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The magnetic-field-dependent data of Soule for the Hall effect and Inagnetoresistance in graphite have
been analyzed using a multicarrier model. An improved mode of analysis is used, in which the magneto-
conductivity tensor elements are computed as functions of magnetic field strength from experimental data,
and then fitted to simple formulas. The formulas represent solutions to the Boltzmann equation in the
classical (nonoscillatory) range. The effects of electrons and holes are separated by applying a Kramers-
Kronig type relation. The results, which agree with band-model predictions within 20 to 50% are that
there are 2.9X10' holes and electrons per cm' in pure graphite at 4,2'K, and 7.0X10' cm ' each at 300'K.
The mobilities range from about 9X10' cms/volt sec at 4.2'K to 1.0X104 cm'/volt sec at 300'K, with the
hole-to-electron mobility ratio being 1.2 and 0.9 at the two temperatures. In addition, at room temperatures
there are about 6)(10"minority holes per cm' with a mobility of 15)&10' cm'/volt sec and 5&(10"minority
electrons per cm with a mobility 4&(105 cm /volt sec. The relaxation times for the majority carriers are
distributed over a range of a factor of four. The average relaxation times are consistent with those deduced
from cyclotron resonance experiments.

1. INTRODUCTION

' 'HE two-band model for the understanding of the
magnetic field dependence of electrical resistance

was introduced by Blochintzev and Xordheim. ' Nu-
merous authors have contributed to the theory by
including the Hall effect, and by considering various
cases. ' ' A discussion of the two-band model is given in
Wilson's book. ' Jones made early use of the theory to
treat the magnetic-6eld-dependent effects in bismuth. '
Several recent works have used the theory to analyze
experiments, obtaining estimates of carrier densities and
mobilities. ' " Most of these authors have fitted the
experimental data for the Hall coefficient and magneto-
resistance to specific formulas based on special assump-
tions. On the whole, the results have been successful
and the estimates obtained reasonable.

However, there are many advantages to inverting the
above procedure and obtaining the elements of the
magnetoconductivity tensor" as functions of magnetic

*A portion of the work reported herein was performed while
the author was on the sta6' of the University of Oregon, Eugene,
Oregon.
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field directly from the experimental data, and then
comparing with theory. ""Firstly, the e8ects of dif-
ferent groups of carriers on the magnetoconductivity
tensor elements are additive, whereas their e8ects on
the Hall coefIicient and magnetoresistance are given
by complicated formulas. Further, as will be shown
below, it is sometimes possible to separate the effects
of carriers of di6erent sign and to obtain carrier densities
and mobilities without making assumptions as re-
strictive as heretofore. Finally, when it is desired to
fit the data to a specific theory, the formulas for the
magnetoconductivity tensor elements are simpler than
those for the directly measured quantities, so that the
process of curve-fitting is more easily carried out.

In Sec. 2 we develop the necessary theory, and in
Sec. 3 we apply it to the data of Soule for graphite. "In
Sec. 4 the results of Kinchin for graphite are discussed,
and final conclusions are presented in Sec. 5.

2. THEORY

Ke restrict ourselves to the case of a conductor which
has an axis of symmetry parallel to the magnetic field.
Such is the case in the graphite experiments which we
shall analyze. In fact, the majority of the carriers in
graphite are associated with Fermi surfaces which have
rotational symmetry about. the c axis."As the current
is restricted to the layer planes, and this is perpendicular
to the magnetic field, we need deal with only two inde-
pendent elements of the magnetoconductivity tensor,
o. and &r „(the magnetic field is oriented parallel to
the z axis, which is parallel to the c axis).

Assuming that the Boltzmann equation is valid to
all fields with a relaxation time which is constant on
precession orbits in k space (the relaxation time may
have any dependence on energy and k,}, and making
use of the fact that the orbits are practically circular,

"R.G. Chambers, Proc. Roy. Soc. (London} A238, 344 (1956)."D.E. Soule, this issue LPhys. Rev. 112, 698 (1958)j.
'e J. W. McClure, Phys. Rev. 108, 612 (1957}.
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Fro. i. The diagonal magnetoconductivity of graphite in the
layer plane, with the magnetic field parallel to the c axis. The
curve is for sample EI'14 at 77'K. The circles are experimental
points, and the line is a theoretical curve consisting of two
"Lorentz" terms.

the conductivity components may be written'~

t dsg~(s)
I

dsg„(s)
&zx=&zz"+a'xx =

' +
1+(sH)' " 1+(sH)'

(2.1a)

pec = ds g„(s)/s,

where p is the number of holes per cm', e the electron
charge, and c is the velocity of light. A similar relation
holds for the electrons.

It is seen that if one has experimental data covering
a great enough magnetic field range, and if the elec-
tron and hole terms could be separated, the number
of each kind of carrier can be found. The separation can
be effected by using the Kramers-Kronig relations, "

"Results of this form have been obtained by many authors.
See, for example, J. W. McClure, Phys. Rev. 101, 1642 (1956).

's P. P. Nozieres, Phys. Rev. 109, 1510 (1958).
's J. A. Swanson, Phys. Rev. 99, 1799 (1955).
~ Lifshitz, Azbel, and Kaganov, J. Exptl. Theoret. Phys.

(U.S.S.R.) 31, 63 (1956) [translation: Soviet Phys. JETP 4, 41
(1957)j.

2' See, for example, R. Kronig, J.Opt. Soc. Am. 12, 547 (1926).
The relations (2.3) can be proved by substituting from Eqs. (2.1)
and carrying out the integral over IJ',

t dsg (s)sH
t
dsg„(s)sH

a'vs=acti +a'xs = . (2.1b)
1+(sH)s 4 1+(sH)'

In the preceding, (T1' and 0-" stand for partial conduc-
tivities due to positive and negative carriers, H is the
magnetic field, g„and g„are distribution functions for
the positive and negative carriers, and limits of in-
tegration are from 0 to ~. The formulas allow the
cyclotron frequency to depend upon energy and k„
which it does in graphite. "An important fact in the
present analysis is that the number of carriers is given
by the high-field behavior of 0- .' ""Specifically, we
have

(ri+ p) ec = (2/z. ) dHa„(H), (2.4a)

and the difference in zero-field conductivities is likewise
an integral,

goo

a ."—a "= (2/z-)
J

dHa „/H.
0

(2.4b)

Equation (2.4b) does not have a singular point, as
Eq. (2.1b) shows that a,„ is proportional to H for low

values of H.

3. APPLICATION TO GRAPHITE

The magnetoconductivity tensor elements were calcu-
lated from the experimental data of Soule" by the
following simple formulas which hold in this case:

a „=a/L1+ (RaH)'j,

rr.„=a ..(Ro H),

(3.1a)

(3.1b)

where 0. is the experimental conductivity and R is the

ss E, N, Adams (private communication),

In the above, the limits of the integrals are from —~
to +~; the symbol P means that the principal part
of the integral is to be taken. It is seen that by applying
the relation, and then adding and subtracting, the
individual o s for positive and negative carriers can be
obtained. If there are only carriers of one sign, separa-
tion is not e6ected, but a consistency check is provided,
which has been used by Adams. 2~ Once the partial con-
ductivities have been obtained, the total number of
electrons and total number of holes can be found by
using (2.2). As the zero-field partial a 's are also
known, the average mobility of electrons and average
mobility of holes can be found. Furthermore, informa-
tion is contained in the manner in which the partial
conductivities depend on magnetic field. If, for ex-
ample, there are two kinds of holes, it should appear in
the field dependence. The scattering law (dependence
of relaxation time on energy and k,) affects the field
dependence, and it may be possible to deduce informa-
tion concerning the law from the form of the partial
conductivities.

It is important to note that the carrier densities and
mobilities can be found without having to deal with
integrands containing singular points. The total number
of carriers (electrons plus holes) is proportional to the
area under the total o-„curve,
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Hall coeKcient, all in cgs units. Then, the 0-, and
o „/H were fitted to a linear combination of "Lorentz
curves, "

50

40

5=g fA./[1+ (H/H. )']), (3.2)

TABLE I. Parameters from least-squares fit of magnetocon-
ductivity tensor elements. Substitution of parameters in Eq. (5.2)
gives a representation of the indicated quantity. All quantities
are in cgs (Gaussian) units.

Sam- Temp.
pie ('K) A I

EP14 4.2
EP14 77
EP14 298
EP7 42
EP7 77
EP7 300

1430
416
181
442
358
181

EP14 4.2 —1240
EP14 77 —87.4
EP14 300 —2.22
EP7 4.2 —236
EP7 77 —210
EP7 300 —2.28

A2 H2

For o»)&10 14

267 5720 74.4
1230 19.2 6630
7290 36.0 19 800
428 341 116

1190 60.9 3710
7200 38,3 22 000

For (o»/H) X10»
267 15 010 74.4

1410 128 1140
6870 0.123 28 300
487 2220 145

1240 315 1000
6850 0.0863 32 010

A3

1.63 17 750

1.7 14 000

15—1.09

500
18.3

180
260

50
67

"The least-squares Qt was accomplished by an IBM—650 com-
puter, using an iterative procedure,

using the method of least squares to choose the best
values of A„'s and 8 's in two- or three-term expres-
sions." The justification for the form of (3.2) is that
we are replacing integrals over peaked distribution
functions by the integrand at the peak. Expression
(3.2) has the correct behavior in small and large mag-
netic fields and, in fact, we find with two or three terms
it is capable of representing the 0.'s to accuracies rang-
ing from 1% to 5% for different curves. Of course, it
is not necessary to make analytical fits to the curves in
order to integrate and find the total carrier densities
and average mobilities for electrons and holes. However,
in some of the cases there are two types of electrons (or
holes), so that curve fitting is the only way to effect
separation. Even if the curves were not fitted, it would
be necessary to extrapolate to high fields in order to
get the complete integral. Finally, with the type of
analytic formula used it is especially easy to apply the
Kramers-Kronig relations. Two of most satisfactory
0- s are exhibited in Figs. 1 and 2. Note that Fig. 2 is a
plot of Ho, „versus 1/.H, which is described by a formula
of the type (3.2) with H replaced by 1/H. The final
6tting parameters are listed in Table I.

If we insisted that each term in (3.2) represented a
single type of carrier, and required the Kramers-
Kronig relation to apply term by term, then our pro-
cedure would be equivalent to the simplest two-band
model, though carried out in terms of the 0.'s. However,
we regard the analytical representation of the 0-'s to
be a convenient step in applying the Kramers-Kronig
relation to the entire 0-. Thus, we allow each fitting
parameter to be adjusted completely independently,
and then interpret combinations of the fitting pa-
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FzG. 2. The off-diagonal magnetoconductivity of graphite in
the layer plane, with the magnetic field parallel to the c axis. The
curve is for sample EPj4 at 4.2'K. The circles are experimental
points, and the line is a theoretical curve made up of two "I,orentz"
terms, the positive one having less height and greater width.

"In an earlier report (J. W. McClure, Bull. Am. Phys. Soc.
Ser. II, 1, 255 (1956)7, the individual parameters were interpreted,
with much less satisfactory results than in the present paper.» D, E, Soule, preceding paper LPhys. Rev. 112, 708 (1958)7.

rameters instead of individual parameters. '4 That the
latter procedure is better is borne out by experiments in
changing the weighting of the data points in the least-
squares fitting; for though individual parameters are
affected considerably ( 20%), the over-all fit and
integrals are not much changed.

There are several facts about the results displayed in
Table I which must be noted. At 4.2'K, careful con-
sideration was given only to the field region below 2
kilogauss (only these points are shown in Fig. 2),
because of the oscillatory behavior at higher fields. The
oscillations are treated by Soule," but an analysis of
the entire behavior is postponed. The 6rst two terms in
the table for 4.2'K fit the low-field results, and the third
term is added to make the curve follow a rough average
at higher 6elds. At the other temperatures the entire
6eld range was utilized and the third terms were added
when necessary, usually to fit a very striking feature of
the curve. Theoretical Hall coefficients and magneto-
resistances were calculated from the fitted formulas,
some of the results being exhibited in Figs. 3 to 6. In
general, the calculated magnetoresistance reproduced
the experimental quantity extremely well, and the
greatest deviations are in the Hall coefficient.

The resulting carrier densities and mobilities are
listed in Table II. The results are in harmony with the
qualitative prediction which can be made from the Hall
effect: since the high-field Hall effect is negative, elec-
trons outnumber holes; since the low-field Hall eGect
is positive at the lowest two temperatures, the holes
must have the higher mobility at those temperatures.
The total number of electrons and of holes have been
determined by applying the Kramers-Kronig relation
to the entire 0-'s, as outlined above. The first two terms
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FIG. 3. The magnetoresistance of graphite in the same orienta-
tion as Fig. 1. The curve is for sample EP14 at 77'K. The circles
are experimental points and the line is calculated from theory.
Note that the total resistance is plotted.

in each 0- are regarded as the combined eRects of ma-
jority electrons and majority holes. The third term is
regarded as representing a minority carrier, as when it
is present its H3 is much more different from H» or H2
than H» and H2 are from each other. With this assump-
tion, the Kramers-Kronig relation applied to the first
two terms gives the properties of the majority carriers.
Note that the resulting partial 0- for a majority carrier
usually contains four terms, which represent a dis-
tribution of relaxation time (strictly speaking, the
product of the relaxation time and cyclotron frequency)
over a range of about a factor of four. Using the ex-
pressions for the individual 0-'s, we have calculated the
values of the ratio of Hall mobility to conductivity
mobility that each carrier would have if present alone.
We find values of pii(p, ranging from 1.2 to 1.6 for
both majority carriers at all temperatures. Except at
helium temperatures, the third term represents higher-
mobility carriers and appears only in 0-,„.We applied the
Kramers-Kronig relation to it individually to obtain
the minority-carrier properties. The predicted 0- for

the minority carrier is a very much smaller fraction of
the total 0- than the minority a,„ is of the total 0.,„,
explaining why the minority eRect is not seen in 0-„.
At helium temperatures the situation is reversed, with
a low-mobility carrier appearing in 0 only. The origin
of this "slow carrier" will be discussed later. The reason
that the high-mobility minority carriers are not seen
at helium temperature is presumably because they
saturate at magnetic fields which are so low that their
eRects were not included in the experimental data. The
sharp changes in the Hall coeKcient in Figs. 4 and 5 are
associated with the high-mobility carriers, while that
in Fig. 6 is due to the distribution of relaxation times of
the majority carriers.

On the whole, the results presented in Table II are
satisfactory. It should be pointed out that the sums of
the carrier densities for electrons and holes are more
reliable than the diRerences given here. This is because
the sums are given by integrals over the entire magnetic
Geld range, whereas the differences rely upon ex-
trapolations to inGnite Geld. An alternate method of
obtaining the diRerence in carrier concentrations by
extrapolating the Hall coe@cient is discussed by Soule."
One possible error in the results is the fact that the
majority carrier densities for EP14 at 77'K are less
than those for the same sample at 4.2'K, There are two
explanations for such behavior: (1) electron traps cause
the Fermi level to shift in such a way as to reduce the
total number of carriers; or (2) the high-magnetic-field
extrapolation (discussed below) may be in error. For
comparison we have made numerical calculations of
carrier densities for pure graphite, using the density-of-
states curve given by the Slonczewski-Weiss26 model,
with parameters chosen to Gt the de Haas-van Alphen
eRect."The values are listed in Table II, and compare
favorably with those derived here at 4.2'K, the values
for higher temperatures falling above those derived

0.5
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FIG. 4. The Hall coefficient of sample EP14 at 298'K, in the
orientation of Fig. i. The circles are, experimental points and the
line is the theoretical curve, The drop at low field is due to a
minority electron.

F»G. 5. The Hall coeScient of sample EP14 at 77'K, in the
orientation of Fig. 1. The circles are experimental points and the
line is the theoretical curve. The sharp rise at very low fields is
due to a minority hole.

"I.C. Slonczewski and P. R. Weiss, Phys. Rev. 99, 636(Al
(1955); 109, 272 (1958).
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TABLE II. The properties of the current carriers in graphite as derived from galvanomagnetic data. The mobilities refer to motion
in the layer plane. The row labeled theoretical density is the result of a numerical calculation using the theoretical density of states,
as described in the text.

Sample temperature

Majority hole
DensityX10 " (cm ')
MobilityX10 ' (cm'/volt sec)

Majority electron
DensityX10 " (cm ')
Mobility X 10 4 (cm'/volt sec)

Hole mobility/electron mobility
Theoretical densityX10 " (cm ')
Minority hole

DensityX10 " (cm ')
Mobilit'yX 10 4 (cm'/volt sec)

Minority electron
DensityX10 " (cm ')
MobilityX10 ' (cm'/volt sec)

4 2oK

2.8s
104

29
83.9

1,24
2.4

200
0.7

EP14
77oK

2, 19
7.33

2,24
6.3s
1.1;
3.6

3.3
57

298 K

7.04
1.01

7.04
1.13
0.8g

13.4

0.5p
39

4.2'K

2.0s
64.6

2, 14
59.1
1.0g
2.4

200
0.7

EP7
77'K

2e39
6.5s

4.86
1,34
3.6

8.p

20o

300 K

7.22
0.9g

7 36
1.0g
0.9p

13.4

0.57
15p

here. Shortcomings in the high-field extrapolations could
also cause this discrepancy. Our extrapolated curves for
0- fall oG like H ' for magnetic fields stronger than the
observed 6elds. The existence of an additional "Lorentz
term" with a high saturation field (such as that found
at 4.2'K) would increase the area under a o.„curve
over that found here. As the saturation fields (II 's)
increase with temperature (due to the decrease in the
relaxation time), the extrapolation errors should be
larger at the higher temperatures. The total carrier
concentrations found by Soule are also below the band
model values at the higher temperatures. Note that
our mobility ratios for the majority carriers are given
in Table EI, and at the low temperatures the holes are
more mobile. The ratios are in good agreement with
those calculated by Soule, using another method.

From the three values of the mobility as a function
of temperature for each carrier, we infer that the mo-
bility versus temperature is a smooth function, dropping
rather faster with temperature than 1/T. The carrier
density, however, does not change much up to 77'K,
and then increases by a factor of 2.5 up to room tem-
perature. Thus, the qualitative explanation for the
break"" in the resistance versus temperature curve at

about 120'K must be as follows: below that tempera-
ture the increase in resistivity is due to the decrease in
mobilities, while above 120'K the carrier densities be-
gin to increase, slowing down the rate of increase of
resistance. The temperature of the break must be
roughly equal to the average degeneracy temperature
of electrons and holes, which corresponds to one-half of
the band overlap. The band overlap thus deduced is
about 0.02 ev, compared to about 0.03 ev from the
de Haas-van Alphen e6ect and band model. "

Finally, knowing the average mobilities and the
de Haas-van Alphen masses derived by Soule, -" we can
make estimates of the average relaxation times and
mean free paths (see Table III). The relaxation time is
computed from the simple formula p= er/rrl*. Thus, the
calculated time is only approximate as it does not take
into account the distribution of effective masses in
graphite. The velocities at the Fermi surface are calcu-
lated for the maximum horizontal cross section of the
surface, using the band model, and the room-tempera-
ture value is corrected for thermal excitation. From the
table of relaxation times we may calculate the value of

0.5

TABLE III. The average relaxation times, velocities at the
Fermi surface, and mean free paths for the majority carriers in
graphite, as derived from the galvanomagnetic properties and the
band model. All quantities refer to motion of the carriers in the
layer plane. O 0

Sample
temperature

wX10" (sec)
v X 10-s (cm/sec)
l (microns)

EP14
4.2 K 77 K 298 K

Majority hole
35 5 2.5o 0.34
0.54 0.54 0.8p

18 1.2 0.3

EP7
4.2 K 77'K 300'K

22.0 2.23 0.33
0.54 0.54 0.8p

11 1.1 0.3

-05-

rX10" (sec)
sX10 ' (cm/sec)
l (microns)

Majority electron
15.p 1.14 0.20
0.93 0.93 1.5 .

15 1.0 0.3

106 0.87 0.19
0.93 0.93 1.5

11 0.8 0.3

"W. Primak and L. H. Fuchs, Phys. Rev. 95, 22 (1954).

0.5 I.O
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Fro. 6. The Hall coeKcient of sample EI'14 at 4.2'K, in the
orientation of Fig. 1. The circles are experimental points and the
line is the theoretical curve. Note that the 6eld range shown is
less than in Figs. 4 and 5.
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~r for a cyclotron resonance experiment such as that
of Gait et a/. ss For a frequency of 24 kMc/sec and helium

temperature we find for car for electrons and holes, re-

spectively, 2.2 and 5.2 for EE'14, and 1.6 and 3.2 for
EP7. In analyzing Gait's data, Lax and Zeiger" as-
sumed an average cur of 3 and Nozieres" assumed one
of 2.5. The approximate agreement of these figures
supports Gait's contention that his samples are of good
quality. (Of course, allowance should be made for the
fact that the cyclotron resonance experiment was
carried out at 1.2'K.)

R=a,„/H (o „'+o.,v'). (4.1)

In the high-field limit, o. „normally falls off like 1/H
and o„ like 1/H' Lsee Eqs. (2.1)j. Thus R normally
becomes equal to 1/Ho, „, which is i. ndependent of
magnetic field. However, if o-„ tends to a constant (not
zero) value at high fields, the Hall coefficient tends
toward o „/Ho ', which falls off like 1/H'. Since at
low fields E. is negative and decreasing with increasing
field, a minimum is produced. The Hall extremum dis-
cussed here has a diRerent origin than those discussed

by Borovik, ' though both cases have in common the
fact that the product RoH=o, „/o„is anomal. ousl.y
small. The data of Berlincourt and Steele" also require
a constant term in 0- . In their experiment the Hall
coefficient tends monotonically to zero, but the lowest
field of measurement was 3 kilogauss.

There are several possible explanations for the
appearance of a constant term in 0-, . Perhaps the most
plausible is that it is simply another "Lorentz" term
with a very large saturation field, such as the extra
term we added for Soule's data at 4.2'K. It is interest-
ing to note that the magnitude of this extra term at

"Gait, Yager, and Dail, Phys. Rev. 105, 1586 (1956).
ss B. Lax and H. J. Zeiger, Phys. Rev. 105, 1466 (1957).
0 G. H. Kinchin, Proc. Roy. Soc. (London) A217, 9 (1953}.

s' T. G. Berlincourt and M. C. Steele, Phys. Rev. 98, 956 (1955).

4. COMPARISON WITH KINCHIN

The most striking feature of Kinchin's experimental
results" for graphite is the fact that at low temperatures
the Hall coefficient reaches a negative minimum in the
neighborhood of 2 to 3 kilogauss, and then tends to
zero with increasing field. We have computed the
magnetoconductivity tensor elements for the 4.2 K
data and made approximate fits. We find that o. , is
represented by the sum of two "Lorentz" terms with
saturation fields of 110 and 2900 gauss, plus a constant
term equal to about 10 ' of the zero-field conductivity.
It is the constant term which causes the minimum in
the Hall coefficient; for when the constant term is sub-
tracted out and the Hall eRect computed from the o.'s,
the Hall coefficient decreases monotonically with in-
creasing field (at about —', the rate of Soule's). The way
in which the minimum arises deserves further comment.
For the case under discussion, the Hall coefficient is

given by

10 kilogauss is about one half of the value of the con-
stant found in Kinchin's 4.2'K data. Such an extra
term could represent another slow carrier, or could be
just a short relaxation-time part of the majority carrier
distribution. Another possibility" is that there may be
a small contribution from surface conductance, which
is not affected by the magnetic field. A third possibility
is that the quantization of electron energy by the
magnetic field is responsible for the constant term.
However, the quantization effects (oscillations) are
exhibited most strongly in Soule's data, whereas the
Hall minimum is most pronounced in Kinchin s. Lastly,
it was thought that small errors in aligning the magnetic
field parallel to the hexagonal axis might produce the
effect, but a careful theoretical investigation disproved
this hypothesis.

Assuming that the constant term in Kinchin's 0-

represents a "Lorentz" term, we can deduce a lower
limit for the total carrier concentration (electrons plus
holes) at 4.2'K of 2.1)&10"cm ', with a corresponding
upper limit on the average mobility of about 7)&10'
cm'/volt sec. By a difkrent mode of analysis, Kinchin
found the electron concentration (equal to the hole
concentration) to be 1.2)&10" cm ' at 4.2'K and
6.2&(10" cm ' at 273'K.

Kinchin also found that the Hall curves for dif-
ferent temperatures could be reduced to a universal
curve by subtracting the zero-field value, and by scaling
both the residual Hall coefficient and the magnetic
field. Such a result implies that all relaxation times
change by the same factor with change in temperature.
If exact scaling applied to Soule's samples, the change
with temperature in all B 's for a given sample should
be by the same factor (proportional to the change in
inverse relaxation time), the change in all A„'s for o„
should be by another factor (proportional to the change
in the product of relaxation time and carrier density),
and the change in all A„'s for 0. „should be by still
another factor (proportional to the change in the prod-
uct of the carrier density and the square of the relaxa-
tion time). It can be seen from Table I that such scaling
rules are but poorly obeyed for Soule's samples. Assum-

ing exact scaling, Kinchin's magnetic field scaling
parameter (P) should be proportional to the mobility,
and in fact obeys the same T "temperature depend-
ence law found by Soule." The inverse of the Hall
coefFicient scaling parameter (n), and the inverse of the
product of the resistivity and P, should both be pro-
portional to the carrier concentration; and they do
show the same general temperature dependence, being
relatively constant from 4.2'K to 77'K and then in-
creasing by about a factor of three up to 273'K. The
zero-field value of the Hall coefficient depends upon the
mobility ratios, but is not well determined at low tem-

peratures in Kinchin's data.
Finally we note that the mean free paths deduced in

"D. Mat tis (private communication).
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the last section agree fairly well (except at helium

temperature) with those calculated by Kinchin using a
different method.

S. DISCUSSION

The results for graphite are fairly consistent with the
band model and other treatments. The estimates of
total carrier density using the Kramers-Kronig relation
are about a factor of five larger than those gotten by
interpreting individual terms. '4 We interpret this to
mean that the majority electrons and holes are so
similar that they cancel 80% of each other in the Hall
effect. The existence of minority carriers is provided for
in the band model. ""We believe that the theory
presented is sound in the range applied. Furthermore,
the integrals are accurate to 1 to 2% in the range of
6eld strengths where data exist. Thus, the chief source
of error is in extrapolating to higher fields (in some cases
also to lower fields). This points up the need for experi-
ments at very high magnetic fields. The theory used
here is not valid in the quantum region, but recent
advances in theory"" should make it possible to give
a fundamental treatment in such a case.

Of course, the spirit of the method of analysis used
here is the same as the usual two-band theory. In fact,
our results are similar to those of Borovik' on mag-
nesium, in which two kinds of electrons and two kinds
of holes were assumed. It may be that in order to
represent a broad distribution of relaxation times for

"I.M. Lifshitz and A. M. Kosevich, J. Phys. Chem. Solids 4, 1
(1958); I. M. I.ifshitz, J. Phys. Chem. Solids 4, 11 (1958).

s4 P. N. Argyres, Phys. Rev. 109, 1115 (1958).

a single kind of hole (and electron), two terms were
needed. However, we do believe that the method used
here is more convenient and reliable than the usual
treatment. Unfortunately, the simple Kramers-Kronig
relation does not hold if the energy surfaces do not
have rotational symmetry about the magnetic field.
The information which can be gained in more com-
plicated cases has been studied by Adams. "

In a very recent paper Uemura and Inoue'5 have
worked out the Hall effect in graphite assuming a
simple band model and acceptor levels in the conduc-
tion band. They And that the orbital quantization due
to the magnetic field changes the carrier concentrations
so that Kinchin's high-field Hall effect curves are
reproduced. Their theory does not give the correct
low-field behavior as they use a much simplified model.
Thus it may be that their theory will explain the high-
field behavior discussed in Sec. 4.
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