Hall
effect. Terms of the Smit type, the Karplus-Luttinger
type, and some others, all appear automatically in this
treatment. Although the model itself is not very real-
istic, and the further simplification necessary to com-
plete the calculation makes it even less so, we still
believe it is of some interest in showing the types of
contributions which can occur.

The paper is organized as follows. In Sec. 2 the theory
of KLI is summarized and reduced to a usable form
without any further approximations. In Sec. 3, the
contribution of the spin-orbit coupling (which gives
rise to the Hall current) is separated out. In Sec. 4
the equations are solved, and the Hall current is calcu-
lated rigorously in the effective-mass limit. In Sec. 5
we discuss the results and compare them with the
previous ones. Finally, in Appendix A, some of the
criticisms of Smit are considered within the framework
of the present theory.

2. GENERAL THEORY

In this section we shall develop the general formulas
which enable us to calculate the contribution of spin-
orbit coupling to the Hall effect. From KLI, we can
expand that part of the density matrix which is linear
in the external field (f), in ascending powers of A
(which is some dimensionless measure of the strength
of the scattering potential). The leading term in f is
of order A%, and to this order conventional transport
theory holds. The new features of KLI (corrections to
transport equation, contributions from off-diagonal ele-
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ments of f) arise only if we go two orders further in A,
i.e., to A% In the “ representation” [that is, the repre-
sentation of Bloch waves for the unperturbed Hamil-
tonian, / standing for the index pair (#,k)] the density
matrix f may be written as follows. The off-diagonal
terms fu (I£10') are given by [KLI, Eq. (116), (117),
(118)]

fu=fu T+ frpr© (2.1)
where
1
Ju D =——(fi— fr)Hu', (2.2)
125
and
1
fop @ =—ro

w-

—f’”_f")]. (2.3)

fl——f rr
X[Cll' (o)+Z/Hll”lHl“l’l(
dyr—

i’ e dypr—

The notation is the following: fi=fu, the diagonal
elements of the density matrix. dyyF=wy 41is, where
oy is the difference in energy between the two Bloch
states / and /', and s is an infinitesimal positive number.
Hy' are the matrix elements of the scattering poten-
tial. The notation >’ means that @/l index equalities
should be excluded from the summation, which means
for (2.3) that I”5%1 or /. Finally, the matrix elements
Cuy are the matrix elements of the ‘“commutator”
C=—¢E,(p,xs), p being the equilibrium density matrix
in the presence of the scattering centers. C;;¥ are the
terms of order A\° in this matrix element, C;;»® those of
order A, etc.

The diagonal elements of f are solutions of the
“generalized transport equation” [KLI, Eq. (119)]

ClO4-C/+C/"+i Zl’Lll’(fl_fl’) =0, (2'4)
where
<sz' OH")
=Cl<1)+z’ ———c.c.]
v dy~
(sz' (I)Hl'l/>
z"=Cz(2’+Z'[ —c.C.
v dyi
(2.5)

s [(sz"(O)Hz”z"Hz'z'>
v duy—du

(Hy'Cprp©HypY')
dy—dyr~

In (2.5) the angular bracket (- --) means the ensemble
average, or the average over the possible positions of all
the scattering centers. The quantity L is the “colli-
sion operator” and may be written

Liy=Ly©+ Ly O+ L,
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where
lel(o)=27I'5(wll')<lHll'/[2>7 (26)
@rryy (@)
L”,a):z,ra(w”,)Z'[ + ], (2.7)
v L odyprt ™
O=2r ¥ '6( )(((””'l"l/»
Ly ®=2r wp){ ———
" e dwtdwt
<(llll1/llll)> <(lllll/llll)>
+ . )
dyyr—dyyr™ dll”’_dll”+
([Huw!' 2| Hvv!' )
+3 C.C.)
2 dy—dy ~dypypt
(|Hu'|?
——(ep®@"— P —c.c). (2.8)

(duw)?

The quantities (W'I")=Hy' Hyy' Hyr, etc., and the
“energy shift” ¢® is given by

H,' |2
61(2)=Z<[ w'|?)

I d”,,+

(2.9)

As soon as we have solved (2.4), we can obtain the
off -diagonal elements of f from (2.1). In order to calcu-
late the current in some direction (say the 8 direction)
we must know the average velocity 9 in that direction.
This is given by

vg=tr(fvg), (2.10)

where
vp=1[ Hr,x5],

the velocity operator. Hr is the total Hamiltonian of
the electrons. Since xg commutes with the potential of
the scattering centers and the external electric field,?
we may write

(2.11)

U= iEHO’xﬂ])

where H, is the periodic Hamiltonian (which includes
the spin-orbit coupling term due to the perlodlc po-
tential). That is, we may write?

(2.12)

Ho=p*/2m+ U+ (qXVU)-p. (2.13)
Here U is the periodic potential, and
= (1/4m*c)(M/M s), (2.14)

M being the magnetization of the sample and Mg the
the saturation magnetization. As is well known, the

2 This would not be true if we included the effect of the spin-
orbit coupling due to the scattering potential and the external
electric field. The former has been estimated by J. M. Luttinger
(unpublished) and by J. Smit, and found to be completely negli-
gible. The latter may be removed by a simple gauge transforma-
tion, and has no physical consequences.

3R, Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
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diagonal elements of (2.12) are given by*

v,gl=ael/<9kg, (215)
whereas the off-diagonal ones are [KLI Eq. (126)]
(v0)w=—wuJg"V (I#l), (2.16)
with
1 a‘wlr
Jg”'= (—“f wr* dr)Bkkr. (217)
WeY we 6k3

Here w, is the volume of the unit cell, and w; is the
periodic part of the normalized Block functions of H,.
That is,

Hoy= e,

Y= (1/2/Qe* "w,,

© being the volume of the crystal.
Using these results, we may write the average ve-
locity as a diagonal and an off-diagonal part:

(2.18)
(2.19)

vg= vgd-4-v50d-) (220)
vgd=zlflael/ak5=szl'val, (2.21)
Y)go'd‘z+Z’<flp>w”f]ﬂl'l. (222)

In (2.22) we have replaced fir by its ensemble
average (since wyJg¥'! is independent of the positions
of the scattering centers), the justification being ex-
actly the same as that used repeatedly in KLI.

To go further we now have to discuss the matrix
elements of H' in some detail, and compute the en-
semble averages involved. To make the problem as
simple as possible and to avoid extra terms which do
not contribute in any essential way to the result, we
make the following assumptions about the scattering
term H’: (a) The scattering centers are located at dif-
ferent lattice points of the crystal. (b) The scattering
centers can interpenetrate each other, so that more
than one can be at a lattice point. [Assumptions (a)
and (b) lead to negligible corrections at low density of
scattering centers.] (c) The average periodic part of
the scattering potential has been absorbed in the peri-
odic potential U. These assumptions lead to the follow-
ing expressioné for H’

H'=%ip(r—r)—(N/N)Lre(r—R),

where ¢(r) is the scattering potential of a single
scatterer located at the origin; 7; is a set of IV lattice
points (I being the number of scattering centers); Ny,
is the total number of lattice points, and the sum over
R is a sum over all lattice points. Assumption (b) then
allows the possibility of some of the 7; being equal. The
matrix elements of H’ are given by

(2.23)

N
Hy'= wlz'[z 6_’.(’“"")‘”—5\7—- % e_i(k’k')'R]y (2.29)
i L

1 See reference 3, Appendix C.
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where

o= f Yi*o(r)ydr. (2.25)
v Q

From (2.24) we have at once that

N
(H") nt, n6= @k, n’k[N_‘]_V—NL] =0. (2.26)

L

If k#F’ the second term of (2.24) is zero (since £ and
F’ extend over a Brillouin zone) and we have

’_ —i(k—k') -7
H”, —wll’ze i(k Ic)n,’

i

(k=F).  (2.27)

We consider first the off-diagonal contribution to the
velocity. Since Jg!' contains the factor 64, we need
(fu) for k=F'. By (2.26), fur, nir P vanishes. To calcu-
late for, @ we need, for 2’ #k,

<(H/)’ﬂk, v (H’)l”, n’k>=N‘Pnk, QU ke

Therefore, since C;® is independent of the positions
of the scatterers,

(2.28)

1
<f”, (0)>k=k, [ —
w

fi—=fv for—fr
X[Cll’(0)+N Z’Wl"w”z'( - )] .
v |

wr dl”l'_
(2.29)
The off-diagonal contribution to the velocity is
7}ﬂo.d.22:/6'”,(0)]‘#'1
Ly
fomfor fo—=fo\
+N @zz/'w"l'( - —)Jg’ Lo (2.30)
L we dyp™

In (2.30) we have put wnk, n'k/@nk, »e=1, which as-
sumes that there is no accidental degeneracy (i.e., that
enrF €nry, for n#n’).

The first term of (2.30) is easily calculated. For this
purpose we need the matrix elements of C. From KLI,
Eq. (113), these are given by

i) aJ
sz'ZiGEa[ (——‘|‘ )]Pzz'
Oko Ok

L3 (T pprr—pur J V). (2.31)
LI/
To the lowest order in \, p©@=p(H,), so that
o @ =p(e)d01r=piBrnn s (2.32)
Therefore, for I/,
Cuw @ =—ieE.(pi—pr)J . (2.33)
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The first term of (2.30) then becomes
Y COTg = —ieEy S (pr—pur)J ol TV

L Ly

=—ieEa Y p1 S (T Tt — T g T V'Y
1 I

aJ b g
=—1eE, Y pl(———), (2.34)
l akg aka

on making use of (2.17) of Karplus and Luttinger.?
The terms (2.34) were already present in the original
paper of Karplus and Luttinger,* and are also found
in KLI.®

The second term of (2.30) may also be put in some-
what simpler form by permuting a few of the / indices.
We have

fl—fl,,_f,,,—il:)]aw
dpoim
o (@i gV ' —J "V pyey)

“+c.c.
du~

+C.C.)

| our |2(J ' —=T5")
+c.c.). (2.35)

ZI @ll"‘Pl"l'(

v e

=" fi

NG

<Pll’(‘P;Jﬁ)l'l
:Z fz -

v, W

+2 fi

INX dy~

The last term arises because we have allowed index
equalities on the /' in order to write the commutator
(¢,J). [The other restrictions on index equalities have
been dropped since they exclude only single % values,
and therefore give rise to terms which are 0(1/Q).]
Now from (2.31), if we let p be an arbitrary function
(Q) of the coordinates, we get

(0 &)uw=DQu, (2.36)
where
a <]
Da = “+ b (237)
Oky Ok

since ¥, commutes with Q. Therefore (2.30) becomes

aJgt 8T
95°d-=1eEq ) py —-——)+N 2 fi93
: v Ok,  Okg 1 v

v ( owDgepr— I pur fz(]ﬂl_jﬂll)

+c.c.). (2.38)
du~

Since we are interested in vg°¢: to order \°, f; in (2.38)
has been replaced by its lowest order f,®. That is, we

® Equation (135). The sign in KLI is wrong, due to sign error
carried over from Eq. (134) of that paper.

M. LUTTINGER

may write
fi=fi94 fi 04 [,
where f,© is of order A2, f,® is of order X%, etc. Then

from (2.4), (2.6), (2.28), (2.31), and (2.32), f;® satisfies
the ordinary transport equation®

(2.39)

(2.40)

dp;
eEa—k__HV 2 2md () | o |2(19— frr @) =0.
ok, 4

In addition to the contribution (2.38) of order A°,
there is also a contribution of the same order from f;®
(as well as one of order A7! from f;V). To obtain these
contributions it is necessary to solve the generalized
transport equation (2.4). It is convenient in solving
(2.4) to divide the corrections to f;© into two classes,
which we shall call “field corrections” and “collision
corrections.” The former arise from the C;/ and C;”’
terms of (2.4), the latter from L;;® and L;;;®. As we
shall see below, to the order in which we are working
these terms give additive corrections.

We first consider the field terms. In order to obtain
C/ and C/" we need C;™ and C;®. These are given by
(2.31), as soon as we know the expansion of p in powers
of A. This is given by?

prr=pur O+ prr O tpy @, (2.41)
puw @ =pibyy, (2.42)
pi1—pv
o = Hy', (2.43)
Wi
Hy /' Hyn
puw® ='Ypl5u'+z -
1A Wy
pr—pr  p1—pu
X - , (2.44)
wur Wy
(|Huw' | pi—pr dp:
Y=y -—[ — ~—] (2.45)
L wyyr wyy 361

Inserting these in (2.31) and making use of (2.5) and
the ensemble average theorem, we obtain, after some

¢ The solution of (2.40) is not unique, since we may add to any
solution an arbitrary function of & and get a new solution. This
causes no difficulty in the usual transport theory, since such a
term is easily seen to give no contribution to (2.21) in any case.
However, such a term might give a contribution to (2.38), and it
must be discussed more carefully. The simplest way to eliminate
this ambiguity it to note that, for a crystal, f; must be an invariant
under the crystal group if the electric field is simultaneously trans-
formed. However, from E, and € (which is already invariant) one
cannot construct a term linear in E, which is invariant, so that
an f; with the correct transformation properties does not have this
ambiguity. If the sample has a magnetization M, a term of the
for E-M can be formed. This cannot give rise to an anomalous

- Hall effect, however, since it vanishes for M perpendicular to E.

7KLI, Appendix C. It is simply necessary to write / instead of
k, and to rewrite the formulas in terms of p; rather than the ex-
plicit exponential distribution used there.
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algebra,
C/=0, (2.46)
. dpr 9ps® 1 L _pr—pr
Crr=1ieEd| v—-+ +N 2 L(eviDaew)+| our |*(Jot=Ta")] +c.c
aka 8k,,, 124 dnl— Wy
I ‘Pzz' P pr
+NZI ( )+CCH (2.47)
v U dy™ W
where
ow |*[0p1  p1—pv
=N | ’ [ ] (2.48)
U o l-aéz Wy

Since C’ vanishes, there are only A? corrections to the
field terms. Therefore if we want f; corrections to the
second order we get independent contributions from the
field terms and the collision terms. More formally, let
us introduce

fi=fiF+ i, (2.49)

where f,F is O(\°). Insert this in (2.4) dropping con-
tributions of higher order than A?: if we choose f;¥ to
satisfy

Cl'+i v L@ (fif —
we find that
CiO+43 3 v L (i~ fv©)=0. (2.51)

That is, the field correction f;¥ satisfies the lowest
order transport equation with C;’ as driving term

fv?)=0, (2.50)

instead of C;. Further if we write for the ‘“collision
contribution” f;¢ an expansion in A,
[f=H94+f'+ 1", (2.52)

and insert this in (2.51), we get on equating equal
powers of A

2L ®(fil®—fr @)+ oL @ (f/ = fr')=0, (2.53)
2L @ (fi— fr )+ L (f = fr)
+> v L O —f')=0. (2.54)

Since f; is known, in principle, from (2.40), it may be
inserted in (2.53), giving again the usual transport
equation for fi/, except with a different driving term.
Similarly, since f;” and f;’ are known, (2.54) becomes
an “ordinary” transport equation for f;”.

Finally, for completeness, we give the ensemble aver-
ages which are necessary to make the collision operators
Ly ® and Ly @ explicit. These are, from (2.7) and (2.8),

<(”’l")>=N§Dll"Pl’l”Wl"l; (2.55)
{@rr'r))= ew v erveerin
X[N+N (N —1)8krsrr—rrr,0],  (2.56)

for all the % indices unequal. They vanish whenever
any of the % indices are equal. The & function in (2.56)
is to be interpreted as giving something whenever
k—k +k"—k"" =0 modulo a reciprocal lattice vector.

3. HALL EFFECT ARISING FROM
SPIN-ORBIT COUPLING

The general formulas of Sec. IT enable us to calculate
the corrections to the conductivity to order A2.. We are
not interested in this paper in the general problem, but
only in the problem of whether a transverse current
exists, i.e., in the Hall effect. Now for isotropic scat-
terers it is easy to see that there is no transverse current
unless there is spin-orbit coupling. The spin-orbit
coupling is small, in general, and therefore the trans-
verse current will be proportional to it and thus [from
(2.13) and (2.14)7 to the magnetization. Therefore, to
study the anomalous Hall effect we shall study that
contribution to the average velocity which is of the
first order in the spin-orbit coupling.

We begin with the discussion of the lowest-order
velocity (of order A~?) which is given by f,© from
(2.40) in connection with (2.21). Since the spin-orbit
coupling does not affect the energy to first order (see

* Appendix B), the velocity operator in (2.21) and the

distribution function p; in (2.40) are not affected by it.
The only thing which might be affected is the matrix

element of the scattering potential. This we write as
b= <Pu'<°)+ (2244 ® (3~1)

where ¢y @ represents the first-order correction due to
spin-orbit coupling. Therefore

' 9011'!2: | (424 © [2+ sozz'(o)sol'z(”'i‘ Sl’ll’(l)SOl’l(O)

= l ew® |2+ e QoW+ (¢”,<°>¢l,l<1))*, (3-2)
However [by Appendix B, (B.7) and (B.12)],

(1 @) =5,0n @1 © (3.3)

(PurW)*=—08,0,01V (3.4)

where 8,==1. Thus the third term of (3.2) is equal
and opposite to the second, and we have

(0) ;2' (3‘ 5)
Therefore, there is no effect of spin-orbit coupling and
no anomalous Hall effect, to order A~2. The quantity
f1©@ has no correction to the first order in the spin-
orbit coupling.

Next we consider the corrections of order A~. They

| ow|?=|ow
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arise from the correction f;’ [given by (2.53)] in con-
nection with (2.21). In order to obtain f;’ to first order
in the spin-orbit coupling we need to expand L; ®.
From (2.1) and (2.55), this is

Qurery e
Ly ®=2rNb(wy) 3 [——————————l—c.c.], (3.6)
I dy™
Pueryr = Qi © oy © Sol”l(o)

F (o1 @ @ @y @ +-cyclic).  (3.7)

Using (3.3) and (3.4) we see that the zeroth-order term
is real, while the first-order term is pure imaginary.
By means of the well known relationship (as s goes
to zero)

l/du'—= P (l/w”') +'L7r6 (ww),

(where P indicates principal value), we may write

(3.8)

Ly =Ly W04 Ly 0, (3.9
where
O] © ()
QT err e
Ly =47N5(wy)> P , (3.10)
T Wi
Ly W = (2r)2Nib(wi) 2 8(wirr)
ll/
X (oW oy @ gy @4cyclic).  (3.11)
Writing correspondingly
Ji=f004fi, (3.12)

f1) being the first-order correction in the spin-orbit
coupling, (2.53) becomes equivalent to

Zl’Lll' (10) (fl(O)__fl,(O))

+202aNé(wuw) | u @2 (fi 10— fr 1),  (3.13)
and
0Ly W (f,0— £, )

+202x N8 (ww) | ou @ [2(fi ™ — fp V). (3.14)

The Hall current is contained in ;9 and not in f;(9,
and therefore it is obtained by solving (3.14). Until
we make some assumptions about the scattering po-
tential ¢ and the Bloch functions we cannot solve (3.14),
since it is in general an integral equation for f, "V [just
as (2.40) is an integral equation for f;7; and cannot
be solved explicitly. We shall return to these questions
in the next section, but shall now proceed to a similar
reduction of the spin-orbit contribution for the next
order in A.

The average velocity to order A° is composed of three
parts: (1) the off-diagonal contribution (2.38); (2) the
diagonal ¢ontribution due to the “field correction”
(fiF), calculated from (2.50); (3) the diagonal con-
tribution due to the “collision correction” ("), calcu-
lated from (2.54). We consider these in turn.

(1) Making use of (3.3) and (3.4) again, remember-
ing (see Appendix B) that J4! is pure imaginary and of

LUTTINGER

first order in the spin-orbit coupling, the spin-orbit
part of (2.38) becomes

0Jgt a4t
vg°~d~=ieE,,Z pz( —_ _Z fl(O)W5l
12 aka akg 4
=2xNi 2 19 2 8(ow) | e @2 (Jg'—T6"), (3.15)
7 v
where

wg'=2wN 3 v6(ww) Im(euwDgerr).

In (3.16), Im means the imaginary part of what follows.
We may also write

(3.16)

Im(ioll'Daﬁal’l)
=1/ ODapriV+ 01 VD@7

The last term of (3.15) may be transformed:
2rNi 3 193 6(wwr) | o @ 2T sl —T6")
1 v

(3.17)

=2wNi ), B(wzz') ow® lz(fl«”—fz' ©)J gt
[Ny

6pl ("]ﬁl
=—ieE, ) —Jgt=1eE, > pr—,
;) 1 k

a a

(3.18)

where we have made use of the transport equation
(2.40), and (3.5). Therefore

'I)ﬁo'd'z __ieEa leza]al/akﬂ—Zlfl(o)wﬂl- (3.19)

(2) For (2.50) we need the spin-orbit part of C;”.
From (2.47), (3.3), and (3.4), we see that the only
part of C;” which gives a first-order spin-orbit cor-
rection is

C'=ieEo{p/wa'+20Ni 3 )6 (i)
X | ow@2(Jot—Ta")},

pl, = apl/ael.

The second term of (3.20) gives a contribution to
fi¥ which can be obtained explicitly. Writing

le:gl_ieEapl/]wly
we see from (2.50) that the equation for g; is simply
eEapl'wa’—{—Zer Zl’ | [ (0 |25 (wur) (gl—g;:)=0. (323)

The contribution to the current is, from (2.21),

(3.20)
(3.21)

(3.22)

aél
wf' =2 fifvs'=2_ gws'—ieEqa 3 pi'Jo'—
l ! 14 6kﬁ
AT ot
=2 gws'+ieEa 2 pr—-. (3.24)
L ! kg
If we call
up=1vg" % +vg", (3.25)
then
ug=2_1(gws'— fi®wg"). (3.26)
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We may write the equation for f;©® as

€Eapiva' 27N v | our @ |2

X (wu) (10— fr@)=0. (3.27)
Comparing (3.23), (3.27), and (3.26), we see that there
is a high degree of symmetry between v,! and w,! in
our final expression.

(3) To obtain the spin-orbit part of £,/ we must
expand (2.54) to the first order in the spin-orbit
coupling. Writing

Lypy® =Ly (0 [, a0,
Ly ® = Ly @0+ Ly @D,
fz'=fz(m)+fz(“),
f'= fe04 f,60
(where the second term on the right-hand side is

always the spin-orbit correction), the equation for
Jf1%V becomes

S v[ L@ (0 — f,®)
_]_L”,(IO) (fl(ll)__fl,(ll))_l_L”’ (11) (fl(l(])_fl'(w))]
+22N v | 0w @ |2 (wi) (fi®0— fry @)=0. (3.29)
The only new element in (3.29) is L;y®. From

(2.8), (2.56), (3.3), and (3.4), and a little algebra,
this is

L1y ® = (275)2N6 (w0 1
X X 8(wnr) P(

v wyyrer

(3.28)

){ ), (3.30)

(Y =Im{ ow o oo o1+ Not_rnrr—i, o)
+ o ovprrourr (14 Nopgrsn—ir o)
(3.31)

After we have solved (3.29), we obtain a velocity
contribution of order A° from

250 =304k, (3.32)

It is again impossible to proceed any further without
some knowledge of the scattering potential and the
Bloch functions.

Fowr v orroui(14-Nogpp_grr—gerr,0) }.

4. CALCULATION OF HALL EFFECT IN
“EFFECTIVE MASS” LIMIT

In order to deal with the extremely complicated
formulas of the previous section, it is necessary to
introduce some rather drastic simplifications. These
will give us a result which is a rigorous consequence of
our theory, though it will not be relevent (except as an
extremely crude estimate) to the situation in real ferro-
magnetic substances like Fe or Ni. However, we view
the main purpose of this paper as being to exhibit the
structure of the different terms which come into the
Hall effect (rather than to make a realistic computation
of its value), so that this will not bother us too much.
Further, so little is known about the real Bloch func-
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tions of a ferromagnetic substance that a realistic
computation seems impossible in any case.

We therefore consider the following limit, which we
shall call the “effective mass” limit.

(a) We assume that there are few electrons in the
magnetic band, and that they are at absolute zero of
temperature. This means that the unperturbed dis-
tribution function p; is a step function

€] < €r
€>€r,

p1=const,
=0,

where the Fermi level er is very small compared to the
band width. We assume it to be so small that we may
write for any e which occurs in p; the effective-mass
expression

(4.1)

1=/ 2m*,

where m* is the effective mass of the electrons in the
band 7.

(b) We assume that the scattering potential is very
slowly varying over a unit cell. More analytically, we
shall assume that ¢ has no Fourier components which
are of the order of a reciprocal lattice vector. From
Appendix C, it then follows that the matrix element
o is given by an expansion of the type

o= i[O (k= k)T " (k)
+3 (k' — k) (&) — k)T ™ (R)+- -+, (4.3)

where g is the ordinary plane-wave matrix element,
and the J’s are defined in Appendix C.

This expression will be used as follows. In computing
any of the different contributions to the velocity which
arise, we shall only take enough terms of (4.3) so as
to give the first nonvanishing result. At the end of the
calculation we shall see that in fact each of these con-
tributions has a very similar structure.

With these assumptions we have at once that, to the
approximation in which we are working,

(4.2)

(4.4)

Therefore, the lowest order transport equation (3.27)
becomes

eEaPnk,'vank_*_ 2« N Z <Pkk’25 ( €nk™ enk’)
k/
X (fnk(o)_fnk’(o))-

From assumption (a), p; is a rotational invariant and
9,"* is proportional to k.. Therefore we may solve this
equation in the usual way,

| ow | 2= ori 2O

(4.5)

Jur®@=—10¢Eopni'va", (4.6)
where the “relaxation time” 7o is given by
4or?
To=
nfqoz(k—-k')é(e,,k——e"kf)[l—cos(k,k/)]dk' -
=kF

(4.7)
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The # in front of the integral is the density of scattering
centers.

It is convenient to make still another assumption in
evaluating integrals such as occur in (4.7). That is, we
assume that the range of the potential (say 7o) is small
enough so that

k F7'0<<1'

The integral in (4.7) becomes

(4.8)

¢2( [ a<enk—enk,>dk')k=kp = 22m) 2 (er)?, (49)

where
¢=f¢@w. (4.10)
In this approximation, (4.7) is
10 l=ng(2m*)}(er)}/2m. (4.11)

We now compute the velocity contribution of order
AL For this we need L;™ to insert in (3.14). From
(3.11),

Ly ™= — (2m)*Né(wu) 2 8(ww)
zl/
XIm(ow oy gen).  (4.12)

The § functions in (4.12) insure the equality of the
indices %, #’, n”’, unless the band is degenerate at k=0,
which we specifically exclude. Then, from (4.3) and
(C.7), we have

Im(ou i @)

i art ATy}
=_§Dkk’¢k’k"¢k”k(ku,_ky,/) (kﬂl-k!‘)( - )'
2 ok, ok,

(4.13)

Putting (4.13) in (4.12) and making the same
approximations as before, we obtain

ir?n @[ (2m*)} (&)1 16 (wurr)

LypyW=
(27)%Q ; l
X (k) ky—k ke I)(é)]“ _ajv ) " 14)
Ry RuRy . y
Th ok, Ok,
en
in g® *) 1372
> Ly W (00— f,0) = me eF'rol'(Zm Vier ]
i 3 |_ 21r
Xpi'eEak o7 97 415
p1 €LugRy ak o , ( . )
v a’ 0

where the subscript zero on the last term means that
we are taking the quantity for 2=0, which is consistent
with all the expansions that we have made. The ex-
pression (4.15) is exactly of the same structure in its &
k dependence as the driving term of the zeroth order
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transport equation. Therefore we can solve it at once
with the relaxation time 7,

0JL oJ,} 1€
= —ieEa(——*— ) kil —.  (4.16)
6kv aka 0 3n @
This gives rise to an average velocity
dJgt 9T €p
vﬂm):—ieE,,( — — (4.17)
Oka Oks/o3ngp

We consider next the velocity contribution of order
M. There are two contributions: #g from (3.26), and
2@ from (3.32). We begin with #s, which requires
the calculation of w,’, from (3.16). Using (4.3) we have

1 EYR
Im(qowDa ﬁol’l) =':(Pkk’2 (k“_ k,‘l);&nn. + ctt. (4.18)
? «

Inserting the leading term of (4.18) in (3.16), and doing
all the integration just as before, we find

11497,
Wol=—— ) k.
’i T0 aka 0

(4.19)

Since w,! is proportional to k,, we can integrate
(3.23) with the relaxation time 7y, i.e.,

AT, !
1= — TOGEaPl,wal = ieEa (_) kﬂpl,' (4'20)
aka 0

Finally, from (3.26), using (4.20), (4.19), and (4.6), we
obtain
aTg T4
Ug= —ieEa( - ) .
oke ks /o

This result has the remarkable property (just as did
the original result of Karplus and Luttinger) that it is
independent Jof any properties of the scattering
mechanism.

We come finally to the collision correction 5%V, for
which we must solve (3.29). Now if we look at the
driving terms in (3.29) along with the definitions of
the L’s, we see that there are two types; (a) those
proportional to N, and (b) those proportional to V2.
The former are nothing but higher-order corrections to
the Born-approximation for the scattering of an elec-
tron on a single scattering center. The latter are con-
nected with the interference between the scattering
from two centers, and we shall refer to them as the
“multiple scattering terms.” We write

fl(21)=fl(a)+fl(b)

to express this decomposition, and write the corre-
sponding velocity contributions as v5¢® and 9®. The
calculation of v5(® is rather tedious, even with all the

(4.21)

(4.22)
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simplifications used in this section, and we shall not
give it here. In any case, it is not of any great interest
since it represents only a correction (in the sense of
perturbation theory in A) to v, It will have, in
general, the order of magnitude

25 (@ ~AgD, (4.23)
(2m)2 5t 1
By =————8(wu) X 5(0’11")})(——
202 v Wy

aT} aT
ok, ok,

X { Sran Ot e st (

where

Carrying out the /"’ and the ’”” summations yields

inz =2

P
By = S(wr) (BXE)
0
3 aJ,t aJ !
X[—T“,‘°’~(2m*)5( — ) }, (4.26)
2 ok, Ok, /o
with
]“llllljylllll_]vll/IIJ“lllll
T, O=3"' ( ) (4.27)
v wyyres E=0
and
1 2k+|k—F| 1
S= 1og( )JI . (4.28)
2k|k—F | 2k— | k—F| | +F |2

Calculating the resultant average velocity from this
by the method followed in all previous cases, we obtain

aJgt dJ .t
0p® =ieEa[( - )C—— eFTa;;(O)]. (4.29)
ks Okg

The quantity C is a numerical constant,

C=(17/30)+ (8/15) In2220.94. (4.30)

5. DISCUSSION OF RESULTS

Our final result for the extra current due to spin-
orbit coupling consists of three parts: (1) v, from
(4.17); (2) ug, from (4.21); and (3) 25®, from (4.29).
The first of these is included in conventional transport
theory, and was considered (from a somewhat different
point of view) by Smit and by Luttinger.? Since it is
proportional to 1/# it gives rise to an anomalous Hall
coefficient (R’) which is proportional to #. If the re-
sistivity of the sample is varied by varying the im-
purity content, then this will give rise to an R’ which is
proportional to the resistivity of the sample. For this
reason, such a term does not seem to the author to be
able to explain the experimental data. For iron, for

8 J. M. Luttinger, Berkeley, 1953 (unpublished).

X Br—trter—trrr, 0B k—ir—r 241777, 0 O k— ke —k77, 0)
(BXE)uw=Fkk — .k,
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The quantity f;® represents, on the other hand, a
new physical effect. In the equation for f;® of all the
driving terms only that part of (3.31) proportional to
N contributes. Let us call the corresponding part of
L@ By, Then the spin-orbit part of By, in the
limit we are considering, becomes

) (kxk’+k'xk,,+kl’><k)"v

) _I_%6nn,5n,n”(]“nn”’(k)]yn'”n(k)_]vnn"’(k)]“"”’"(k))}
0

(4.24)
(4.25)

example, the experimental results of Kooi’ show a de-
pendence on the square of the resistivity (to a good
approximation). This same resistivity dependence is
true to all orders of Born approximation in the con-
ventional transport theory, and therefore if something
else is needed one must go beyond the framework of
this theory.

The contribution (2) was first considered by Karplus
and Luttinger. By a very crude approximation, they
attempted to take into account more than just the
diagonal elements of the density matrix and velocity
operator, as is done in conventional theory. The result
was of the same general order of magnitude as (4.21).
This term, being independent of # does give an R’
proportional to the square of the resistivity as desired.
If we compare (1) and (2), we see that in our approxi-
mation their relative values are

13" /ug=er/ (3n%). ¢.1)

Therefore at extremely low density of impurities, the
ordinary scattering term v must dominate, and one
should see an R’ proportional to the resistivity. Finally,
however, as the density of impurities increases we must
go over to a resistivity-squared domain. Whether this
is already true for Si in Fe at the densities used by
Kooi, for example, is open to some question, but it is
certainly not excluded by an estimate of the type (5.1).

It should also be mentioned perhaps that the terms
previously found by Karplus and Luttinger correspond
to the first term of (3.6) and the last term of (3.15).
It is possible to write the formulas in such a way that
these terms are exactly canceled by some of the terms
which originally depended explicitly on the scattering
potential. This decomposition [which is used to
establish (3.26)] seems to us to have no particular
physical significance, since when it is performed the
remaining objects (g; and w,') are no longer phase-
invariant. (That is, they change their values if the

9 C. Kooi, Phys. Rev. 95, 843 (1954).
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phase of the original set of Bloch functions are changed.)
The total result #g is, of course, still phase-invariant.
In any case, the important result from our point of
view is that no matter how one chooses to interpret the
different pieces which make up ug, its final order of
magnitude is roughly that given by Karplus and
Luttinger.

The final term (3), which results from multiple-
scattering corrections to the transport equation, is
new. The first term of (4.29) is exactly of the same form
as ug, and in fact cancels out a good part of it. It is
doubtful if this approximate cancellation holds in any-
thing but the extreme effective-mass limit, since very
different quantities actually enter into v4® and ug. It
seems more reasonable to conclude simply that the
multiple scattering term will in general give a con-
tribution comparable in order of magnitude with the
off-diagonal and field corrections, and that to take one
without the other is inconsistent. The last term of
(4.29) is, from (B.23), of the order of magnitude of
er/A (where A is a typical separation energy between
the £=0 edges of two bands). We should really drop
such a term to be consistent with our extreme effective-
-mass limit. We leave it in, however, to indicate that
other types of terms besides (9J%/0ko—0J '/ kg)0 can
occur. For a realistic case, of course, er will be of the
same order of magnitude as A, and this type of term
will contribute significantly.

APPENDIX A. DISCUSSION OF SOME
COMMENTS OF ]J. SMIT

In several interesting papers, Smit? has criticized the
results of Karplus and Luttinger, and has also ques-
tioned in general the occurrence of contributions to the
average velocity from off-diagonal components of the
density matrix. While we cannot claim to understand
many of Smit’s points, he is without doubt correct in
regarding the results of Karplus and Luttinger as
representing a considerable oversimplification of the
situation. We can indicate rather precisely just how
this comes about from the point of view of our present
formalism, and shall do this below. We wish to stress,
however, that although the treatment of Karplus and
Luttinger was not complete, the present calculation
shows that the effect does exist and is of the same order
of magnitude. Smit’s second point (the noncontribution
of off-diagonal matrix elements) seems less correct to
us, and we also wish to discuss it briefly.

We can connect the work of Karplus and Luttinger
with this paper in the following manner. The matrix
elements of the electric field perturbation H are given by

H,=H,+H", (A1)

where
Ha= ~ieE,,6,mf (a&kk:/aka), (AZ)
H"=—ieEJ .. (A.3)

10 J. Smit, Physica 21, 877 (1955); Physica 24, 39 (1958).
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The idea of Karplus and Luttinger was to include
H'" in the unperturbed Hamiltonian, since it is per-
fectly regular and has the same translational symmetry
as Ho. Now if we write the field-dependent part of the
density matrix (f) in the form

f=F+p(H+H")—p(H),

it is easy to see that f satisfies (to the first order in E,)
the equation B o
[H,f]—-—isf= G,

é= (p (H) 7Ha)~

(A4)

(A.5)
(A.6)

f satisfies the same equation except that C is replaced
by C; therefore, we have completely eliminated H”,
and its only effect is to replace p(H) by p(H+H") as
the “unperturbed density”’ matrix. The average ve-
locity is given by

=g+ il (A7)
5= tr(fvg), (A.8)
dig=tr[ (o(H+H")—p(H))vs]. (A9)

To the lowest order in A we can compute g at once,
by going over to the representation which makes
H,+H" diagonal. This gives

aTs T T
1O —ieEL S oy ———)+ieEa S o (A.10)
1 Ok, Okg 1 Okg

which is exactly the result of Karplus and Luttinger.

Now since
AR
Cuw =zeEa(-—+ )pw,
Ok, Ok,

Eq. (A.5) no longer contains the J matrix explicitly
and is very much like corresponding equation with no
periodic potential. Karplus and Luttinger’s approxima-
tion consists in just replacing this equation by the
equation of ordinary transport theory, that being all
that was known at the time. Then there is no contribu-
tion to the Hall effect from f and we get (A.10) as our
final result. That (A.10), however, cannot be the whole
story follows at once from the fact that it is not in-
variant under a change in phase of the Bloch functions.
Various arguments were given at the time to justify
this, but we no longer regard them as convincing and
shall not repeat them here. The point is that since
#g® is of order A%, we cannot throw away the correc-
tions to f of order A°, which corrections go beyond the
usual transport theory. Taking them into account
leads at once to the formulas of the text.

We now come to Smit’s second point. Let us first
consider an electron in a pure state ¥, under the simul-
taneous influence of an electric field and collisions.
Expand ¢ in Bloch waves,

¥=2 (Y.

(A.11)

(A.12)
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Smit first considers the average position %, of the
electron. This is given by

304
Tg=1 Z —a*+1 Z ayal*f,s”'. (A13)
l

akg R4

If we average over an ensemble of electrons and call
the average value of arae;* the density matrix (or)ys,
then

_ . a(PT)nk, nk’ . ,
Eg=1 2 |————| +i X (pn)viJs".
] Akg e LV

(A.14)

Smit argues that the last term of (A.14) cannot con-
tribute to the average velocity (defined as the time
derivative of Zg). This is certainly true. In our for-
malism we have

pr=pt+fe*,

pr=sfe’'=sf,

(A.15)
(A.16)

at t=0. Therefore the last term gives a velocity con-
tribution proportional to s, which vanishes in the
limit s — 0. Therefore, in agreement with Smit, we
may write
a(p nk, nk’
B Eg=i 3 [—(ﬁ)—"—k] . @A)
l kg K=tk

Smit interprets (A.17) as meaning that there is no
off-diagonal (n£#") contribution to 7. We cannot
agree with this interpretation. First of all, if we replace
ipr in (A.17) by its value [Hr,pr ], then we obtain at
once the formulas of the text, including off-diagonal
elements. On the other hand, if we use (A.16) we obtain

afnlc, nk’)
l akﬂ kl=k'

Since 7 is finite as s — 0, the quantity in brackets
must have a 1/s singularity, and its calculation goes
beyond the ordinary transport theory which computes
only f3, or KLI which computes the f itself (which is
regular in the limit s— 0). The great advantage in
using the velocity operator vg=i[Hrxs| is that it
enables us to avoid such difficult expressions as occur
in (A.18).

Smit tries to go a little further with (A.17) itself.
He puts (or)w=awar* (as is true for a pure state).
Then, since the diagonal values of pr approach con-
stants (those of p+-f), he puts

(A.18)

(A.19)

o= ialle—iEzt’

where |a;| is constant, and E, has the dimensions of
an energy. This gives for 7g
AE;
vp=2_(pr)u—sy
l ks

(A.20)

which is really of the form of a sum over diagonal ele-
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ments of the density matrix. This result seems to us to
be erroneous. First of all, we are not describing a pure
state, and therefore the representation a;ar* of the
density matrix does not exist. Second, this representa-
tion actually leads to a contradiction since if it were
true the off-diagonal elements of pr would oscillate with
frequency E;—Ep, and therefore have an average
value zero. On the other hand, from KLI we know that
such elements exist in general (they are just those of
pt+1).

It is, incidentally, always possible to write the
average value of any operator in terms of a sum over
the diagonal matrix elements of f;, since it is char-
acteristic of our theory that the off-diagonal matrix
elements may always be expressed in terms of the
diagonal ones. The resulting “effective velocity opera-
tor,” however, is not, in general, of the form dE;/dks,
as may be easily seen from the explicit expressions of
this paper.

APPENDIX B. REALITY PROPERTIES

In this section some of the reality properties of the
matrix elements occurring in the theory will be derived.
Most of these were already given in the paper of
Karplus and Luttinger, but there they are so seriously
marred by numerous misprints that we prefer to give
them here again. The derivation is rather simpler also.

We consider first the case of an electron in a periodic
potential with no spin-orbit coupling. The Hamiltonian
will be written Ho,

H00=p2/2m+ U, (Bl)
and the eigenfunctions are
&= (e 7/A/Qui(r). (B.2)

As usual, 7 stands for the index pair (#,k), and »; is the
periodic part of the Bloch function.

We shall assume that the crystal has a center of
symmetry, so that U(r)=U(—r). Further, Hoo is real
(which is equivalent to time inversion symmetry for
our problem). Therefore, under the symmetry opera-
tion (S) which replaces r by —r and takes the complex
conjugate, the Hamiltonian is invariant and

SHoS™1= Hqo. (B.3)
Under this transformation the function ¢; becomes
&)/ =S¢1= ¥ (—7). (B.4)

Therefore, since .S commutes with Hgo, we can choose
the ¢; to be eigenfunctions of .S also. That is,

S¢r=S"¢u. (B.5)

However, S? is again the identity operation and
therefore the eigenvalues S’ must satisfy S”?=1 or
S’==+1. The ¢; and ¢; are however continuous functions
of %, and therefore as we vary % in a band S’ cannot
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change sign suddenly. It follows then that
S¢l= ¢‘ﬂk* ("— f) = 5n¢nk (f),

where 6,= =1, depending on the band in question.

For any Hermitian operator 4 which is invariant
under S, the matrix elements satisfy the following
reality condition:

(B.6)

s~ ( [ ¢'z*(f)A¢l(r)dr)*

= f du(r) A¥py* (r)dr

Y f 6*(=r) A%y (—n)dr [by (B.6)]
—5.5,, f S () A (— )b (P)dr

ey f () A (Du (r)dr

(¢l;A¢l’)*=6n6ﬂ' (¢Z7A¢l')' (B'7)

For any Hermitian operator B which changes sign
under S (for example, the spin-orbit coupling), the
identical method of proof gives

(¢1,Bpv)* = —8,0u (d1,Bdrr).

This equation means, in particular, that the diagonal
elements of any such operator vanish identically, since
by the Hermiticity they are real and by (B.8) they are
pure imaginary. (Therefore, there are no first order
corrections to the energy due to spin-orbit coupling,
and we make no distinction between @ and ¢;.)

If there is spin-orbit coupling present, the Hamil-
tonian is Ho defined by (2.13), with the eigenfunctions
and values given by (2.18) and (2.19). The spin-orbit
coupling,

(B.8)

He-o=(qXVU)-p, (B.9)

is an operator of type B. We shall limit ourselves to
effects of (B.9) to the first order. Then

vi= ooV,

where ¢;@ is of the first order in H®-°-. It follows at
once that ¢;® must satisfy

(0@ (=1))*= =0, P (1), (B.11)

instead of (B.6). If we have any operator D, we will
write its matrix elements

D= Y1,D¥v) =Dy P+Du®,

where the Dy @ are the matrix elements of the operator

(B.10)

(B.12)
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in the representation without spin-orbit coupling, and
Dy @ are the corrections to the first order due to spin-
orbit coupling. Then from (B.11) it follows at once that

Ay O¥= —§,0, A D,

By W¥=+8,8xBur®. ®-19

Finally we consider the reality properties of the quan-
tities Jo!¥ defined by (2.17). From the orthonormality
of the ¥; we have at once

T4 (JV*=0. (B.14)

We write

J V=T V4+ KW, (B.15)

where I is the contribution of zeroth order in the spin-
orbit coupling, and K is the contribution of the first
order. From (2.17) we have ;

Ok - Quy™* O aul:*(—-r)
(I H)¥=— wr——dr=— | wmi(—r)————dr
we Voo Ok We ok
5kk’ 6141,(1*) ,
= fu;*(r) 820n =001, (B.16)
We akz’
and similarly
(Kot *= —8n0n (Ko'Y). (B.17)

From (B.14) we have that the diagonal elements of
J satisfy

)= —Ta!, (B.18)

so that they are pure imaginary. Therefore from (B.16)
we find

I}=0, (B.19)

with our choice for the phases of the Bloch functions.
K.! on the other hand is not zero in general, so that the
diagonal elements of J are proportional to the spin-
orbit coupling.

We also list here certain other properties of the J
operators which are convenient in our work. For any
operator A we have

1
(A &) =-[Dabppr+ (T a,A)ur ], (B.20)
z
where
D,=0/0k+3/0k. . (B.21)
If A=(Q, a function of position alone, then
(Q;Ja)ll’=Danl'- (B22)
Finally '
(Ja;-]ﬁ)ll' —_ Z (]au“]ﬂl”l,—Jﬂ”“]al”l’)
ll’
aJ ' (k)  dJ g™ (k)
=[ ] Kk’ y (B23)
kg Ok,
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where

1 aw,.q,
Ja'nn’ (k) =—f w‘nk* df. (B.24)
wWev ¢ aknx

APPENDIX C. EFFECTIVE-MASS APPROXIMATION
TO MATRIX ELEMENTS oy

The matrix elements ¢y are given by (2.25) or

1

ow =§f e EED T owitwdr. (c.y

The assumption that ¢ has no Fourier components of
the order of a reciprocal lattice vector means that only
the constant part of the periodic function w;*w; can
contribute. Therefore

L= (Plck’Wll’y (CZ)
where
1 .
¢kk'=—f6_’(k_k’)'7¢d’, (C3)
Q
1
Wul =— wl*wz:dr. (C4)
WeY we

The quantity ¢ is just the plane-wave matrix ele-
ment of the potential. Since the latter is assumed to
have no Fourier components of the order of a reciprocal
lattice vector, £’ must be close to k& and we may expand

751

Wy as
awn’k

+ o e . ]dr
ok

"

1
W”r =—fwnk*|:wn'k+ (klll_ kl‘)
We

=0nw+ (kil,_ ku)]unn, (k) +% (kﬂl— ku) (kv,_ kV)

X T (k)+---, (C.5)
where J,** (k) is given by (B.24) and
1 azwn:k
T’ (B) =— f Wt . (C.6)
Wev we k“a v
The J,,"" (k) satisfy the identity
Fo )= Gpnyr= BB
" " ok, ok,

which follows at once the orthonormality of the w’s.
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The magnetic structure of FesN has been examined in a neutron diffraction study. The results are in
agreement with a model proposed by Wiener and Berger on the basis of magnetic measurements on a series of
related compounds. Ferromagnetically aligned moments of 3 up and 2 up are found for the corner and face-
center Fe atoms (respectively) in the cubic unit cell. The difference in moments is apparently due to bonding
interaction between nitrogen, at the body-center position, and the face-center Fe’s.

INTRODUCTION

HE nitride Fe,N is a magnetic compound with a
Curie point at 488°C and a net moment per
formula unit of about 9 Bohr magnetons (extrapolated

+ Work performed under auspices of the U. S. Atomic Energy
Commission.

* Guest Scientist at the Brookhaven National Laboratory,
Upton, New York when this work was done. Permanent address
of author now at the Brookhaven National Laboratory.

measurement: 8.86 up at 0°K).! The average moment
per iron atom is thus almost identical with that ob-
served in body-centered a-iron (2.22 up). The crystal
structure is most closely related to nonmagnetic face-
centered y-iron, however. It may be considered as
simply an expanded vy-iron lattice with nitrogen placed
at the body-center of the unit cell.? The magnetic

1C. Guillaud and H. Creveaux, Compt. rend. 222, 1170 (1946.)
2 K. H. Jack, Proc. Roy. Soc. (London) A195, 34 (1948).



