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We have examined the invariant character of restrictions imposed on singularities or other sources of the
gravitational fields in the Einstein-Infeld-Hoffmann theory of motion in general relativity. We have suc-
ceeded in providing a complete classification of sources that can occur in the linearized theory only, in terms
of properties that are invariant under Lorentz and ‘“‘gauge” transformations (the latter designation refers
to linearized curvilinear coordinate transformations). Except for several explicitly known solutions, all
solutions can be derived from a ‘“‘supermetric” corresponding to the Hertz potential of electrodynamics. One
method of classification is in terms of gauge-invariant integrals over spatial closed surfaces completely
surrounding the particles. The motion of each source is determined by its own intrinsic angular momentum
and dipole moment. The results do not depend on any particular assumed form of the stress-energy tensor of

the sources.

1. INTRODUCTION

INCE 1938, a great deal of attention has been given
to the problem of deriving the equations of motion
for gravitating particles from Einstein’s field equations
of general relativity.*=® The fact that in general rela-
tivity many different metric fields represent the same
physical situation leads to peculiar difficulties of in-
terpretation which so far have been resolved only in
part. A similar many-to-one correspondence between
the mathematics and the physics of a given situation in
Lorentz-invariant theories causes no serious difficulties
because the multiplicity of mathematical representa-
tions is much smaller; in general relativity, on the other
hand, we do not have available a complete set of ‘““true
observables,”’® whose numerical values would determine?
the physical situation completely and would be, in turn,
completely determined by it. To this extent the physical
interpretation of a given metric depends on ad hoc
procedures; likewise, the construction of a metric to
represent a given physical situation is often rendered
more difficult by the fact that we do not know how to
cast our physical notions into the relevant mathematical
form.

We may possibly avoid these difficulties by restricting
all our considerations to a single coordinate system, or
to a set of coordinate systems whose multiplicity is not
essentially greater than the number of different Lorentz
systems.” The corresponding procedure in electrody-
namics has been very successful in dealing with the
problems raised by gauge invariance ; however, in gravi-
tational theory its usefulness is still doubtful. We shall
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adopt an alternative approach, which consists of at-
tempting to formulate all physically significant relation-
ships in a coordinate-invariant fashion. Ideally, in this
approach, we should be able to classify invariantly the
various possible structures a single particle might pos-
sess, and to describe invariantly how a set of such
particles moves in their joint gravitational field.

As a contribution to such a program we have obtained
an invariant description of the structures and motions
of particles in the linear approximation of general
relativity. The linear approximation is the first step in
a systematic approximation procedure, which consists
of the expansion of the metric in powers of its deviation
from the flat Lorentz metric.®® We shall show that in
the linearized theory all those solutions of the field
equations that correspond to particles can be generated
in a simple fashion; their structures and motions can be
classified in a way that is Lorentz covariant and in-
variant under “gauge’’ transformations, the latter being
those curvilinear coordinate transformations whose
products with Lorentz transformations yield the full
group of coordinate transformations appropriate to the
linearized theory.

In addition to emphasizing invariance properties, we
have formulated our results in a way that does not
depend on an arbitrarily assumed stress-energy tensor
for the particles. To this end we introduce in space-time
a number of “world tubes”—four-dimensional regions of
finite spatial cross section bounded by timelike lines.
Within the world tubes there are sources of the field:
either the metric becomes singular or the field equations
acquire nonvanishing right-hand sides. Outside the tubes
the metric obeys the vacuum field equations. Such a
treatment reflects our actual ignorance of the precise
structure of the matter tensor. Incidentally, our results
remain valid if within the world tubes the gravitational
field is so large that the linear approximation breaks
down there but remains valid outside. In such a treat-
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LINEARIZED GRAVITATIONAL THEORY

ment the appropriate quantities for classifying the
sources are the fields outside the world tubes; we develop
suitable techniques for the classification in the next two
sections.

By linearizing the field equations we destroy some of
their important qualitative features. In particular, two
different particles do not interact in this approximation;
the motion of any one particle depends only on its own
structure, and any particle which does not grow a dipole
moment is constrained to move with constant velocity.
Likewise, if we define the energy density of the field
either by means of the canonical stress-energy tensor or
as in the next section, we find that the first-order total
energy density contains contributions only from the
sources, not from the field itself. It is also quite possible
that some of the solutions of the linearized field equa-
tions are not approximations to any exact solution. On
the other hand, some important qualitative features of
the full theory, such as the Bianchi identities, do have
their counterparts in the linear approximation. The
linear theory is thus useful in allowing us to see precisely
to what extent the Bianchi identities between the field
equations limit the nature and motion of the field
sources. Furthermore, in searching for invariant prop-
erties in the exact theory, or in higher approximations,
we can limit ourselves to those quantities whose linear
approximations are gauge-invariant (or zero).

2. PRELIMINARY RESULTS IN THE FULL THEORY

In this section we shall introduce some definitions and
relations which are valid in general relativity inde-
pendently of any approximation scheme; later sections
will deal with the corresponding linear approximations.
We use units such that the velocity of light is unity; the
symbol & designates the gravitational constant.

The tensor density of weight two,

Hpal 8] = (gul'gaﬂ— guﬁgav), (21)
6wk
has the symmetry properties
Hsel 8] = F 1Bl lhel = — FF189][ual
(2.2)

Hwal 8] Fluplle] b Flusl[8al = (),

From it we can form two identically conserved “pseudo-
tensors” (e.g., quantities which transform as tensors
under linear coordinate transformations)®:

TI“‘ = H[al-‘] 871 aBy Tlﬂ’ = O’ Tyv= Typ’

Ln[Vp].“E 0.

(2.3)
(2.4)

Lrlvel = Trvyp — Tl‘ﬂx”,

The identity sign will frequently be used, as in the above
equations, to emphasize that the equality holds whether
or not the field equations have vanishing right-hand

0T, Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Press, Inc., Cambridge, 1951).
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sides. We shall call 7#* and L#l’?l the total energy
density and total angular momentum density, re-
spectively,* without intending to imply that their
physical interpretation in the exact theory has as yet
been fully settled. Actually there are many different
identically conserved quantities any one of which might
conceivably be considered the stress-energy pseudo-
tensor!? and many pseudotensors which might con-
ceivably be identified with the angular momentum
density. Regardless of how we interpret 7#” and L*l*#
the linear approximations to the surface integrals (2.5)
and (2.6) below are very useful for classifying solutions
of the linearized field equations.

The total energy or angular momentum contained in
a finite portion of a three-dimensional space-like
hypersurface S can be measured by means of integrals
over a closed two-dimensional surface:

P“=dep q‘wzf df*[pd] H[P”][Ma],a,
s

I
(2.5)
Lwi=— [ ds, L= f af* oo
S !
)({M[pﬂvxn_u[pv}nxv_i_ﬂ[pv] [nv]}’
uleole = [Jlpol [urx]' « (2_6)

where f is the surface bounding S. Here we have used
the notation of reference 10. If S is a region of three
space at constant time, Egs. (2.5) and (2.6) are simply
statements of Gauss’ theorem: for this case S5 dS, ¢*—
Jv ¢*dV, where dV and V are the three-dimensional
volume element and volume, respectively; and
L1 df* 10 dP7— [4 ¢4 dA, where n, is the unit
normal in three space, d4 is the element of surface area,
and 4 the total surface area.

We next introduce a quantity which we shall call the
supermetric, in analogy to the Hertz superpotentials of
electrodynamics. Given a metric that satisfies the field
equations and is nonsingular everywhere outside certain
world tubes (which surround the trajectories of par-
ticles), we can construct within the world tubes a metric
which is also nonsingular, but does not satisfy the
vacuum field equations, by extending the given outside
metric with sufficiently differentiable and otherwise
arbitrary functions throughout the interior of the world
tubes. If we introduce a coordinate system in which the
extended metric obeys the De-Donder coordinate con-
ditions,

g ,=0, (2.7
we can find in this coordinate system a V#[I*a such that

g =Vubel (2.8)

Furthermore, because of the symmetry of the metric

11 The angular momentum density includes the dipole moment
density.
12 T N. Goldberg, Phys. Rev. 111, 315 (1958).
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g#” there exists a supermetric M #1081 guch that

grr= M [pal [vtII’ By (2.9)

with
M el lv8] = pf[vB](ra]

In the linearized theory (2.9) can be used to generate
solutions of the field equations by a suitable choice of
Mell’fl, We can add to M+l any term of the form
Flreplfal | ith FleapllvBol = FplvBol [Map]’ without chang-
ing the value of the metric, g#**. Also, if

MUl = JL Ikl 81— (1 /24) et "Be, g M eI YT (2, 1())
then g'#*=g**, and
MRl Bl 7 Bl L] L 7 w1 [Bel= (), (2.11)

In general M#<IU#] has 21 independent components
whereas M'#11*8] hag only 20.

3. THE LINEARIZED THEORY

To formulate the linearized theory we suppose that
the metric tensor is expanded in the powers of some
parameter A,

guv=nnv+}\7uv+ ce, (31)

n*” is the Lorentz metric, with diagonal components
—1, —1, —1, 1; indices raised or lowered with the
Lorentz metric will be underlined and remain in their
original positions. The usual physical interpretation of A
is that A= km where 7 is a suitable sum or average of
the masses appearing in a given problem; A then has the
dimensions of a length. The expansion (3.1) induces in
all other quantities of interest, such as the curvature
tensor or the integrals discussed in Sec. II, a corre-
sponding expansion,

Q=0oQ+\ Q0+,

where Q is any quantity with any number of superscripts
or subscripts. All further calculations in this paper will
be accurate only to the first order in A.

Coordinate transformations which lead from a metric
of the form (3.1) to another whose zeroth approximation
is the Lorentz metric have the form:

(3.2)

2 P=w,Px"+NEP (x). (3.3)

w,? represents a Lorentz transformation and £# is arbi-
trary. Within the world tubes where the metric is
singular or unspecified we allow singular or unspecified
£#. The transformation group (3.3) contains a normal
subgroup of “gauge”® transformations for which w,”
=4,*. In the linearized theory only quantities which are
gauge invariant have direct physical significance. Under
a gauge transformation, the y*” transform as follows:

v () =7# (@) + 7 £ ot g o — g, e (3.4)

13 There will be no confusion with the true gauge transforma-
tions, as we shall be concerned with purely gravitational fields in
this paper.
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The first-order field equations

—1
G = 7[__77'"’7”. ep—N""YV*% pa

—nhlyhe pa+77#v7aﬂ, aﬂ]’ (35)

and the linearized curvature tensor
1RO B=F o By, potnPineyHE 4
—nkenBoyre o —ytepfoyre o,
— i[nten omPry oo, Py e )]
+iln et ey e onAnren e by, (3.6)

are thus both gauge-invariant.
The linear approximations to the integrals (2.5)
and (2.6),

lP"=dep lq’npsf df*[pv] lu[P!T]I‘,
N f
and

1L[w]=-—~f as, 1Lrlw]
S

3.7)

Efdf*[wl{lulﬂvlvx#—-lu[pvlnxv+1H[pU][uv]}, (38)
f

where

lu[P"']F: 1I{[pﬂ] [ua]’ @

(H ool lnal =

k(n"“v"“-i-n"“v"“—n""v""~n"“v""),
(3.9

1T = 1M[“"‘] Vg =—— 1G‘“’,

8k
lLF[VP] = Tr*xP—, q"ﬂva,

are also gauge-invariant. The only change in the volume
integrals comes from changes in the shape or location
of the volume of integration and changes in x7; these
contributions are quadratic in A. Using Stokes’ theorem
we can deduce the gauge invariance of the surface
integrals directly; hence their invariance does not de-
pend on the transformation properties of the field
within the volume of integration. If ¢l is any
quantity antisymmetric in all three indices and ds a
parameter along the line / bounding the finite two-
dimensional surface f, then Stokes’ theorem states:

f df*[m’]¢[paa]' = f dl*[p.yams[p“a], (3.10)
l f

with
Al* (poa =3 €pcapl daP (s)/ds]ds.

If, in particular, f is closed, then the integrals vanish.
On subjecting the integrands of the surface integrals (3.7)
and (3.8) to a gauge transformation, we find that the
added terms have just the form ¢!*?2l, and thus
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integrate to zero. In the exact theory, or in higher ap-
proximations, the simple transformation properties
described in the two preceding paragraphs are not valid.

From Egs. (3.7), (3.8), and (3.9) we see that the
surface integrals have another special property in the
linear approximation: the integrals over two different
surfaces which enclose the same sources have the same
values. In other words, all the energy-momentum and
all the angular momentum-dipole moment is carried by
the sources. It is therefore meaningful to define the
intrinsic angular momentum and dipole moment of a
source. We choose within one world tube a timelike line
2%(7). Then if f surrounds just one source, the intrinsic
angular momentum and dipole moment of the source
are

NWI(r)= j[ af*pn{xule " Ax(7)
7

— uleeleAx? (7) 4 H o) ['“’]} , (3.11)
with

Ax (1) =x"—2"(7).

Because of their invariance properties the surface
integrals (3.7), (3.8), and (3.10) provide a preliminary
classification—according to their energy and angular
momentum—of the solutions of the linearized field
equations (3.5). To distinguish between inequivalent
solutions with the same energy and angular momentum
we can use the curvature tensor (3.6). Since the curva-
ture tensor is gauge invariant, two metrics which differ
only by a gauge transformation have the same curvature
tensor. Moreover, in the linearized theory the equality of
two curvature tensors obtained from two different
metrics is just the integrability condition for the exist-
ence of a gauge transformation that carries one metric
into the other. Thus there is a one-to-one correspondence
(modulo Lorentz transformations) between the different
curvature tensors and inequivalent metrics.

To bring the curvature tensor into a form which can
be handled easily, we rewrite it as a two-index quantity
by the following identification of pairs of antisymmetric
indices with a single index!¢:

[12]e3, [23]1,
[14]c>4, [2475,

(3112,

[34]6 (3.12)

When the field equations are satisfied, the result is

1R Rep,

A B
el 1),
B —A

where A and B are symmetric three-by-three matrices
with vanishing trace. Under spatial rotations A and B
transform independently of each other as tensors of
rank two.

(3.13)

4 F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).
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4. SOLUTIONS OF THE LINEARIZED EQUATIONS

Though the approximate field equations, Eq. (3.5),
are linear, the construction of their general solutions is
complicated by the fact that more than one unknown
function appears in each equation. If we adopt the
linearized De-Donder conditions the field equations are
thereby separated into ten independent D’Alembert’s
equations, but from among the solutions of the
D’Alembert’s equations we must yet select those solu-
tions that obey the coordinate conditions. Therefore we
shall proceed indirectly, by first exhibiting three particu-
lar types of solutions to the field equations and subse-
quently showing that the most general particle-like
solution can be obtained from these three prototypes by
linear superposition.

The A-type solution is one generated by a mass point
which accelerates itself along a curved world line z%(7)
by growing a time-dependent intrinsic angular mo-
mentum and dipole moment. Let b*=dz%/dr Jr=r,; 7 be
normalized to be the proper time, b%b,=1; 1¢(7,)=2x*
—3z%(r,); 7.(x) be defined by I*(7.)l.(7)=0 and
4(12)>0; n=1%,; Az*=2*(r,)—2%(10) ; and C* be four
constants. Then the 4-type solution is!s

yrr=ArLae; 2(r); 2%(70) ; C]
BCrbCH
B n
Cr (b+Az"+b7As¥) — Ag? (B*C+-b"CH)
i |
n P

To see that this solution represents a self-accelerated
monopole we evaluate its energy and angular mo-
mentum with the appropriate surface integrals (3.7),
(3.8), and (3.11),

\Pr=CH/2k,

1LI#1=constant,
(4.2)

1
Niwl= EEI:AZ"(T)C”— Az’ (1)CH].

Even if the mass point does not accelerate, its dipole
moment in the rest system, N4, grows secularly unless
b*~C7; if »~C” then Eq. (4.1) gives the usual solution
for a stationary mass point.

The B-type solution is also singular and represents a
disembodied angular momentum?é:

y#r = Boolae; Ales); 5= (r) ]
(A[MP]bV+A[VP]b#)
- b

n P

Pro (4.3)
1 M= ,

1L = NWw1(7) = Al /2k = constant.
18 This solution has been considered by Dr. P. Havas (private

communication).
16 J, Lubanski, Acta Phys. Polon. 6.4, 356 (1937).
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The third type of solution is one that can be derived
from a supermetric that obeys D’Alembert’s equation:

(4.4)
(4.5)

yHr = M (kI 8] By

4 1M pel 8 ep=0.

with

The right-hand sides of Eq. (4.5) may either vanish
everywhere or else vanish only outside several world
tubes. If fis any closed surface lying wholly within the
region where the right-hand sides of (4.5) vanish, then
the net energy in the three-dimensional hypersurface
bounded by f also vanishes:

1Pﬂ:f df*[per]{ﬂ)‘” IM[uﬁ][pa],m
f

_,7)\/3 1M 1] [tm], B)\+77)‘a IM[Mﬁ][fm]' A

=f df*[ptr]{"?)\‘r IM[#ﬂ][ﬂal’ﬂ)\
f

— e M BIoed o\ Lha AT B)Le0] Y

=0. (4.6)

The last equality comes from Stokes’ theorem. A similar
calculation shows that the net angular momentum,
around any point, of the sources of the field (4.4) also
vanishes. Thus, the metric (4.4) represents either a
source-free radiation field or else the field due to
quadrupole and higher multipole sources.

A general metric which corresponds to a collection of
particles is one that is defined and obeys the linearized
field equations everywhere within a fundamental region
R that consists of all space-time except for N world
tubes, and is asymptotically flat at infinity. For sim-
plicity of presentation we shall assume that the world
tubes do not collide or split in the course of time; the
generalization of our discussion to cases in which tubes
do collide or split involves no new principle. In each
world tube a timelike world line, z*(i7) with r the
proper time, can be chosen. Then to each tube we can
assign a constant energy “%P* and an intrinsic angular
momentum *N1(ir) as measured by surface integrals
which surround only the ith world tube. We shall show
that such a metric can be written in the form

N
yrr= 2 {iAR a0 g (Pr) 5w (Pro) ]

i=1

- iBw g ARl igay 4 Ik 1B] g
+nPrEE g, ,—n*Er , (47)

where M #1181 satisfies D’Alembert’s equation through-
out R,

poP M kAlB] =0, (4.8)

id# and ‘B* are the A-type and B-type solutions, and
&+ is arbitrary in R.

SACHS AND P. G. BERGMANN

Let us choose the constants in the 4-type and B-type
solutions by requiring the sources of these two types to
carry all the energy and angular momentum:

i\ Pu=iCu/2R,

. ‘ . 4.9
zN[Mv] (1,7.0) = I»A[W‘]/zk_
Define
N
Awr=ryir— 37 (A iBw), (4.10)
=1
and
H pl1el 98] = puvA B {-peBAwr — puBAer —pavAr8, (4.11)

Because of Eq. (4.9) the sources of A*” have no net
energy or angular momentum; thus if f lies in R,

f df*[ﬁa]HA[pv]["a],azoy (412)
2
and
f df*[pa]{HA[p”] ["a], %"
! __HA[pv][va],axll_H[Pﬂ'][I-“']} =(. (413)

It does not matter around which point we evaluate the
angular momentum.

On comparing Eq. (4.12) with Eq. (4.6) we might
conjecture that the metric can be derived from a super-
metric which obeys D’Alembert’s equation in R. This
conjecture is actually correct. In fact, from Eq. (4.12)
we can infer the existence of a Cl??#l* which obeys the
equation!?

]]A[pdl[#a]‘ a:C[pW]M’ o (4‘14)

The deduction of Eq. (4.14) from Eq. (4.12) is an
application, in a higher number of dimensions, of the
same mathematical theorem that allows us to infer in
magnetostatics the equation B= VXA from the equa-
tion, valid for any closed surface in three space,
FB-dA=0. Using Eq. (4.14) in Eq. (4.13) and elimi-
nating two terms by means of Stokes’ theorem, we
obtain

f df*[,,,]{C["‘”’]"-—C[””"]"-f-HA[P"] [#v]} =0. (4‘15)
S

From Eq. (4.15), valid for any closed surface in R, we
can in turn conclude the existence of a DI#1lesel such
that!?

Cleorle— Clooulv | [J \leollwr] = Dlwillpoe] (4'16)
Using the cyclic identity (2.2) on Hlr?1#1 we can solve
Eq. (4.16) for Cleo’l# in terms of DI#Ilrsal When the

17G. de Rham and Kunihiko Kodaira, Harmonic Integrals,
lecture notes, Princeton Institute for Advanced Study, revised
(1953) edition, p. 41,
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expression for Cleo’l# is resubstituted into Eq. (4.16),
we get

H ylkel 08l = L{) Dles (8771 4 2 DB [anr] |- DIeslLkr7]
+ DUAlssrl - Dlenebrl f Dlsllvarly - (4.17)

valid in R.

Equations (4.12) through (4.17) are valid in any
gauge frame. Now extend A**, which is defined by Eq.
(4.10) only in R, through the N world tubes in a
sufficiently differentiable but otherwise arbitrary fash-
ion. Retain the definition (4.11) for Halkell8l even
within the world tubes. Independently extend D#*1lroel
through the world tubes; in general the relation between
Dwileaal and HakAUA Eq. (4.17), will be violated
outside R. We can go to a coordinate frame in which A*
obeys the linearized De-Donder conditions,

A ,=0. (4.18)

Finally, we define M*kll6l and Eileeel Ly the
equations

pAMF DB = [T (1l 5]

and
nekE[#V][pm], e)\=D[uv}[pm] (4.19)
everywhere. Then a possible supermetric is
M el 6] = A *[pal[¥6] — %{ZE[)“!] 8712 ElvBllpet]
4 Elefl i) L Rlral(uf]
4 EWlepr L Flefllvarly | (4.20)
For this supermetric we find
AW = Y F Wl o= P el 6] g (4.21)
nPeM Al =0 in R. (4.22)

From Egs. (4.10), (4.21), and (4.22) we obtain the
desired Egs. (4.7) and (4.8), after transforming back to
an arbitrary coordinate frame.

A useful property of those supermetrics that obey
Eq. (4.22) is that they can be chosen in such a way that
they have all the algebraic properties of the linearized
curvature tensor in empty space. In fact, suppose we
have a supermetric which obeys Eq. (4.22) and is
already chosen to obey the cyclic identity (2.11) ; we can
then define a ‘“‘conformal” supermetric:

1 {pal (v8] = Y/ (el [v8] — 1 (puv [’ aB aBAf! v
M M 3 (" M *P4-nE M
_n#ﬂM’av_.,’aVM’Mﬂ)
+& (nemef—nrbper) M,

where M'eB= M'ellebly, = M'=M'2rp,,. This new
supermetric has vanishing trace

(4.23)

T M 11 (081= ), (4.24)

and the metric generated by it differs from the metric
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generated by the original supermetric by at most a
gauge transformation.

The “equations of motion” in the linear approxima-
tion are rather trivial ; from the defining equations (3.7)
and (3.11) we have

dINW [dir = — tpr & Pr+- v i) Pr, (4.25)
If we regard the intrinsic angular momentum and dipole
moment as being determined by the internal dynamics
of the sources, Eq. (4.25) shows how a variable dipole
moment is related to the self-acceleration. For the
singular solution (4.1) it is possible to choose the world
tube surrounding the singularity as having an arbitrarily
small diameter; thus the world lines %* cannot in
general be chosen in such a way that the left-hand side
of Eq. (4.25) vanishes. If we arbitrarily require the left-
hand side of Eq. (4.25) to vanish, or make the re-
strictions!®

LPrINWI=0 or %,dNW/dir=0, (4.26)
then the sources are constrained to move with constant
velocity unless % P*=0. If #{P*=0, the motion is

arbitrary.

5. STATIC LINEARIZED METRICS AND
THEIR CLASSIFICATION

In this section we illustrate the classification of
metrics by means of the curvature tensor for the par-
ticular case of static linearized metrics which have point
sources and are asymptotically flat at infinity. Greek
indices will run from 1 to 4, lower case Latin indices
from 1 to 3, and capital Latin indices from 1 to 6.

In De-Donder coordinates the linearized field equa-
tions for static fields are

nst,y;n’ = 0’
(5.1)
ks =0,
Let m, p*, and m!*I= —ml*"] be constants; let ¥7¢=¥*7,

¢r[st]= ._¢r[t81 and 1]1[[7'8] [pd) = — 1]‘[I:?r] [pal = 1]|[[zo<11 [rs]
be sets of harmonic functions zero at spatial infinity and
singular at the origin; and represent the three-dimen-
sional radius vector by 7. Then the basic solutions of
Eq. (5.1), from which all others can be obtained by
superposition, are summarized in the Table I. The
designations “electric” and “magnetic” are natural if
we draw an analogy between y*¢ and the scalar potential
of electrostatics or between y*® and the vector potential
of magnetostatics; we shall see that the solutions (11T ¢)
are equivalent to the solutions (I ¢) under gauge
transformations. That there are, for example, no mag-
netic-type monopole solutions follows either from the
general considerations of the previous section or from
applying De Rham’s theorem!” to the equation, in-

18 See F. A. E. Pirani, Bull. intern. acad. polon. sci., Class III, §,
143 (1957).
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TasrE 1. Basic solutions of Eq. (5.1).

(a) Monopole (b) Dipole (c) Higher poles

L. “Electric” type y%=m/r ~4=(p*/r),s A¥=T"%,

74s=,yrs=0

II. “Magnetic” type Y= (mlrl/r),s yo=¢14

M=nyrs=()

III. “Electric” type yre= Mrilen]

,Y4~l=,y4s=0

variant under time-independent gauge transformations,

f d*l[”] (77”748. r_'rl”'Y“, r) =0. (52)

l

Here / is any closed one-dimensional loop, in three-
dimensional space, on which the metric is nonsingular.

How many of these solutions are inequivalent? By
calculating the energy and angular momentum of the
monopole and dipole solutions we find that they are
static versions of the A-type and B-type solutions dis-
cussed in Sec. IV. The two types of dipoles are dis-
tinguished by the fact that the constants in Eq. (4.3)
obey the inequalities A#?A(,,; < 0 and Al#AAp, ;>0 for
electric and magnetic dipoles, respectively. Thus, these
three solutions are all distinct and none of them are
equivalent to the solutions in the third column of the
table, which have vanishing energy and vanishing
angular momentum.

The classification of the higher poles follows from
examining their curvature. We first note that by writing
(MU= gnd MU= ¢rls81 we have the solu-
tions in the third column expressed in terms of super-
metrics. We next add to -the supermetrics suitable
terms so that the new supermetrics obey the algebraic
identities (2.11) and (4.24) ; this procedure is equivalent
to a gauge transformation. We can then write the super-
metrics in the six-dimensional notation discussed in
Sec. III and verify the following simple relation be-
tween the curvature tensor (also expressed in six-
dimensional notation) and the supermetric.

E F
MU M 4 p= ( ),

F —E 53
C D 3)
Rl Ry p= ( ),
D —-C

where the matrices E and F are harmonic functions—
with vanishing trace according to the prescription of

Sec. II—and
(5.49)

C'rs,\,Epg’ pqtl"]T t,nsl, DN’\’qu, pqtl"]”ﬂsl-
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In the last equation we have taken advantage of the
fact that E and F, or C and D, transform independently
of each other as tensors of rank two under purely spatial
rotations to let the indices on F and on D run from 1 to 3
according to the prescription 4<»1, 52, and 6<>3.
Equation (5.4) is valid only when the metric is time-
independent, the supermetric obeys Laplace’s equation,
and the supermetric has been standardized to obey Eqgs.
(2.11) and (4.24). Applying Egs. (5.3) and (5.4) to the
higher multipole solutions, we find that the two ap-
parently distinct electric-type multipoles I and IIT
have not only the same curvature but even the same
standardized supermetric, with F=0 and E arbitrary;
the magnetic multipoles, on the other hand, have a
supermetric with E=0 and F arbitrary so that, from
Eq. (5.4), their curvature is different from the curvature
of the electric multipoles. To classify the time-dependent
solutions we could proceed exactly as we did in the time-
independent case, but the results are not very trans-
parent in view of the lack of a simple relation between
the supermetric and the curvature.

6. DISCUSSION

We have shown that any particle-type solution of the
linear field equations has a well-defined, gauge-invariant,
total energy-momentum and intrinsic angular mo-
mentum-dipole moment associated with it, both when
its sources are singularities and when the sources consist
of an extended matter tensor. The energy is constant
and the intrinsic angular momentum is related to it by
an “equation of motion.” The actual motion of a source
is unrestricted unless we impose conditions, in no way
implied by the theory itself, on the intrinsic angular
momentum. In the linear theory, these additional re-
strictions are gauge-invariant. Beside its energy and
angular momentum, a source has also a number of
higher moments, specified by arbitrary functions of the
time which are totally unrelated to the motion of the
particle. The totality of all solutions can be obtained by
the superposition of two basic solutions and of solu-
tions obtained by solving homogenous, separated
D’Alembert’s equations; there are gauge-invariant
methods for classifying inequivalent solutions.

A question of fundamental importance remains
whether a similar invariant treatment can be given for
the higher orders of the approximation scheme or the
full theory. In any order beyond the first, the Riemann
tensor is no longer invariant under curvilinear coordi-
nate transformations, and an invariant formulation
becomes far more difficult.
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