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power in the kilowatt range. All the above data are for
frequencies in the 10- to 140-Mc/sec range and for
electrode separations from 1 to 10 cm.

Finally, the Berlin and Brown' data show that
multipacting can be the dominant microwave break-
down mechanism at pressures below the mean free path
limit of the diffusion mechanism. " Their breakdown
data for 3125 Mc/sec (Fig. 2 in reference 9) indicate that
at a pressure of about 0.1 mm Hg in air the field strength
es pressure curves tend to level o8 to steady values.
From Berlin and Brown's curves we have determined
these values as listed in column 3 of Table I. The
electrode separations and corresponding fd values are
listed in columns 1 and 2, respectively. The breakdown
V values in peak volts in column 4 are obtained from
column 1 and the rms E values of column 3.The kinetic-

' M. A. Herlin and S. C. Brown, Phys. Rev. 74, 291 (1948).
' S. C. Brown and A. D. MacDonald, Phys. Rev. 76, 1629

(1949).

Electrode separat1on
d, cm

0.0635
0.157
0.318

fd,
Mc-cm/sec

200
490
990

Breakdown B,
rms volts/cm

1800
1800
1500

Breakdown V,
peak volts

160
400
670

See reference 9.

theory mean free path for electrons in air at this pressure
is about 0.5 cm, longer than any of the electrode
separations used. The V and fd values from this table
are plotted in Fig. 4. The three points appear to
correspond to ~-, —,'-, and cycle multipacting. The
emergence of multipacting as the dominant mechanism
at sufficiently low pressures is similarly evident in other
microwave breakdown data.

TABLE I. Low-pressure extrapolation of microwave breakdown
data showing multipacting characteristics (adapted from Herlin
and Brown' ).
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In this paper an interpolation scheme is developed that depends on only a few parameters. This is done

by observing that the effective potential for electrons near the Fermi level can be split into two parts, the
part due to the core, and the part due to the other valence electrons. It is assumed that for semiconductors
the relative effect of the core is small, so that it can be replaced by an effective repulsive potential. In this
way two-parameter pseudopotentials are constructed for diamond and Si that give good agreement with
orthogonalized plane wave calculations and experiment at special points of the Brillouin zone, and also
yield reasonable results for the bands at other points of the zone. A by-product of the calculations is the
discovery of an error in the model for the valence bands of Si near the center of the zone proposed by
Dresselhaus. A compromise model is proposed in good agreement with theory and experiment. Good results
are obtained for Ge with a three-parameter pseudopotential. Finally, the many experimental facts that have
been deduced about the band structures of Si and Ge are augmented by the results of the pseudopotential
calculations to yield fairly accurate (SE&0.05 ry) sketches of the energy bands of these crystals along the
L100$ and L111$ directions in the neighborhood of the energy gap.

l. INTRODUCTION

'HE complete determination of the electronic
energy bands of a solid requires knowledge of the

energy E in the ith branch, for all i of interest, and for
all wave vectors k of the Brillouin zone. In practice
most calculations have determined E;(k) only for wave
vectors k possessing a su%ciently high symmetry. In
such cases group theory'' can be used to reduce the
order of the secular equation. It has been found' that
in semiconductors even the points of highest symmetry,
such as k=0, require the solution of approximately
10)(10 secular equations. Thus a convergent solution
at other points of the Brillouin zone is not easily

'Bouckaert, Smoluchowski, and Winger, Phys. Rev. 50, 58
(1936).

s F. Herman, Phys. Rev. 88, 1210 (1952); 93, 1214 (1954).

obtained. In addition, the E(k) curves are known' to
be smooth functions of k, so that if one knew E;(k) at
two symmetry points, one would be tempted to inter-
polate between them, at least along the symmetry line
connecting them.

For these reasons Slater and Koster' proposed an
interpolation scheme based on the tight-binding
approximation. They pointed out that if the various
overlap integrals occurring in the tight-binding formal-
ism are regarded as disposable parameters, the matrix
elements of the secular equation will have, as a function
of k, a simple analytic form. The parameters are then
determined by fitting energy values determined by
cellular or orthogonalized plane wave treatments at
symmetry points. While this viewpoint is appropriate

s J. C. Sister and G. F. Koster, Phys. Rev. 94, 1498 (1954).



686 JAMES C. PH ILLI PS

25r, —

2

l 'I l

15

1 (~ 25' 310
5 —X4

gL
- X ) (I00)

~s+

(PPO+ I

I' =(000) & = zn'a-'(koo) X = ZV'a-'(loo)

Fxo. 2. A schematic diagram of the energy bands of a diamond-
type lattice in the nearly-free-electron limit along the $100)
direction. For the sake of clarity, the separations of the bracketed
bands are greatly exaggerated. The notation used for the ir-
reducible representations in this and the subsequent figures is
that of Herring. 6

to d bands whose atomic functions have a small overlap,
it is not appropriate, e.g., to the conduction bands of
the group IV semiconductors. In this case the wave
functions are more nearly like plane waves, and for
this reason Allen' proposed an alternate interpolation
scheme based on Herring's orthogonalized plane-wave

.formalism. ' Allen's approach was similar to Slater and
Koster's with regard to core orbitals, but it introduced
the first few Fourier coefficients of the crystal potential
also as disposable parameters. The resulting number of
parameters was about the same as Slater and Roster's,
and was susceptible to reduction by a simplified treat-
ment of core orbitals. The method, however, still con-
tained orthogonality terms whose k dependence com-
plicated the form of the solution.

For these reasons we were led to consider modifica-
tions of the orthogonalized plane wave formalism that
would convert it into a simple interpolation scheme.
The basic ideas that dictated the formalism that was
finally selected will now be discussed.

' L. C. Allen, Phys. Rev. 98, 993 (1955).
s C. Herring, Phys. Rev. 57, 1169 (1940).
6The notation used for the various symmetry points is the

same as that of reference 2. The notation for the various ir-
reducible representations of the diamond lattice is the same as
that of C. Herring, J. Franklin Inst. 233, 525 (1942).

2. GENERAL CONSIDERATIONS REGARDING
INTERPOLATION SCHEMES

Before exploring the orthogonalized plane wave
formalism further with a view to using it as an inter-
polation scheme, we find it convenient to consider the
approximation of nearly free electrons. The results
that would be obtained in this approximation for a
diamond lattice along the L100j direction are shown
schematically in Fig. 1.' In the free-electron approxi-
mation (V=O) the various representations that are

grouped by brackets would be degenerate, as would a
number of the energy curves along A. The 6rst-order
eGect of V is to separate representations of diferent
symmetry. In second order, representations of the same
symmetry that happen to cross are separated, as is
indicated by the dotted lines in Fig. 1.

Thus when we seek to construct the actual energy
bands when V is not small, two diGerent kinds of
results must be obtained: (1) We must obtain the
quantitative order of the energy levels, and (2) we
must obtain the shape of each band, as a function of k.
The former result must presumably be obtained by
detailed calculations at the symmetry points, while
the latter results are to be obtained from the inter-
polation scheme. Thus, it is not actually necessary
that the interpolation scheme reproduce all the term
values that have been calculated. What is more de-
sirable is that the scheme depend on a small number
of parameters but reproduce a large number of term
values approximately. If this is the case we may be
satished concerning the physical validity of the method,
and have considerable confidence in the band shapes it
predicts. These shapes may then be used to interpolate
between the term values obtained more accurately
from other calculations, or from experiment. Indeed,
if the interpolation scheme can be made to depend on
a suSciently small number of parameters, these may
be determined directly from experiment, and the scheme
then enables one to deduce other features of the band
structure of interest.

Another point to be emphasized in this connection
is that even at symmetry points the term values that
are obtained in detailed calculations may not be fully
convergent. Thus exact agreement, obtained by using
a large number of parameters, is not especially signifi-
cant. Indeed, one desirable feature of the interpolation
scheme is that it yield values in better agreement with
experiment than those obtained from only partially
convergent calculations. In this sense the scheme can
provide a "bridge" between the results of experiment
and calculations of band structure based on first
principles. Since an increasingly detailed picture of
various parts of the bands is being obtained experi-
mentally, a simple scheme based on a few parameters
that correlates the experimental information should be
most welcome. As an example of this approach, in
Sec. 5 a two-parameter model for Si is constructed
that yields good agreement with eight experimental
values; similar results are also obtained for Ge in Sec. 6.
Finally, in Sec. 7 these results are collected and the
energy bands of both crystals are sketched with con-
siderable accuracy in the L100) and L111j directions
by slightly modifying the earlier results to bring them
into complete agreement with experiment.

3. A PSEUDOPOTENTIAL INTERPOLATION SCHEME

From the discussion of the last section it is clear
that the best justification for an interpolation scheme
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lies in the results that can be obtained from it. Never-
theless, in this section we shall describe our scheme and
present some physical arguments which suggest that it
might be successful. In practice it turps out to be much
more successful than the arguments would imply;
thus, the arguments shouM be understood more nearly
as an attempt to explain the results rather than to
justify them.

Our method is based on a pseudopotential, which is
constructed in such a way that it includes the effects
of the core. Thus, the lowest states of the pseudo-
potential are the lowest states of the valence band,
which we presume are well separated from the core
levels. For the sake of simplicity we direct our attention
now to semiconductors; the discussion would also

apply to metals, if suitably modified.
We now define our pseudopotential by demanding

that it give a good fit for the energy bands of interest,
which are the bands near the energy gap. The entire
effect of the core, through orthogonality corrections as
well as through its contributions to the crystal potential,
is to be included in the pseudopotential. Moreover, in
practice it proves necessary to truncate the Fourier
expansions of eigenfunctions at a small number of
plane waves. It is intended that the pseudopotential
should include the effects of interactions with higher
plane waves with the states of interest in an approxi-
mate way. We now discuss the possibility of achieving
these objectives.

That core effects might be represented by a repulsive
contribution to a pseudopotential was first recognized
by Hellman, ' who applied the method to molecules'
and metals. ' As Herring has observed, ' his approxi-
mation can be justified formally by observing that the
orthogonalization terms in the orthogonalized plane
wave formalism' have a repulsive character. The
appearance of the expression (E,„t E) in these terms—
causes no difhculty, since E can be approximated by
any constant value chosen to fit the region of interest;
the error should be small since the core levels E„g are
so far away from the region of interest. Symmetry
effects (a valence electron in an s state such as I' t
experiences orthogonality corrections only from s levels
in the core) can presumably be included approximately
by using operators measuring the relative s, p, d, . . .
character of the various plane waves. If one is concerned
primarily with s and p functions and mixtures of them,
the problem is considerably simplified. Moreover, the
effect of truncation (which is discussed in more detail
below) is to reduce the importance of the higher
Fourier coefFicients in the calculation.

Since the core is small, we find it plausible that its

r H. Hellmann, J. Chem. Phys. 3, 61 (1935);Acta Physicochim.
U.R.S.S. 1, 913 (1935);Acta Physicochim. U.R.S.S. 4, 225 (1936).' H. Hellmann and W. Kassatotschkin, J. Chem. Phys. 4, 234
(1936);Acta Physicochim. U.R.S.S. 5, 23 (1936).' C. Herring, Proceedings of the Conference on Photoconductivity,
AtLantic City, 1954, edited by R. Breckenridge et al. {John Wiley
and Sons, Inc. , New York, 1956},p. 81.

effect on the energy bands can be represented approxi-
mately by a pseudopotential. It is less clear how the
crystal potential itself is to be represented. The con-
tributions of the core to the crystal potential can easily
be included along with its repulsive effects. The dificult
part is the contribution of the valence electrons. The
latter part of the potential, however, may be expected
to be slowly varying, so that only its first few Fourier
coeKcients should be appreciable. We may also take
these as disposable parameters; thus, in the spirit of
Ewald, we split the crystal potential into two parts,
one of which is large only near the origin of physical
space, the other large only near the origin of k space.

Finally, we must consider the size of the secular
determinants we shall solve, and the effect of limiting
them (truncating) on the results. It was originally
hoped that including all the states in the valence band
and an equal breadth in energy in the conduction band
would be sufIicient. This did not prove to be the case;
instead it was necessary to adopt the criterion that
enough states were included so that each state of interest
near the energy gap interacted with at least one higher
state (of the same symmetry).

Even in this case we shall presumably include con-
siderably fewer states than have been included in the
more accurate calculations at the symmetry points;
this in fact was one of the original objectives. The
question now arises, to which term values shall we fit
our parameters? One might use the best values,
obtained with as many states as possible, or one might
fit to the results obtained using a realistic potential
and the same number of states. Since different repre-
sentations converge at different rates (especially the

p states as compared to the s states; see Herman' and
WoodrufP'), this is a significant point. Our view is the
following: if values have been obtained which appear
to have converged reasonably well, these are the ones
that should be used, even if they have been obtained
by including more states than we use in the pseudo-
potential calculation. The justification for this is that
different rates of convergence appear to be due chieQy
to different atomic symmetries, and we have already
attempted to include such effects in our treatment of
the repulsive effect of the core, so that it is consistent
to extend the earlier treatment to this point as well.

The introduction of a pseudopotential to represent
the repulsive effect of the core can also be justified by
a Thomas-Fermi treatment of the core. Thus Gombas"
and his associates have independently given a semi-
classical treatment that is in many respects parallel to
that of Hellman. In particular Szepfalusy" has shown
that the orthogonality terms can be replaced by a
linear operator which has a semiclassical interpretation
in the statistical theory as a repulsive potential. We

'0 T. O. Woodruff, Phys. Rev. 103, 1159 (1956)."P. Gombas, Die Statistische Theori des Atoms und Ihre
Anmendung (Springer-Verlag, Vienna, 1949), p. 150.

"C.Szepfalusy, Acta Phys. Acad. Sci. Hung. 5, 325 (1955).
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are not concerned here in such detail with the core
since the effect of truncating the secular equations is
to reduce the importance of the core, and to introduce
"nonphysical" contributions to the pseudopotential in
order to compensate for the diferent rates of con-
vergence of s and p states. It is sufficient for our pur-
poses that an approximate treatment of the effects of
the core can be given by the pseudopotential method.

where V~(r) is the pseudopotential. Since V~ is a local
space potential, we have assumed that the effects of
exchange and correlation can be approximated by the
introduction of effective local exchange and correlation
potentials. In practice this assumption is made for
almost all band calculations. The pseudopotential can
now be expanded in a Fourier series

V„(r)= +K Vie'I', (4.2)

where our prescription for the Fourier coefficients is

V000 =n, U(111)= Vl cosl8 (+1+It2+It s)o],
VK ——y cosL8 '(Er+E,+Es)a7,

KAO, (111), (4.3)

where K denotes a reciprocal lattice vector, and (111)
denotes any of the reciprocal lattice vectors of the form
(&2m/u, +2m/a, &2m./u). Thus we have introduced
three disposable parameters: n, y, and V1. This is the
form of pseudopotential used for diamond and silicon;
"F. Herman, Ph.D. thesis, Columbia University, 1953

(unpublished), p. 48. Available on microfilm through University
Microfilms, University of Michigan, Ann Arbor, Michigan.

4. APPLICATION TO DIAMOND

After this long discussion it may not be surprising
that the pseudopotential to be used for group IV
semiconductors is quite simple. From Herman's table
of the Fourier coefficients of the crystal potential of
diamond" it is seen that the valence electrons make an
appreciable contribution only to V»r. (Their next
largest contribution, to Vsse, is some 20 times smaller. )
Thus the remaining coefficients belong to the core, so
that they should decrease gradually as a function of k.
(This is actually the case, as may also be seen from
Herman's table. ) For our purpose, it is sufficient to
take the remaining coeKcients equal to a single con-
stant. This is a consistent procedure as long as we
truncate the secular equation and restrict ourselves to
a limited number of plane waves. It should be remarked
that our parameters refer to the potential of a single
atom. If there is more than one atom of the same kind
per unit cell we introduce the usual form factor [see
Eq. (4.3) below, which can be compared with Eqs. (3.7)
and (3.8) of reference 2j. Finally the zero of energy is
fixed by a suitable choice of V000.

Thus we obtain our energy bands from the following
one-electron Hamiltonian:

TABLE I. Comparison of term values for diamond obtained by
Herman'b in an orthogonalized plane wave calculation with
those obtained by the three-parameter interpolation scheme
described in the text. Energies are measured in rydbergs, and
the notation for the various representations is that of Herring. '
Term levels near the energy gap are in boldface.

Term

p, (&)

@~5,0)
r»(»
I 2, 0)
@12,(1)

p, (&)

I,,(I)

12,0)
1,(1)

L,,(1)

1.1(2)

Herman

—2.44—0.91—0.46
0.16
1.01
0.52

—1.67—1.23—0.30

—2.33—2.08—1.13
0.18

Interpolation
scheme

—3.03—0.90—0.43
0.02
0.65
0.73

—2.30—1.46—0.69
1.16
1.40

—2.19—2.59—1.10—0.17—0.48

a See reference 2.
b See reference 11.
o See reference 6.

if necessary, it can be generalized by taking more of
the lower Fourier coe%cients as parameters. This is
done for germanium, where our scheme requires four
parameters. By contrast Slater and Koster's scheme
for diamond' used eleven parameters.

The numerical values of the parameters that are
required are determined by trial and error. More
explicitly, one inspects the factored secular determin-
ants at points of maximum symmetry until one can
guess good starting parameters; these are then varied
slowly until a "best" set has been obtained. Apparently
for the cases we have studied this leads to an essentially
unique set {n,Vt,p} for each crystal. Since there are
many term values, all of which depend on many
Fourier coefficients, the restriction to only a few
parameters results in a substantial overdetermination
of the problem. The foregoing physical arguments
were presented to indicate that one might still expect
to obtain approximate solutions; inspection of the
secular equations supports this view since it shows that
the interband matrix elements between the lowest
conduction and highest valence bands, which are the
most important ones in determining the variation of E
with k near the energy gap, depend primarily on the
first few Fourier coefficients.

We discuss the results for diamond first. They were
obtained for n = —2.72 ry, Vr ———0.50 ry, and y =+0.17
ry. The results for various symmetry points are pre-
sented in Table I, which also lists Herman's best
(most convergent) results. Our results in general were
obtained using about 27 plane waves, which led to at
most third-order secular equations at P (k=0) and at
most sixth-order equations along 6 Lk= (400)].
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Herman used as many as 146 plane waves at I', and his
largest secular equation was of order 16. He used fewer
waves at X [k= 2sa '(100)) and L [k=so '(111)j, so
that the correct term values at those points should be
lower than the ones he lists. Also his L~ and L2 term
values are probably in error due to a mistake in con-
structing the factored secular determinants for these
representations.

Our pseudopotential has been constructed to yield
optimal term values near the energy gap, and it is
indeed these values, which are in boldface in Table I,
that are of the greatest interest. The basic limitations
of our scheme can be best evaluated, however, by
considering the errors in the pseudopotential values for
I'~&'& X~&" and L~o&. The errors in these terms, while

fairly large, are not sufficient to disturb band shapes
near the energy gaps, as can be easily seen from per-
turbation theory. On the other hand, when one realizes
that these term values dier mainly from the ones near
the energy gap by kinetic energy terms it is clear that
the pseudopotential correction to the free-electron
values is several times that which is obtained by
Herman, and so grossly in error (but not, it is to be
emphasized, in a way that will spoil band shapes near
the energy gap). The reason the pseudopotential yields
poor values is that F~&" corresponds to an atomic 1s
state, instead of to an atomic 2s state as it should. '4

To have treated these states correctly would have
required more parameters and orthogonalization to the
1s level, and would very probably not have materially
improved band shapes near the energy gap.

We now consider the pseudopotential results for
this region in detail. From the table we see that the
pseudopotential scheme yields term values that are in
the right order not only at the center of the zone, but
also at the edge points X and L. Moreover, the numeri-
cal agreement is qualitatively excellent at I', X, and L,
and indeed the discrepancies, especially at X and L, are
well within the limits of error due to inadequate con-
vergence at those points. More convergent solutions
would probably improve the agreement between the
two sets of results.

More interesting are the results obtained along the
symmetry line 6 connecting I' and X. These are shown
in Fig. 2. Term values were calculated at intervals
5k=0.1(2s.a ') (1,0,0). Sixth-order equations were
solved for 6&, d2, and 65, which means that only 24
plane waves were used for each value of k. At each k
the lowest six symmetry types were used, and thus a
discontinuous truncation is made for each type as one

passes from 1' to X. (The values of k at which these
truncations were made are the same as those shown in

Fig. 5 by doubled arrows. ) These discontinuities

produced discontinuities in the term values near the

energy gap of order 0.05 ry, and in accordance with

'4I am grateful to Dr. F. Herman for bringing this point to
my attention.
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FIG. 2. The energy bands of diamond along the L100) direction,
as calculated by using the interpolation scheme described in the
text.

the variational principle, at each discontinuity a smooth
curve was drawn lying somewhat lower than the
calculated points.

From the figure several conclusions can be drawn.
The minimum in the conduction band may well occur
in the [100j direction, as suggested by Herman, " and
for k~0.85(2sa ')(1,0,0). The vertical energy gap at
F is 6 ev, but the indirect gap is 2.5 ev. Measure-
ments"" of the ultraviolet absorption show that the
indirect transition requires about 5.5 ev. Thus if we
were fitting to experiment we would guess the direct
gap to be about 9 ev. Since comparatively little is
known experimentally about the band structure of
diamond, we content ourselves here with a comparison
with Herman's model.

The shape of the energy bands obtained from the
interpolation scheme is very similar to that sketched by
Herman, on the basis of calculations of effective masses
at 1'. For comparison Herman's results are shown in
Fig. 3, and the results obtained by Slater and Koster
by fitting eleven tight-binding parameters to Herman's
results are shown in Fig. 4.

From the figures it is clear that the pseudopotential
scheme yields results in excellent qualitative agreement
with those of Herman, and if Herman's results were
more convergent at X and L quite satisfactory quanti-
tative agreement might also be obtained. The tight-
binding scheme, on the other hand, yields qualitatively
incorrect results. For example, it predicts the conduction
band minimum at the center of the zone, and the

rs Robertson, Fax, and Martin, Trans. Roy. Soc. (London)
A232, 463 (1934).

's S. Ramanathon, Proc. Indian Acad. Sci. A24, 137 (1946).
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valence band maximum elsewhere, whereas the reverse
is actually the case. The reason for this can be seen by
comparing Fig. 4 with Fig. 1. It is clear that the tight-
binding approximation has actually produced an

FIG. 3. The energy bands of diamond along the [100]direction,
as sketched bv Herman~ on the basis of his orthogonalized plane
wave calculations.

interpolation similar to the one that would be obtained
for nearly free electrons. This is because the term
values that have been fitted do not lead to a tight-
binding picture, but more nearly a free-electron one,
so that all overlap integrals approximate those of free
electrons. A qualitatively correct shape for the energy
bands is obtained from the pseudopotential scheme
because it includes enough interaction with higher
waves. To include as many states in the tight-binding
scheme would probably require the determination of
20 or 30 parameters.

Since the interpolation scheme has yielded the right
qualitative shape for the energy bands, it is of some
interest to compare quantitatively the effective masses
(curvatures) of the energy bands at I' calculated from
the interpolation scheme with those derived by Herman.
Without spin-orbit interaction the shape of energy
bands near I'25 and F15 is obtained from the secular
equation (see Dresselhaus, Kip, and Kittelr' and
Dresselhaus, "whose notation we follow)

Lk.'+M(k„'+k.s) —)t ~7k.k„ lVk.k,
Nk k„Lk„'+M(k,'+k, )—s) Nk„k,
Sk,k, lVk„k, Lk,'+M (k,'+ k„') )— (4 4)

TABLE II. Values of the constants I, 3I, and N appearing in
Kq. (4.4) of the text, as calculated by Herman' and by the
interpolation scheme described in the text. The units are rydbergs.

I.r„.(» M
N

I.
r„o) M

N

Herman

—4.07—3.59—5.13

—2.19
2.88
0.69

Interpolation
scheme

—4.92—4.93—7.69
I—2.43

4.40
1.97

& See reference 21.

The values of the constants I., M, and Ã obtained from
the interpolation scheme are compared with those of
Herman in Table II. It can be seen the results are in
excellent qualitative agreement, but that the inter-
polation scheme yields constants that are about 30%
too large (or effective masses about 30%%u~ too small).
This is a consequence of truncating the secular equation
at a low order. The constants are essentially propor-
tional to aobo, where ao and bo are the coeKcients of the
(111) plane waves in expansions of the eigenfunctions
belonging to F25 &'& and I'15('&. Since we are not admitting
higher order plane waves, uo and bo will be somewhat
larger than they would be in a more complete expansion.
Thus we tend to overestimate the values for the
constants.

5. SILICON

We next consider the results for silicon. Calculations
were performed for two sets of values of n, V1, and y;
one set was chosen to 6t the orthogonalized plane wave

(OPW) calculations of Woodruff" and Bassani, "while
the other set determined V1 and y to fit the experi-
mental values of the direct energy gap at k=0 (5Es)

TABLE III. Comparison of term values for silicon obtained by
Woodruff' and Bassani in an orthogonalized plane wave calcula-
tion with those obtained from the three-parameter interpolation
scheme based on experiment which is described in the text.
Energies are measured in rydbergs, and the notation for the
various representations is that of Herring. ' Term levels near the
energy gap are in boldface. The experimental values discussed
in Sec. 7 of the text are also listed.

Term

p, O)

@25,(1)

I „0)
P2, 0)

P1(2)

QPWa b

—1.48—0.86—0.54—0.08

Interpolation
scheme

1.72—0.86—0.68—0.13—0.20—0.07

Exper.

—0.86—0.68

X,(»
X,(»
X1(2)
X 0)
X4(&)

1,1 (1)

I, 0)
L ,0)
1.3(1)

1(2)

—1.19—0.96—0.54
0.09
0.24

—1.40—1.10—0.75
0.00
0.11

—1.38—1.49—0.97—0.56—0.58

—0.75

—0.68

& See reference 10.
b See reference 19.
& See reference 6.
'~ Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
'SG. F. Dresselhaus, Ph.D. thesis, University of California,

1955 (unpublished).
' F. Bassani, Phys. Rev. 108, 263 (1957),
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Fzo. 4. The energy bands of diamond along the L1007 direction,
according to the tight-binding interpolation scheme of Slater and
Koster. 3

20 W. C. Dash and R. Newman, Phys. Rev. 99, 1151 (1955).

and the indirect minimum energy from the top of the
valence to the bottom of the conduction band (hE)).
The results were almost the same in both cases, so that
we report mainly the values obtained from the second
model, which is based directly on experiment. In
Table III we list the calculated term values for the
second model, for which 0.= —1.61 ry, V» ———0.16 ry,
and y=+0.12 ry, and compare them with those of the
OPW calculations. It can be seen that the two are in
excellent agreement, especially when it is remembered
that the OPW values are not fully convergent.

The energy bands that are now obtained along the
L100] direction are shown in Fig. 5. We find 5Ep=0.177
ry (=2.4 ev) and 5E&——0.11 ry (=1.5 ev), in approxi-
mate agreement with the values observed optically by
Dash and Newman. " LA slight modification of the
parameters could be made to make 5E» =0.08 ry
(=1.1 ev), but this model yields suflicient agreement
for our purposes. ] In addition, from these curves we
can locate the minimum in the conduction band.
By solving the secular equation with ks t where
k=ks2s-u '(1,0,0)] varying from 0.84 to 0.92 by steps
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~ -0.75
O

—1.00
X

)x)

'i'X
g r

«ag
1 «o»

-).75~t--- ~--'ii I I

0 0.2 OA 0.6 Q8
k IN UNITS OF 2m a '(100)

Llf -1.25—

—$.50—

1.0

FIG. 5. The energy bands of Si along the I 1007 direction, as
calculated from the interpolation scheme described in the text.
The double arrows indicate values of k at which discontinuous
truncations took place for the various irreducible representations.

of 0.02, we And the minimum occurs for kp= 0.88&0.02.
The erst model, which used n= —1.54 ry, V»= —0.18
ry, and y=+0.12 ry, yielded 5Es=3 ev, 5E)=2 ev,
and k0=0.86~0.02. These values for ko are in excellent
agreement with the experimental value of 0.83&0.02
deduced from the fine structure of the recombination
radiation observed by Haynes, Lax, and Flood."

The results obtained in Fig. 5 should be compared
with those of Bassani, " who used the tight-binding
interpolation scheme to obtain the bands along A. It
will be seen that his results for silicon are very similar
to those of Slater and Koster for diamond, and are
subject to the same criticism.

Once ko is known, the effective masses for electrons
can be calculated and compared with the values ob-
tained by Dresselhaus, Kip, and Kittle" by cyclotron
resonance. We find (nti.*/nt) =0.98 and (mr*/tn) =0.30,
whereas the respective experimental values are 0.98
and 0.19. The agreement for the longitudinal masses
is not entirely fortuitous, since it is a consequence of
cancellation between small contributions of the lower
and next two highest 6» levels that modify the
free electron value. On the other hand, the value
for the transverse mass is a sensitive function
of E(d i"))—E(he&')) at ks. If we write this as

LE(gt(s)) E(1'ss, o))]+LE(Pss, ir)) E(t)isit))]

and evaluate the former from experiment and the latter
from the OPW values of Table III, we find (tip*/tN)
~0.18. However, the OPW values are not convergent,
and so are not especially significant. The conclusion is
that the theoretical uncertainties in the calculation are
too large to warrant including the exchange and

» Haynes, Lax, and Flood, Bull. Am. Phys. Soc. Ser. II, 3, 30
(1958). Note added tn proof B. N. Brocichouse (.J—. Phys. Chem.
Solids, to be published) has recently pointed out that the inter-
pretation given by Haynes, Lax, and Flood of their data is not
consistent with the vibration spectrum of Si as deduced from other
experiments. The value of k0 has also been deduced by G. Feher
(J. Phys. Chem. Solids, to be published) from resonance studies
of donor-electron wave functions. He finds k0=0.85, in good agree-
ment with our results.
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TA&IE PP. Constants appropriate to the top of the valence band in silicon. The constants, which are described in the text, are
measured in units of fi /2m, and the results obtained by various workers from experiment and theory are compared.

DKK' (exper. )
DZLb (exper. )
DKK' (theory}
D' (theory)
Pseudopotential
Compromise

—4.1—4.0—4.1—4.0—3.9—3.9

1.6
1.1
1.6
1.1
0.9
1.1

lcl

3.3
4.0
3.3
4.0
3.6
3.6

—1.9—7.2—3.1—2.7

—6.7—3.9—5.8—6.0

—7.5
70 7—6.7—7.0

—6.7—3.9—5.8—6.0

—1.2—4.9—1.7—1.5

—0.4—1.1—0.7—0.6

a See reference f7.
b Dexter, Zeiger, and Lax, Phys. Rev. 104, 637 (1956).
e See reference 18.

truncation corrections mentioned at the end of this
section.

Ke now consider the bands near the top of the
valence band at F25. In order to compare our results
with those obtained from cyclotron resonance, it is
necessary to include the eGects of spin-orbit coupling.
When this is done, the energy surfaces of interest have
the form""

2 =)'s'/(2ns)+ (L+2M)/3,
8'=

I (L—M)/3j',
O'= —',LN' —(L—M)'$.

(5 2)

Here A, B, C, I., M, and E are measured in units of
Ii'/2m. Dresselhaus" has shown that the constants L,
M', and 1V, which previously appeared in Eq. (4.4),
have the form L=F+2G, M= Hi+Hs, and 1V=F—G

+Hi Hs. Here, fo—r Fss,

m2 r2. (s)

A2

Hi
m res(')

k2

Hs
m r2s(')

l(F "'IP.IF "')I'

l(F "'IP.IF
EJ—S-

"'IP.IF "') I'

jV1—jV,.

l(F "'IP.IF "') I'

jv~ —jv,.

(5.3)

(5 4)

(5.5)

(5.6)

In the matrix elements occurring in Eqs. (5.3)—(5.6),
for example, 1 2

&'~ denotes an appropriate basis function.
as dined by Dresselhaus. " From the experimental
values" (in units of h'/2m), A = —4.1~0.2, I

8
I
= 1.6

&0.2, and
I CI =3.3+0.5, two sets of values for I., M,

and E have been deduced. ""It was originally hoped
that results from the interpolation scheme could
differentiate between these two. However, this has
proved unnecessary, since the second model is based
on an arithmetic error. In deducing J, G, and H1 from
L, 3f, and E, one assumes II~~0 due to the remoteness

g~/$2~I 1l2$4+C2(P 2$ 2+/ 2$ 2+/ 2$ 2)jg' (5 ])
where

of the nearest F25 level. Then from I.= —7.2, M =3.9,
S=—7.7, one finds the correct values Hi= —3.9,
F= —4.9 and G= —1.1. However, it is easy to see
that Hi (the term due to Fis&") must have a magnitude
about 3 times that of F (which is due to Fs oi). Thus
this model must be incorrect. " '4

The values of the various constants have been
calculated by using the term values derived from the
pseudopotential. These are listed in Table IV, together
with the experimental results of Dresselhaus, Kip, and
Kittel" and Dexter and Lax."The various models are
also listed, and in the last line a model is proposed
which, in the author's opinion, represents a good
compromise between the experimental and theoretical
results. (This model is rather similar to the one first
proposed by Dresselhaus, Kip, and Kittel. 'r) A comment
that is appropriate here is that A, B, and C, as calcu-
lated from the interpolation scheme, are in rather too
good agreement with the experimental values. From
the comments made at the end of Sec. 4, we would
have expected the interpolation scheme to over-
estimate these constants somewhat. Actually the good
agreement is a result of a fortuitous cancellation of two
errors. This will be discussed further at the end of the
next section.

It is perhaps worth emphasizing here that the model
that we have constructed for silicon determines its
two parameters from experiment (BFs and oFr) and
then predicts six other values Lks, (mr. */m), (mr*/es),

I
8 I, I CI j which are in good agreement with the

results of various measurements.

6. GERMANIUM

Since the term scheme for Ge, even at the center of
the zone, is considerably difrerent from that of diamond
and Si, it is interesting to consider the results obtainable
from the pseudopotential scheme when it is applied to
Ge. Before we present these results we review briefly
what is known about the levels near the energy gap.

~ Since this model has been used in several calculations,
(see references 24 and 25}it is signi6cant that band theory shows
that it is incorrect.

"W. Kohn in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc. , New Vork, 1958), Vol. 5.

s4 E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956).
'~ R. N. Dexter and B.Lax, Phys. Rev. 96, 223 (1954).
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The most important diGerence between the energy
bands of Si and Ge is that in Si the antibonding p state,
F15, lies lower than the antibonding s state, F2, whereas
the opposite case obtains for Ge, as was first shown by
Herman. ' "In a sense this means the bands of Ge are
nearer those that would be obtained in the tight-
binding approximation. Thus in Ge an extra parameter
is necessary to fit the term levels even approximately,
and this we take to be p= V2ss, so that our prescription
for the Fourier coefficients of the pseudopotential is now

V000 &y V&111& VlcosL8 (~1+~2+~3)o)y
V&s2p&= p cosL8 '(Er+Es+Es) uj,

VI= y cosL8 t(Et+E's+Es) ag,

K~O, (111), (220). (6.1)

L6(
r,

0.4 -r
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Fro. 6. The energy bands of Ge along the $100j direction, as
calculated from the interpolation scheme described in the text.

"F.Herman, Physica 20, 801 (1954)."E.R. Johnson and S. M. Christian, Phys. Rev. 95, 560 1954).' Braunstein, Moore, and Herman, Phys. Rev. 109' 695 &958).

In Ge we find a good fit is obtained by taking
n= —0.60 ry, Vt ———0.25 ry, p=0.011 ry, &=0.05 ry.
By comparing these values with those used for Si we
can understand the significance of the parameters.
The parameter V~ is negative in both cases, and
represents the bonding effect due to the valence
electrons. Both p and y are considerably smaller in
Ge than in Si; p is used to adjust the relative levels of
Fs' and F&5. It is clear that the result p=y, which
occurred in Si, is in general a fortuitous one. Finally,
in Ge we have fitted our four parameters to the five
term values F25 (') F2 (') F~5(" L "' and X~"). The
second of these is obtained from Dash and Newman's
results"; the fourth is determined from the indirect
energy gap, and the last can be obtained by extra-
polating measurements of the energy gap in Ge-Si
alloys. ' Fxs( )—F25 o) can be determined reasonably
well from Herman's calculations, since the difference
is relatively insensitive to the stage of convergence.

The results that are obtained with this choice of
parameters are listed in Table V, which also shows
Herman's values and the values obtained from experi-

TABLE V. Comparison of term values for germanium obtained
by the interpolation scheme described in the text with those
obtained by Herman' in an orthogonalized plane wave calculation,
and with values deduced from experiment. Energies are measured
in rydbergs, and the notation for the various representations is
that of Herring. Term levels near the energy gap are in boldface.

Term

I'1O)
p~~, o)
z ~,o)
~15O)

1(2)

I O)

I&, O)

I3, O)

I„1(2)
Z,,o)

Herman

—0.76
0.09
0.20
0.42

—0.50—0.04
0.44

—0.37—0.65—0.01
0.34
0.56

Interpolation
scheme

—0.80
0.09
0.15
032
0.59

—0.52—0.10
0.20

—0.39—0.62
0.06
0.19
0.56

Exper.

0.09
0.15

0.17

0.14

See reference 21.
b See reference 6.

ment. (The zeros of energy have been chosen so that
all three columns have approximately the same value
for I'sq "&.) From the table it is seen that the results
agree with the experimental values to within 0.05 ry,
and with Herman's value of F»") to within 0.1 ry,
which is about the probable error of Herman's
calculations.

The values obtained for the constants characterizing
the top of the valence band at I' are (in units of 5'/2m):
L= —18.7, M= —3.6, X= —20.7, 2 = —7.6, i 8j =5.0
and ~C~ =8.4. The experimental values are A= —13.0,
~B~ =8.9, ~C~ = 10.3. In the case of Ge we have not
obtained such good agreement with the results of
experiment as we did for Si. This is because our
calculations of effective masses are limited not only by
truncation errors, as was discussed in connection with
diamond, but also by exchange corrections due to the
nonlocal character of the exchange potential. In the
case of Si there is a fortuitous cancellation of the two
effects, but in Ge, where the chief perturbation is due
to the F2 level instead of the F~5 level, this does not
occur. The exchange corrections are discussed in detail
elsewhere "

Energy bands along 6 have been calculated using
this pseudopotential; the results are shown in Fig. 6.
They are similar to the results obtained by Herman. "
In addition the eGective masses for electrons in the
conduction band at I have been calculated. One
obtains (mz, */m) =1.27, compared with the experi-
mental value of 1.58. For the transverse mass we find
(mr*/m)=0. 15, whereas the experimental value is
0.082. Agreement with experiment is improved if the
experimental value of I~

(') is introduced. Thus if
one computes E(Ltt2&) —E(Ls "&) from (E(L&t2&)
—E(~ss t'))—LE(~2s t'&) —E(Ls tt&)) and uses for the

~ J. C. Phillips, J. Phys. Chem. Solids 7, 52 (1958).
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former term the experimental value of 0.045 ry and
for the latter the value 0.03 ry obtained from the
pseudopotential values listed in Table V, one Ands

(mr*/nz) =0.09, in very good agreement with experi-
ment. Since truncation and nonlocal effects have not
been included in the calculation, the agreement is
partially fortuitous. It is believed that it is not entirely
so, however, since it would appear that in this case the
truncation and nonlocal corrections tend to cancel, as
they did for the holes in Si. Incidentally, this argument
suggests that the pseudopotential value for L3 "& is
quite satisfactory.

The results that have been presented show that the
model that has been constructed for Ge is as successful
as that constructed for Si in fitting a large number of
experimental facts with a model depending on only a
few disposable parameters. As was pointed out in the
beginning of this section, the energy bands of Ge and
Si are qualitatively rather different, so that it is re-
assuring that the method is successful in both cases.

'7. ENERGY BANDS OF Si AND Ge AS.
DEDUCED FROM EXPERIMENT

We are now in a position to take advantage of the
"bridge" that we have constructed and so sketch the
highest valence and lowest conduction bands of Si and
Ge in the [100) and L111) directions with some ac-
curacy, using wherever possible the experimental facts.
These are as follows:

(1) the direct energy gap, as determined optically by
Dash and Newman";

(2) the locations of the minima in the conduction
bands, and the indirect energy gaps, thus yielding
E(Xi"&) and E(Li "&) for Si and Ge, respectively;

(3) the converse values, as determined from extra-
polating measurements"" on Ge-Si alloys (although
E(Lt&'&) for Si is somewhat unreliable, on a ry scale the
uncertainty is still small);

(4) the location of the minimum in the (100)
direction in Si, as determined from the fine-structure
of recombination radiation"; and

(5) the direct valence-conduction band gaps at X
and L for Si and Ge, respectively, as can be inferred
from the transverse effective masses for electrons.

These experimental facts lead to only slight modifica-
tions of the term values already calculated. The effective
masses (curvatures) may then be modified by assuming
that the matrix elements are unchanged but taking
into account the change in the energy gaps. (This is a
good approximation since ordinarily most of the curva-
ture at symmetry points is produced by interactions
between different irreducible representations. ) Finally,
the remaining interpolation curves- are sketched by
comparison with the results of Secs. 5 and 6, which
should'be approximately correct here also because of
the approximate agreement of the interpolation term
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Z

W —1. L&i

«X1

-1.2
k = m a-'(11&) k= (000) 2~a-'(100)

Fio. 7. The energy bands of Si near the energy gap. The figure
summarizes all that is deduced about the shape of the bands by
combining experimental and theoretical information in the way
described in Sec. 7. Probable errors for term values at the center
and edge of the Brillouin zone are also indicated.

~ M. Lax and J. L. Lehowitz, Phys. Rev. 96, 594 (1954)."J.C. Phillips, Phys. Rev. 104, 1263 (1956).

values with the experimental ones. The results are
shown in Figs. 7 and 8. The curves so obtained should
be accurate to about 0.05 ry at worst. Probable errors
in various term values at symmetry points are indicated
in the figures by brackets.

It is clear that if the use of a simple interpolation
scheme has led to the bands along the t 100) and $111)
directions, then a more elaborate scheme, using perhaps
5 or 6 parameters and larger determinants to obtain a
fit to the results of Figs. 7 and 8, can be used to extend
the latter results to other directions in the Brillouin
zone. This approach would yield the bands near the
energy gap for all k. On the other hand, if all that is
desired is the density of states near the valence and
conduction band edges, this quantity can be obtained
much more simply by applying the moment-singularity
method developed by Lax and I.ebowitz" and the
author" to the present models. All that is required in
this approach are term values and curvatures for
critical points of the band surfaces near the energy gap.
Most of these quantities can be deduced from experi-
ment, using effective masses and term values deduced
from Figs. 7 and 8. Critical points not located at
symmetry points can be discovered by group-theoretical
and topological arguments" and their term values and
curvatures estimated from the interpolation models
developed in Secs. 5 and 6. It should be noticed that in
practice most of the additional critical points will still
lie on symmetry lines of the zone. This is an important
point, since it greatly reduces the order of the secular
equations to be solved, and greatly simplifies the
perturbation theory necessary to calculate the trans-
verse curvatures. In this way one can circumvent the
very considerable amount of labor that would be
required to sample solutions of the secular equation at
general points of the zone, since even our truncated
interpolation scheme- leads to secular equations of
order 25 at such points.
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Fro. 8. The energy bands of Ge near the energy gap. The figure
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Finally, we remark that in the bands sketched in
Figs. 7 and 8 the e6ects of spin-orbit coupling are
neglected; these are probably important only at the
top of the valence band at F, and the behavior of the
bands in the neighborhood of I' has been discussed by
several authors. ""

8. CONCLUSIONS

The results obtained from an interpolation scheme
should not be taken too seriously. Nevertheless the
great success, both qualitative and quantitative, that
we have had in correlating many experimental values
related to the energy band structures of Ge and Si by
schemes based on a few parameters justices several
comments.

First, we have obtained satisfactory shapes for the
bands only by including interaction with a suKciently
large number of the higher conduction band states.
This is because the shape of the bands away from the
symmetry points of the Brillouin zone is determined
primarily by kinetic energy terms and second-order
perturbations from other levels.

We also see that the simple scheme that has been
discussed here provides a convenient bridge between
experimental results and extensive and laborious band
calculations. This device was used to good e6ect to
sketch the energy bands of Ge and Si in Sec. 7. More-
over, the general similarity between the various schemes
for silicon suggests that although WoodrufP' did not
concentrate his attention on obtaining a realistic
crystal potential, it may well be that if his calculations

were carried through to a convergent conclusion they
would yield results more nearly in agreement with
experiment than those that have been obtained for any
other complicated band structure. In addition, it is
easy to see how slight modifications of the crystal
potential could remove the remaining discrepancies.

In this connection the present work suggests the
possibility of using the OPW method to construct a
crystal potential that would yield energy bands in
agreement with experiment. Previously Herman"
suggested that something like this might be done by
adjusting the values of the core levels E„g (this might
be especially appropriate for the 3d levels in Ge, with
which Herman was especially concerned). Our view-

point is somewhat diferent. We suggest that the first
few Fourier coefFicients of the potential be allowed to
vary somewhat. In any calculation of the potential
from first principles these are the quantities that are
most uncertain, while the higher coefficients, which
are associated with the core, may be determined from
self-consistent calculations for the atom. By proceeding
in this way one includes the effect of the shape of the
unit cell and bonding in an empirical way.

Finally, we remark that if a method based on plane
waves is successful for semiconductors, a similar
treatment should certainly be valid for metals. Again
one could hope to determine the parameters either
from theory or experiment. Something like this has
been done by Heine" for aluminum. For metals,
however, the matter is more difficult, since one is con-
cerned with "pockets" of the Fermi surface near zone
boundaries, and the principal curvatures of pockets
are not so basic to the band structure as are effective
masses meed energy gaps.
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