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Electromagnetic Structure of the Nucleon*f
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The electromagnetic structure of the nucleon is studied by using dispersion relation techniques. Contri-
butions to the magnetic moments and mean square radii from the two-pion intermediate state are studied
exhaustively. It is shown that the electromagnetic structure of the meson itself may play an important role
here; this structure is also discussed. The two-pion state seems to account reasonably for the isotopic vector
magnetic moment and magnetization mean square radius, but the charge-density radius appears to be much
smaller than the currently accepted experimental value. As regards the isotopic scalar properties of the
nucleon, we have studied the contributions from intermediate states with two E mesons and nucleon-
antinucleon pairs (more generally baryon pairs). The X-meson state is treated by perturbation theory and
found to have a small effect. By use of an argument based on the unitarity of the S matrix, it is shown that
the pair contributions must be small. Certain general properties of the three-pion state, believed to be the
most important contributor to isotopic scalar quantities, are discussed; but we are unable to make any
quantitative statements.

I. INTRODUCTION of Chew et ul. further at this point but shall refer to it at
the appropriate places below. A summary of our general
procedure and a statement of some of the results have
been given in a recent paper. ' Before entering into
detailed calculations, we shall erst state the theoretical
problem more precisely and give some of the experi-
mental results.

The quantity of most direct theoretical interest is the
matrix element of the current density operator j„taken
between one-nucleon states. This matrix element is
related to the vertex operator F„according to

(P'IJ. IP&=s(~'/Po'Po) q'~"(q')~(P')I'. (P',P)N(P), (1.1)

where q'= (p' —p)s is the invariant momentum transfer
and AF, is the exact Feynman photon propagation
function. The Dirac spinors are normalized according
to 12(P)N(P)=&1, for positive- and negative-energy
spinors, respectively. To lowest order in the electric
charge, q'11F, (q') = 1; note that a breakdown of electro-
dynamics (i.e., a real modification of Ds,) would
multiply into the structure proper as expressed by
N(P )I' (P P)si(P)

It is both conventional and convenient to express
(1.1) in terms of certain scalar functions of q'. Two
equivalent forms which we shall use are

(P'Ij.IP&= (~'/Po'Po)'~(P')
&&LF (q')17.—F (q')s "(P'—P) j~(P) (12)

= (m'/Po'Po)'*I (P')
&&LG (q') '&.—G (q')(P'+P) 3 (P) (13)
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where Gi ——F,+2mFs and Gs ——Fs. That the above
structure is the most general one follows from Lorentz
and gauge invariance. The function F (G) may be
further subdivided into isotopic scalar and vector
components according to

F1 F1 +&sF1 y

Fs=Fss+rsFsv,
' J. Bernstein and M. L. Goldberger, Revs. Modern Phys. (to

be published).
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~~QUANTITATIVE experiments on the scattering of
electrons by protons and deuterons, carried out by

Hofstadter and his collaborators, ' have provided con-
siderable information on the electromagnetic structure
of the nucleon. There have been many theoretical
attempts to treat this problem in a semiquantitative
way. ' We mention in particular the recent investi-
gations based on cuto8 meson theory, ' and the rela-
tivistic generalizations discussed by Okubo' and
Tanaka. ' In the latter approach one attempts to relate
the contributions from meson and nucleon currents to
the electromagnetic vertex function in terms of scatter-
ing amplitudes for pion-nucleon and nucleon-nucleon
scattering. Unfortunately, these amplitudes are re-
quired for particles "off the mass shell" (i.e., P'W ns ), —
and the connection with the true physical amplitudes
is not known. The precise nature of the approximations
which are made (where a definite extrapolation pro-
cedure is adopted) is very difFicult to assess.

An approach essentially identical in spirit to ours
. but somewhat less ambitious in scope has been made by
Chew, Karplus, Gasiorowicz, and Zachariasen. ' They
have applied dispersion relation methods to the problem
and have shown that certain aspects of nucleon struc-
ture can be understood from this viewpoint. Since our
methods are so similar we shall not describe the work
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~1 y g ~1 S ~l V (1 8)

((ri') )= 25&(rP) s)—&(rP) vn (1 9)

The smallness of the neutron charge radius implies
&(rP)s)=((rP)v). The mystery is compounded in that,
although the scalar charge radius is unexpectedly large,

Hughes, Harvey, Goldberg, and Stafne, Phys. Rev. 90, 947
(1953).

so that the problem is characterized by four scalar
functions. One generally refers to Ii1 as the charge
density form factor and to Ii2 as the magnetization
density form factor. The things which are surely known
about them are their values at zero momentum transfer:

Fis(0) =Fiv(0) =e/2,

F2'(o) = () ~+~-)/2,
F2"(o)= (~.—~-)/2,

where e is the proton charge and p, „and p„are the static
anomalous magnetic moments of proton and neutron,
respectively.

Other experimental knowledge concerning the form
factors is rather less certain. If one thinks of the form
factors as Fourier transforms of spatial distributions,
than F'(0), the derivative evaluated at g2=0, is related
to the mean square radius of the spatial distribution.
Except for the neutron charge radius, one defines

&r')/6= —F'(0)/F (0) (1.6)

Experiments on electron-proton scattering at small q'
are now being carried out and one will soon have an
unambiguous measurement of (rP) for the proton (this
is defined according to (1.6) with F)I'=F28+Fiv).
Preliminary results' indicate that 0.18/i'& ((rP))
&0.32/ii2, where 1/p is the meson Compton wavelength.
The corresponding quantity for the magnetization
density is not easy to measure directly since the scatter-
ing at small q' is dominated by Ii1. If one extrapolates
with simple functions from the large momentum
transfer data, one finds that (r2') for the proton is in the
neighborhood of 0.32/i'. Needless to say, this is an
uncertain and conceivably misleading procedure.
Experiments on high-energy electron-deuteron scatter-
ing indicate that F2 for the neutron (at least for the
large values of q' at which the experiments are carried
out) is about the same as for the proton.

The mean square radius for the neutron charge
density distribution, conventionally dered as

&( ')-)/6= —F '"(o)/, (1.7)

with Ii1"=Ii1 —Ii1, is the quantity measured in low-

energy electron-neutron scattering. One finds experi-
mentally a very small upper limit on ((rP)„), much
below the proton value. ' This constitutes one of the
most puzzling features of the whole problem of nucleon
structure. We shall define the isotopic scalar and vector
radii according to

the scalar magnetic moment is small: ps= (p„+IM )/2
=—0.06(e/2222), as contrasted with iiv= (p„—ii )/2
=1.8(e/2222). While it is not impossible to imagine
charge-current distributions with such dual capabilities,
they are certainly not very pleasant or simple.

The present discussion of the electromagnetic
structure problem is based on dispersion relation
techniques. By this we mean that the form factors are
represented by expressions such as

e q 1

" pis(Ir2)
Fis(II2) =—— da', (1.10)

2 2I ~(2 )~ Ir (Ir +g 26)

~ao p V(~2)
F,v(q2) I do.

(2p) ~ 0 +g 26

where the slight difference in structure and in limits of
integration will be explained later. The variable 0-'

represents the square of the mass of the various inter-
mediate states through which the photon-nucleon
interaction is effected. The task of the theory is to
compute the weight functions p which express the
contribution of these states.

In Sec. II we discuss the structure of the dispersion
relations in detail and describe how the weight functions
are to be calculated and what the most important
intermediate states are expected to be. In Sec. III the
two- and three-pion intermediate states' contributions
are treated, as well as the question of the electro-
magnetic structure of the pion to which one is naturally
led. Also discussed in Sec. III is the contribution from
intermediate E-meson pairs. The role of nucleon-
antinucleon pairs is taken up in Sec. IV. It is shown
here —and this is one of the principal results of the
present work —that an upper limit on the contribution of
such states to the moments and mean square radii can
be set by use of the unitarity condition on nucleon-
antinucleon scattering. The pairs, in our formulation,
can enter in only two angular momentum states and
the amplitudes for scattering in these channels are
limited in the familiar geometrical way.

Our over-all results concerning nucleon electro-
magnetic structure can be summarized in the following
way. (1) In C it was argued that the isotropic vector
moment and radii probably receive their main contri-
butions from intermediate two-pion states and that
these contributions can be adequately calculated in
perturbation theory. What we 6nd is that the pertur-
bation-theoretic expressions seriously violate unitarity,
so that "rescattering" corrections must be significant.
We discuss this rescattering but are unable to compute
it in any trustworthy way. It is an open question, then,
whether or not the isotopic vector properties of the
nucleon can be adequately accounted for by the two-
pion state. In any case, the apparent agreement
between experiment and perturbation theory must be
regarded as fortuitous. (2) As for the mystery of the



FEDERBUSH, GOLDBERGER, AND TRE I MAN

large isotropic scalar charge radius, our chief result is a
negative one. It has often been conjectured that
intermediate nucleon-pair states might account for this
effect. Our unitarity arguments seem quite reliably to
rule this out. The same arguments rule out the possi-
bility of significant contributions from hyperon pairs.
We have likewise investigated, this time in perturbation
theory, the contributions from intermediate IC-meson
pairs; it does not seem likely that such states contribute
appreciably to the isotopic scalar moment and r'adii.
A theoretically interesting but numerically inaccurate
ladder approximation for the pair state is discussed in
Appendix A. Among the remaining states of simple
configuration, a possible candidate is still the three-pion
state. We discuss the general structure of the contri-
butions from this state, but we are completely unable
to make any quantitative estimates.

%hat we achieve here, then, is not a quantitative
understanding of the isotopic scalar properties of the
nucleon but rather a moderate sharpening of the
mystery.

A theoretical process which is very similar to electron-
nucleon scattering is scattering of a nucleon by an
external mesonic field. Although such fields are rather
rare in nature, the process occurs as an intermediate
stage in many real reactions. What we are discussing
is, of course, the matrix element of the mesonic vertex
operator I's(p', P), or more exactly, the matrix element
of the meson current operator defined as (p' —Cl)p;= J;.
The precise connection between the two is

where if E is normalized such that E(—p')=1, g is
the renormalized Lepore-Watson coupling constant, '
and As, is the complete meson propagation function.
The quantity E(q') satisfies an equation analogous to
(1.10) and under certain simplifying assumptions may
be calculated quite accurately. These matters are taken
up in Appendix 3 and comparison is made with an
early attempt of Edwards" to calculate a related
quantity. Our result has been used in a discussion of
x—p decay to which the reader is referred for a more
heuristic discussion of E(q')."

Before proceeding to the detailed calculations we
would like to say a word about the general theoretical
status of the dispersion relations upon which our whole
treatment is based. There does not as yet exist a
derivation as general and rigorous as the ones which

have been given for pion-nucleon scattering. In fact,
the only complete derivation that has been given for
the electromagnetic or mesonic nucleon vertex function

' J. Lepore and K. M. Watson, Phys. Rev. 76, 1157 (1949).
's S. F. Edwards, Phys. Rev. 90, 284 (1953).
"M. L, Goldberger and S. B. Treiman, Phys. Rev. 110, 11/8

(1958).

is based on perturbation theory. It is our feeling,
however, that the result is correct more generally and
we proceed on this basis. In one case, the electro-
magnetic structure of the meson, a general derivation
may be given quite easily. At the appropriate point
we will sketch it; for the bulk of the paper we will not
concern ourselves with derivations but rather with
applications.

II. STRUCTURE OF THE DISPERSION RELATIONS

In this section we shall analyze the general structure
of the dispersion relations which we shall encounter. We
begin with the electromagnetic nucleon vertex; more
precisely we consider a quantity I„defined by

We express this in the standard way as"

where f(a) is defined as

(2.3)

and P is the nucleon field operator. In writing Eq. (2.2)
we have dropped a term which would in general
contribute a constant tor at most a polynomial in
(P' —P)'j to Fi. The possible existence of such terms will
be taken into account when the precise dispersion
relations for the F's are given.

We next remark that in place of the time-ordered
product we may write

where 0(—x) is zero for as)0 and unity for xs(0. It
would now be the task of a good derivation to show that
the coefficient of u(p'), considered, say, as a function of
Ps' in a coordinate system where y=o, has certain
definite analyticity properties. For example, since the
integrand in (2.4) vanishes for space-like x„(the
causality condition states that the commutator vanishes
in this circumstance), and also for xs) 0, we would be
led to expect that our function is analytic in the lower
half of the Ps' plane. If this were so, it would then be
easy to show that the function may be continued into
the upper half plane. The remaining problem would be
to state the location of the singularities. According to
Nambu's perturbation-theory argument (and also,
according to one's physical intuition!) one would find

'2Lehmann, Symanzik, and Zimmermann, Nuovo cimento 1,
205 (1955).
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that there is a branch line from —oo to m —2ps/m for
the isotopic vector form factors, m —9i('/2m for th'e

isotopic scalar. " In terms of the invariant variable
q'= (p' —p)o, the branch line in the q' plane runs from
—~ to —(2)u)'

I
or —(3i()'].

Assuming these things, we can immediately write
down the dispersion relations for the form factors,
except for the usual uncertainty about the behavior
of the functions at infinity. We shall take the dispersion
relations to be as follows:

e q' " ImFis( —o')
Fis (q') =——— do', (2.5a)

2 'll ~ (sp)~ o (o' +q —se)

ImFov( —o')q2 (X)

Fiv(q') =———, do', (2.5b)
(s~)' (r ((r +q «)

1 " ImF s(—')
F 8(qs)—

1l'4 (op) 2 o' +q

1 (" ImFsv( —o')
Fsv(q') =— do'—

(~a) ' (T +q Ze

(2.5c)

(2.5d)

The assumed analyticity properties enable us to
relate I„to the matrix element ofj„between the vacuum
and a state containing a nucleon-antinucleon pair.
Since this will be useful for us in our later work, let us
note the precise relationship. For an "in" state,

(ppppl( *

I (ofj. lp, p in&im)
(po= —il —

I
d ~ exp(ip ~)~(p)«l(f(~)j. (0))+Ip&

f o)*
d x exp(ip x)8(p)

Emi ~

x(0ILj.(0), f(~)]t)(-*)
I p&, (2 6)

io I.gambu, Nuovo cimento 6, 1064 (1957)and to be published.

where e(p) is the spinor which satisfies (iy p m)v(p)—
=0. We are led to the association, assuming that the
continuation can be made,

I.= ((p) fFil:(p+p)'—]iv.
+Foe(p+ p)']io" (p+P).)N(p) (2 7)

We are using the phase convention, to which we must
consistently adhere, that

I pp) = u„-t
I p), where a~t is the

("in" field) antiparticle creation operator. For an
"out" state, which we write as

I pp, out), we replace the
above form factors by their complex conjugates, which
amounts to changing the sign of e in (2.5 a-d). Thus the
variable q' approaches the real axis from below for

Ipp, in) and from above for Ipp, out).

I'n order to calculate the imaginary parts of the form
factors we write out the absorptive part of I„or J„.
This is the part which arises from the erst term in
8(—x)=—', —s(xp/I@pl). We write this absorptive part
as iA„or iA„. Introducing a sum over a complete
set of states

I
s) and carrying out the integrations over

x, we find

A '=m(p/m)1+ N(p')

x(0 Ij.l.&(.lf I p»(p. +p' —p)
= s(,(p') f ImF, (q')ip„

—
IMP s (q') io.„,(p' —p) „)N (p);

A„~=—~(pp/m)' P, ()(p)

(2.9)
x«j. l &( Iflp&~(p —p —p)

= —8(p) fImFi(A')iy„
+I-F.(~)'-.,(p+p), )-(p);

with iV= (p+p)'. In these expressions the l)-function
is to be regarded as a Kronecker 8-function insofar as
the spatial components of the momenta are concerned
(we are using box normalization). That ImFi and ImFs
are indeed the imaginary parts of Fj and F2 may be
demonstrated using invariance under inversion of
motion. In order to make the reality manifest at all
stages of approximation, we shall write the sum over
states as half the sum over "in" and "out" states,
although for brevity we will not explicitly indicate this.

In writing Eq. (2.8) we have, of course, assumed that
the spatial integrations may be carried out without
difficulty. Actually one encounters formally rising
exponentials if —P,o( (2m)'. Nevertheless, the instruc-
tion from perturbation theory is to evaluate the integrals
as indicated. Stated more elegantly, one may writes)P'Las
p'= (I pp's —p]1R, ip, '), in the system where p=0. Here
n is a fixed unit vector and $ is some negative parameter.
Then there is no trouble carrying out the integrals.
Now assume that the continuation of g to the physical
value, re', may be carried out.

We turn to the question of what states enter the
sums in A„r and A„~. Since the operator f lowers the
nucleon number by unity, Is) must have nucleon
number zero. Furthermore it must have zero strange-
ness and zero total charge. Thus it may consist of
pions, even numbers of E mesons, nucleon-antinucleon
pairs or more generally baryon pairs of zero strange-
ness, etc. The least massive of these states would be a
one-pion state, but (Olj„lmp& is zero because of charge
conjugation invariance: j„~—j„, Is.p& ~ Iorp). Next
we encounter a two-pion state. It is easy to show that
only the isotopic vector part of j„contributes to
(olj. l2 )

The case of e pions may be just as easily discussed as
far as isotopic spin is concerned. We introduce the
operator G=(' exp(isIs) where (' is the operation of
charge conjugation and exp(imIs) generates a rotation
of + about 2 axis in isotopic spin space. (Is is the 2-
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component of the rotation operator in that space. )
Then if we write j„=S„+V„where S„ is an isotopic
scalar and V„ the third component of an isotopic
vector, we have Gj„G '= —S„+V„. Furthermore, G
induces a sign change in all three components of the
meson field, so that G~ nm) = (—1)"

~
nm). It follows then

that the isotopic scalar contributes for states involving
an odd number of pions whereas the isotopic vector part
of j„ involves states with an even number. The lower
limits in Eqs. (2.5a), (2.5d) reflect these remarks.

Intermediate states consisting of two E particles
(E and E), of course, contribute to both isotopic
scalar and isotopic vector form factors. Continuing in
this way our enumeration of contributing intermediate
states, we ultimately encounter nucleon-antinucleon
states, more generally baryon-pair states. It is interest-
ing to note that from the dispersion standpoint it is
quite natural when discussing low momentum transfer
(small q') to expect the two-pion state to enter on a
quite di8erent footing from the nucleon-antinucleon
state. This is to be contrasted with the perturbation
approach, where in lowest order they would be treated
together as a unit.

There are a few more general remarks which should
be made before we go on to detailed calculations. Since
we know the general structure of the various matrix
elements we shall encounter, we may use any con-
venient coordinate system in which to effect the
evaluation of A„and 3„.For most purposes A„ is
the more convenient quantity and we shall discuss it in
a system where the pair p, p is at rest: p+y=0. It
follows from gauge invariance that (p+p)„J„=O, so
that /4 ——0 in our system. Evidently, then, the states

~
s) reached in (0

~ j ~
s) must have angular momentum

unity and odd parity. For the two-pion state this means
we have only a p state and similarly for the 2Estate. '

With three pions we have many more possibilities. We
must have a sr+, m, ~' configuration and calling the
m+-x relative angular momentum /', and the w' angular
momentum I., we have /= L= 1, 3, 5, For the
nucleon-antinucleon state, only the '5& and 'D& con-
6gurations are relevant.

The significance of these remarks is as follows: for
the two-pion state, aside from (0

~ j„~m im 2), we have to do
with the matrix element 8(p)(vrim2~ f ~ p), with the
condition p+p=mi+~2. This is proportional to the
amplitude for pair annihilation into two pions which

are restricted to be in a p state. Unfortunately,
—(p+p)' begins in our dispersion integrals at (2p)',
and hence this is a slightly unphysical process. We
shall describe in the next section a method to evaluate
this approximately. When —(p+p)')4m', of course,
it becomes a physical amplitude and as such can receive
contributions only from '5& and 'D& states whose
intensities are limited geometrically by m/( —4(p+p)'
—m'j. This is used to estimate an upper limit to the
contributions of the two-pion state for very high values

of a'()4m') in Eqs. (2.5b, d). Evidently the various
three-pion amplitudes may be estimated in a similar
way once —(P+p)'& 4m'.

For the nucleon-antinucleon intermediate state we
encounter, besides (0~j„~cVE),the factor v(p)(iViV ~f ( p),
with the restriction cV+E=p+p Th. is is directly
proportional to the physical amplitude for nucleon-
antinucleon scattering. Our angular momentum con-
siderations tell us that we need only the amplitudes for
'Si~'Si, 'Si —'Di, and 'Di~'Di ('Di~'Si is the
same as 'Si —+'Di). These are again geometrically
limited and this enables us to put an upper limit on the
contribution of the pair intermediate state.

We note in passing that in the case of the meson-
nucleon vertex (p'

~
J;~ p), we would discuss (0

~
J;

~ pP),
which again may be treated in the rest system y+p=0.
Since J; is a pseudoscalar, the state

~ pp) must be '$0.
Similarly all of the intermediate states in the expression
for the absorptive part similar to that for A„~ must
have angular momentum zero and odd parity. The
first few relevant states are those with 3, 5, pions,
4, 6, E particles, EVE, etc.

III. CONTRIBUTIONS FROM MESON STATES

A. Two-Pion State

We begin our detailed discussion by considering the
least massive of the states described in Sec. II, namely
that consisting of two pions. Although the contributions
from this state have been analyzed by Chew et ul. ,

' for
completeness we shall repeat some of their work. In
addition we shall take into account certain eGects
which they did not consider.

In lowest order perturbation theory the contribution
from the two-meson state may be described as follows:
the nucleon emits a virtual meson which interacts as a
point particle with the electromagnetic field and is then
reabsorbed by the nucleon. This term may be separated
in a gauge-invariant way from its natural partner in

perturbation theory, namely, the term in which the
nucleon, after emitting a virtual meson, interacts with
the electromagnetic field. The two obvious modifi-

cations of the perturbation treatment of the meson
current contribution which are suggested by our
dispersion approach are that the structure of the
meson's electromagnetic interaction be taken into
account and that the emission and reabsorption of the
virtual meson be treated more accurately. Expressed
in the terms of (2.9), what we encounter with the
two-pion intermediate state are the matrix elements

(0(j„(~m) and (~m (f~p) The former is .determined by
the electromagnetic structure of the meson; the latter
is proportional to the matrix element which describes
nucleon pair annihilation into two mesons.

The predictions of perturbation theory, calculated
directly by Feynman techniques or by our dispersion
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formulas given below, are as follows:

(g'~ (1 l-
G (0)= I

—
II

—
I (1—2q) —q(2 —g) lnq

2m l4n-) l2or)

+L
—24P+ (16/3) g

—2] lnq—
2 cos '(q'/2)

(4 —")-:

( 2g'+—(52/3) re 46rP+—36'' (8/3—)g )
xl (3.2)

l e—4g )
(g' ) ( 1 l

- ( 10 4 ~
Gi '(o) =el —

II I I

——+~
l4or) l16orm') l 3 3 )

8 q (——;&y4&' —6~+ -;)
+I —~+~—2

I in~ —2
3 3 ) (4n n')'-

icos 'I
I (33)

where g= (p/m)'=0 022 T. he .derivatives in (3.2) and
(3.3) are taken with respect to the squared momentum
transfer q'= (p' —p)'. Using g'/4or=15, we find the
following numerical results:

p„—p„(e )
Go'(0) =

l2m)

1.48(e ~
G "(0)=-

I
I' G "(0)=-

mo l2m)
'

2.36
e;

m2

(3.4)
12

(( ') )= ——I:G "(0)—2 G."(o)]=
0.24

Go'r (0) 0.12
((") )=—6

Go'(0)

We see that the predicted vector magnetic moment
agrees well with the experimental value 1.86(e/2m). H
we assume that ((rio) 4 )= ((rP)e) as would be indicated
from the neutron-electron interaction experiments, we
would have for the proton ((rio)~)=0.24/po, which
agrees quite well with the experimental results which put
this quantity in the range 0.18/p, ' to 0.32/p'. Neglecting
the isotopic scalar contribution to the magnetization
radius, we have ((roo)~)=0.12/p', which seems rather
small, although as we have commented ((roo)~) is not
directly measured experimentally.

We turn now to the dispersion relation treatment.

I
(2—4g+vp) cos '(q'/2), (3.1)

l1—g/4)

e (g') ( 1 ) 4rP (62/—3)g+20
Go"(0) =

2m lan) l8orm') q
—4

For convenience we record again Eq. (2.9), writing in
explicitly the two-pion state now under discussion
(recall that we eventually take half the sum over
"in" and "out" states):

(A'i»e) = (Ai»i)4+ (A»Bo) o L~' r~]) (3.8)

and the A's and 8's are to be regarded as functions of
LV= (q+k)' and v= —(p —p) (q —k)/4m. Evidently
only the charge exchange amplitudes A2 and 82 con-
tribute in (3.5). Inserting (3.6)—(3.8) into (3.5), we
now have

ere p d'qd'k
A„'(2 )=—~ (q k)~&(q+k p W"(P)

4 " (2m.)'qoko

X{Re(M*Ao) iv 'p', (q
—k)] Re('M—*B&)}ro44(p),

(3.9)

(po ) & d'qd'k
&(7)(olj.lq'»&

lm) v (2~)'

x(q,k, Ill p~~(q+k p r-), -(35)

where the indices i and j are isotopic labels. From
gauge invariance and isotopic spin requirements it
follows that the iirst matrix element in (3.5) may be
written

(4koqo) &(Ol j„lq;k, out)
= i(e/V2) oo,,(q—k)„M*I (q+k)'7, (3.6)

where M*(0)=1. (The reason for writing M* is that
it will be our convention to dehne the various form
factors of our theory in terms of the "natural" order
for the states; i.e., initial states are "in", final states
are "out.") The form factor M will be studied later by
dispersion relation methods; for the moment we need
only the structure of (3.6). The important thing to
notice here is that in the rest frame of the pion pair
(q+k=O), we deal only with states of total angular
momentum unity; also in this frame we see that gauge
invariance, (q+k)„(0 Ij„I q,k, )=0, implies (0 I j4l q;k, )=0.

Consider next the matrix element v(io)(q;k; out
I fl p),

where q+ k =p+ p. This matrix element describes
nucleon pair annihilation into two pions; however, it is
required for unphysical values of the total energy of the
system. This may be seen by noting the consequences
of the 5-function in (3.5). In the rest frame of the meson
pair we have the energy condition 4(po+ I q I')
=—(P+p)', where 41 is the pion momentum. One sees
that in Eq. (2.5) the dispersion variable —(p+p)' can
be as small as 4p' (corresponding to q=O). Once this
variable exceeds 4m' we are, of course, in the physical
region.

It is easy to see that the matrix element in question
may be written

~(4koqopo/m)&8(p)(q;k; outl flp)
=v(p){A@ ip po(q—k)]B,;}—u(p), (3.7)

where
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where we have carried out the isotopic spin summations
and taken the symmetrized sum over "in" and "out"
states.

We now reduce (3.9) further by going over to the
variables w and lV. Separating out the contributions to
ImF~ and ImF~ we find

then our matrix element can be written

%2(4koqopo/m) 'v(p)(q, k, out If I p)
=&(S)P(—f» q'; P —»)~(P) (3»)

VVhat we can now do, then, is write down the pion-
nucleon dispersion relations for A2 and 82 ..

Improv(62) =
e PQ/m

(—62)—& ReM*(62) dv
16m PQ/m—

A 2(v~62) =—
I

p—dL /4m

dv' ImA2(v', LV)

2m' mQ' m' (3msv2
X v~2(v, ~)—

P3 PQ P2 ( P2Q2

( m'v2 )—
I

1—
I B2(v zL') 8(—LP—4p') (310)

P2Q2 )

e ~ PQ/777,

ImF2v(62) = (—LV)
—' Re&*(62) ' dv

327r ~—vQ(m

"m'Q' (3m'v' —1 I B2(»~')
P2Q ( P2Q2

2@i p
a, (v,n2) tl( —a' —4&2), (3.11)

where

P—(2 g2 m2) $ ~

Q
—( 2 g2 m2) 2' ~

B. Formulation in Terms of Pion-
Nucleon Scattering

To proceed further we must know how the amplitudes
A2 and 82 depend on the variables v and 6'. As already
mentioned, they can be regarded as amplitudes for
nucleon pair annihilation into two pions; but we require
the continuation of these amplitudes into an unphysical
region. We can also regard A2 and 82 as continuations
of pion-nucleon scattering amplitudes"; as in C, this is
the approach which we shall follow here. The possibility
of making'this continuation is based on the observation
that (q,k;outlflp) (q;If l

—k,pin), from which it
follows that the variable v may be identified with the
analogous quantity defined in the scattering problem;
and our variable LV=(q+k)' is identical with the
momentum transfer. variable in the scattering problem.
The precise relation is as follows: If the scattering
process 3+p ~ q+ p' is described by the matrix element

(4fsqeps/m):~(p')(q'If Ii p in)
=u(p')P(p', q;; p, /;)u(p), (3.12)

'4 For a discussion of pion-nucleon scattering in terms of dis-
persion relations, see Chew, Goldberger, Low, and 5ambu, Phys.
Rev. 106, 1337 (1957).

and one is instructed to take the real part of everything
to the right of Re.

X —;(3.14)
v v Zs v+v ss

g2 1
B2(v,h') =

2m v (p—2/2m) —(62/4m)

1
+—~' dv' ImB(v', 62)

v+ (p2/2m)+ (LV/4m) 2r~ „g*(4„

X +, (3.15)
v v 'Le v+v

It should be emphasized that in the present problem
we are concerned with values of 6' which are negative,
a situation not envisaged in the usual derivations of the
pion-nucleon dispersion relations. We have, however,
verified up to fourth order in perturbation theory that
the extension to 6'= —4m' which we ultimately require
(see below) is legitimate and we conjecture that this is a
general result.

Even with all this formal manipulation we are still
faced with the problem of determining how ImA2 and
Im82 depend on their arguments s and 6' over
the range which concerns us. Physical pion-nucleon
scattering is characterized by positive 6' and
v) (m2+&2/4)l(p2+LP/4)'/m. However, in our prob-
lem, as already said, 6' is always negative. The only
way known at present to deal with this situation is to
continue ImA2 and Im82 from the physical region by
means of a Legendre polynomial expansion. The
legitimacy of such a procedure is not assured. It has
been established by Lehmann" that one may in fact
use this method for 62 up to about 32p2/3. What the
precise situation is for our negative 6' we do not know;
but it is our feeling, and this is the point of view
adopted in C, that one might get at least qualitative
indications by using a Rnite number of Legendre
polynomials. We shall return to this formulation below.
For the moment, we shall make a digression and discuss
the limitations imposed by the requirement of unitarity.

C. The Unitarity Condition

Once the dispersion variable —62 exceeds (2m)2, the
matrix element 0(72)(q,k;outl fIP) describes physical
nucleon pair annihilation into two pions. Here an
entirely diferent approach is possible. We have already
"H. Lehmann (to be published).
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noted that the matrix element (Ol j„lq;k;) selects only
two-pion states with angular momentum unity. It is
evident, then, that for the pair-annihilation matrix
element we are concerned only with pairs which are in
'S& and 'D& states of isotopic spin unity. The magnitudes
of the contributions from each of these channels is
limited in the usual way by unitarity and we can
therefore set an upper limit on the contributions from
the two-pion state for the region —d,') (2m)'. Of
course, the whole contribution of the two-pion state
could be formulated ub ieiko from the annihilation
standpoint, but the use of unitarity is limited to the
physical region.

Let us return to (3.5) and evaluate A„~(2n.) in the
rest frame of the nucleon pair, where, as we have noted,
A4 =0. We now reduce all Dirac spinors to Pauli
2-component spinors, x, in this reference frame. Thus,
from (2.9) we have

po po 2po+m 2m+ poJ=—«li I ps»= ——X.-* Fi+ 2mFo e
ns m 3m3po

po —m po
—m

2mF, — F, {3epp ej x„, —(3.16)
3p,

ImF (6')=
l

ReM*
ll I

po'

po (V2ps+pz ) mpo
l+ p&, (3.18)

po+m E 3 )
I
pl'

where p=p/p. The structure of (3.16) makes it evident
that only 'S& and 'D& pair states are involved in this
problem.

To evaluate the absorptive part A~(2e) we could
now express the angular momentum decomposition of
8(7i)(q,k, lflp) in terms of the amplitudes Ao and Bo
introduced earlier. But it is more convenient to simply
express this matrix element directly in terms of Pauli
spinors and effect the calculation in the rest frame of the
nucleon pair. We therefore write

&V)(v'k Iflp)= —e(-: mv olal'I pl)' x.-*-oL~' ~~j
~ {+copse ' 9 PDt 3e'PP I—e.q])X„, (3.17)

where the kinematic factors have been so chosen that
Ps and PD are just the S-matrix elements for production
of a p-wave pion pair by a nucleon pair in the 'Si and
'Di states, respectively. The amplitudes ps and pD are
to be regarded as functions of po

——(—d,'/4)&. For
physical processes (—LV) 4m') we can apply the
unitarity condition, which tells us that

l ps l, l pz l
&~1.

Finally, we evaluate (3.6) in the rest frame of the
pions, insert this along with (3.17) into (3.5), evaluate
A~(2m. ) and thus find the two-pion contribution to
ImF&v and ImF2v We 6nd

e( 3lql' )&
ImFoi'(LP) =—

l
Re%*

2 E16lplpooj

& (~&ps+pDI pox l Il l—,PD ~

ipo+m) ( 3 ) ll [

We imagine that all quantities are expressed as functions
o«'= (p+S )'.

In Eqs. (3.10) and (3.11) on the one hand, and (3.18)
and (3.19) on the other, we have two alternate formu-
lations of the problem of computing the contributions
to ImF~ and ImF2 from the two-pion intermediate
state. With either formulation, the final computation
of the two-pion contribution to the real parts of the
form factors is to be eRected by use of the dispersion
relations (2.5), where the integration variable
ranges from —(2p)' to—oo. In the formulation repre-
sented by (3.18) and (3.19), the amplitudes ps and

P& are restricted by unitarity to absolute value less
than or equal to unity, provided —lV& 4m'. For
—dP(4m', Ps and Pii are continuations of the 'Si and
'D~ annihilation amplitudes and here the unitarity
restriction does not apply

D. Quantitative Estimates

Before a complete discussion of the two-pion contri-
bution can be given, it is necessary to make a study of
the pion electromagnetic form factor M(A'). This is a
major undertaking in its own right; and in order not
to mix up too many eRects at one time, we prefer to
put this oR until later. Here we shall adopt the custom-
ary approximation of setting M(do) = 1, which is
tantamount to treating the pion as structureless. As
we shall later see, this may be a drastic approximation.

It has been argued in C that the eRect of the re-
scattering terms in (3.14) and (3.15) is not significant
in the nucleon structure problem; that is, one can set
A2=0 and for 82 retain only the Born term, i.e.,
neglect the integral in (3.15). If this approximation is
adopted, the dispersion relations (2.5) yield precisely
the results of lowest order perturbation theory, already

- discussed in subsection A. What we shall show here
is that this approximation, while it yields fair agree-
ment with experiment, is quite unjustified in principle,
at least as regards the magnetic moment and charge
density radius; i.e., the agreement with experiment
must be looked upon as fortuitous.

The point is that in the dispersion integrals (2.5)
(where o =—6' is the dispersion variable) the region
of integration 0 )4m' contributes far too much to the
charge radius and magnetic moment if one adopts the
Born approximation; i.e., unitarity is badly violated.
One finds, for example, that the calculated magnetic
moment, 1.67 (e/2m), receives a contribution of
0.8(e/2m) from this region of integration. That this is
too large one sees by computing the annihilation
amPlitudes Ps and Pii in Perturbation theory For.
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A2(v', —o') W'+m ( o' )
f3' 'I 1+

4n 8'+m E 2k")

TV' —m
+ f3& i, (3.20)

E —1n

82(v', —o') 3 ( o

E'+m & 2k")

f3& &; (3.21)E'—m

—62&4m, the resulting expressions exceed the uni-
tarity limit (Ps(, (PD( &~1 by factors of three or four
over the important range of integration in (2.5). We
can obtain an upper limit on the contributions in (2.5)
coming from the range o-'&4m' by setting the ampli-
tudes Ps and Pii at their maximum values in (3.18)
and (3.19). For the magnetic moment we find that the
maximum contribution from the region o-'&4'' is only
0.2 (e/2m); and this is probably far larger than the true
contribution. Even if we were to adopt this upper
limit and add to it the perturbation theory result
for 0'(4m', we would find for the moment the value
(0.87+0.2) (e/2m) = 1.1(e/2ni). This is to be compared
with the experimental value 1.85(e/2m). The agreement
is no longer so impressive. Moreover, in view of the
fact that perturbation theory is so badly in error for
0'&4ns', there is no compelling reason to trust it for
0'&4m'. In connection with the magnetization density
radius, the violation of unitarity is less signi6cant
numerically, since this quantity does not receive much
contribution from the range o'&4m', even in pertur-
bation theory.

We are faced with at least three possibilities: (1)
The reseat tering corrections below 4m' are quite
important, just as they must be above 4m'; and if they
were treated correctly one would find that indeed most
of the vector magnetic moment comes from the low 0-'

part of the two-pion configuration. (2) The meson
vertex function (0~j„~arm) must be treated properly
before one can get agreement with experiment. (3)
The two-pion state alone cannot account for the low
momentum transfer properties of nucleon electro-
magnetic structure and one must look to more massive
configurations for unexpectedly large contributions. We
shall discuss these possibilities in turn.

Let us erst attempt an estimate of the rescattering
corrections. We base this treatment on the formulas
(3.10), (3.11), (3.14), and (3.15) developed above.
As in C, the iV dependence of ImA2 and Im82 ls
obtained from a Legendre polynomial expansion, in
which we include only the contribution from the (3,3)
amplitudes in pion-nucleon scattering. However, we
make no nonrelativistic approximation. The relevant
formulas are as follows:

The amplitude f3~ i is related to the pion nucleon
scattering amplitudes in the J= 2, I=

~ and J= ~,I= ~ states according to

f3' '=SLf($2) —f(k k)j (3.23)

For the dependence of f3& i on 8", the total center-of-
mass energy, we make essentially the same approxi-
mation as in C, namely,

2m4r Imf3' &

4 ( ioy= ——g'] 1+—[BPV"—(m+io„)'j, (3.24)
9 E m&

where io„ is the energy of the (3,3) resonance (io„=2@).
We now use these expressions to compute ImF2 and
substitute the result in (2.5). For the magnetic
moment the integration interval (2p)'(o-'((2m)'
is found to contribute the value (0.87+1.03)(e/2m)
= (1.90) (e/2m). The first term, 0.87, is the Born
contribution, whereas the second represents the re-
scattering. In all probability the latter contribution is
overestimated since our Legendre polynomial continua-
tion procedure may be diverging badly for the large
negative momentum transfers (LV —4nz') of import-
ance here. It is perhaps reassuring that the sign and
approximate size of the reseat tering contributions
restore the fairly good agreement with experiment
that had previously been obtained (unjustifiably) with
perturbation theory. Notice that the Legendre poly-
nomial continuation was not, and could not be, extended
to all 0-'&4m': if this were done, the dispersion integrals
would diverge badly.

Our feeling is that the two-pion state may well

largely account for the vector magnetic moment, in
which we concur with C. What we do not agree with
is that the quantitative estimate can be meaningfully
based on perturbation theory. In C, the assertion that
the rescattering corrections are small (~17%) was
based on an unwarranted (1/m) expansion and an
imprecise integration. Our conclusion is that one must
eGectively disregard the contribution to the dispersion
integral from masses greater than 2ns and for smaller
masses must take careful account of rescattering. The
rescattering eGect is so large, however, that we do not
have much confidence in the procedure we used, but
the results obtained suggest that a careful treatment
might lead to good agreement with experiment. One
must, of course, also expect some contributions to the
moment from more massive intermediate states.

where k' and E' are, respectively, the momentum and
energy of the nucleon in the center-of-mass system
(and are to be regarded as functions of v' and o' =—LV);
and

W"=L(y'+k")'*+(m'+k") lj'
=nz'+ p'+2nz(v' —o'/4m). (3.22)
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Thus far our discussion has been condned largely to
the magnetic moment. The magnetization density
radius is not greatly eGected by the rescattering.
Taking into account only the region 4p, &0 (4m, we
find that (rpP) increases from 0.12/y', the perturbation
value, to 0.16/pP. It should be noted that in calculating
(rpP) we normalize in each case with respect to the
theoretical magnetic moment. The charge density
radius, however, changes drastically, going from
0.24/p' to 0.033/p', in apparently strong disagreement
with experiment. The complete numerical situation
will be summarized after we have discussed the question
of the meson's electromagnetic structure.

E. Meson Electromagnetic Form Factor

The last point which must be discussed in connection
with the two-pion state concerns the meson form
factor M(LV), which until now we have set equal to
unity in our numerical estimates. We now study this
quantity with dispersion relation methods.

Consider the quantity M„defined [see Eq. (3.6)7 by

M„(q,k,) = (4qokp) &(0
l j„l q;k; in)

= i(e/v2) epo (q—k)„M[(q+k)'j, (3.25)

where, as we recall, the factors are chosen so that
M(0) =1.As remarked earlier, only the isotopic vector
part of j„contributes here. In the standard way we find

it should be possible to derive a dispersion relation for
M„, or, more properly, for the scalar function
M[(q+k)'j. Note that we can isolate the latter in an
obvious way to obtain

[—4~' —(q+k)'3M[(q+k)'j

d4x eik x(q k)

X(OILj.(0),Ji(x)30(—xp) I q').

pinally, the factor (q
—k)„can be replaced by a spatial

derivative of the matrix element, since by gauge
invariance q„M„=—k„M„. We shall not discuss the
details but merely content ourselves with the remark
that the derivation of the dispersion relations can. be
carried out by the method of oehme. "The masses are
such that where one is required to integrate the absorp-
tive part of the amplitude over an unphysical region
(lkpl &p), that part conveniently vanishes. One now
readily establishes that the quantity [—4p' —(k+q)'jM,
regarded as a function of ho in the rest frame
of g, is analytic in the ko plane cut from p to
infinity. Assuming that M has no pole at —(q+k)'= 4p, ',
we can write the once-subtracted dispersion relation

(q+k)'
M[(q+k)'$=1—

M„=iqpt d4x e'" *(p'- Cl,)

X(0I(j.(0)A(x))+ Iq'). (3 26)

When the indicated operations are carried out, there
appear terms coming from equal-time commutators;
on invariance grounds and from the assumed locality
of the theory, such terms must have the form (q—k)„
times polynomials in (q+k)'. We shall assume that in
fact only a constant times (q —k)„appears; and this
constant will later be 6xed, through use of a subtracted
dispersion relation, to guarantee the condition M (0)= 1.
We therefore drop these terms for the moment and
write simply

M„=iqo' d4x e'" *(Ol (J,(x),g„(x))„lq') (3.27)
~J

We obtain a final form for M~ by writing (j„(0)J;(x))+
=[j„(0),J;(x)j8(—xp)+J, (x)j„(0) and noting that the
last term makes no contribution for ko+ p. Thus

M„=iqpl "d'x e'" *(Ol [j„(0)&J,(x)j0( xp) lq, ). (3.28)—

Now it follows from the dynamical independence of
the vector potential and the meson field that
[j„(0),J,(x)) vanishes for space-like x. Thus M„ is the
Fourier transform of a function which vanishes every-
where except in the past light cone. This suggests that

ImM( —$')
X d$' (3 30)

&'LY+(q+k)' —' 3

To determine ImM, we write down the absorptive
pal't, Ap, of (3.28):

A.=~qp'2 (0li. l~)(el Jilq'»(P. —k —q) (331)

As usual we have introduced a sum over a complete
set of states; and in order to preserve the proper reality
conditions at each stage of approximation we under-
stand this to be one-half the sum over "in" and "out"
states. The least massive state which can contribute
is the two-pion state. Generally, states consisting only
of pions must contain an even number of them. States
with a pair of E mesons may contribute, as can the
nucleon-pair state, etc. Suppose we limit our attention
to the two-pion and the nucleon-pair intermediate
states. Then in (3.31) we encounter (Olj„lard), which
leads us back to our amplitude M„, and (Olj„le),
which is the nucleon electromagnetic vertex function,
aside from trivial factors. We thus generate a set of
coupled integral equations which relate the meson and
nucleon electromagnetic form factors.

Fortunately, it can be shown that the nucleon-pair
state probably makes a very small contribution to
M[(q+k)'], at least for —(q+k)'&4m'. This follows
from a unitarity argument of the sort we have employed

"R.Oehme, Nuovo cimeiito 10, 1316 (1N6).
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previously. Thus, the nucleon-pair state contribution to
A„ is given by

pd'1Vd'X
A„(pair) =m-qpl P, ~ (0!j„!NE)

spina ~ (2sr)s

(3.36), choosing algebraic signs to maximize IrnM.
Substituting ImM into the dispersion relation (3.30)
and looking at the leading terms in an expansion in
(q+k)' we find

X(lV&IJ'J! q')~(JV+& q
—&) —(3 32) M((q+k)') = 1— (q+k)'+

3m2
(3.37)

It is obvious that only the vector part of j„contributes
here. The matrix element (1'!J';!q;)describes the
production of a nucleon pair in the collision of two
pions; and one sees from the b-function that we require
this matrix element only in the physical region. Further,
one sees by going into the rest system of the pair that
only '5» and 'D» pair states are involved here. Let us
carry out the operations implied in (3.32) in this system.

The structure of (0!j„!cVE) in this system has
already been given, in (3.16). For the matrix element
(JVX!J, !q;) we write, in Pauli spinor notation,

m'
P'Eoutl~ilq')= ! ! 4+2L~,&sj(Bse (q—k)

(qplValVp i

BD/3e JV—/V (il—k) —sr (»1
—k)))xz, (3.33)

where Bg and B~ are related to the '5» and 'D» ampli-
tudes, respectively, and are functions of Xo. Carrying
out the integrations in (3.32), we find

~2 ~ [N[X,&

!(IiiiM) pair =+

XRe 'a (Bs+Bn)(Fi*+2mFs*)+s (Bs 2BD)—
+o

X!' Fi*+ 2mFs* ! 8(—«
—4m'); (3.34)

IEs m )

where, in terms of the invariant variable «= (1V+X')
= (k+q)' we have

This result corresponds to a mean square radius of
2/m' for the meson form factor; but our whole procedure
has been such as to probably grossly overestimate this
quantity. In any case, this estimated upper limit
coming from the pair state is, as we shall see, probably
small compared to the contribution from the two-pion
intermediate state. Before turning to the latter, it is
perhaps worth noting that if we had used perturbation
theory to compute the matrix element (JVJV!J, !q;) we
would have found for the mean square radius the result
(r2)=0.7/ii', which is about 16 times as large as the
above result. Again, this is attributable to the fact that
perturbation theory badly violates unitarity. Since the
nucleon-pair state seems to make such a small contri-
bution to the meson form factor, we shall ignore it from
now on and retain only the two-pion state.

We have already noted that the two-pion state
generates an integral equation for the form factor
M((q+k)'). It is possible to discuss the structure of
this in quite general terms and we shall begin in this
way. Setting «= (q+k)', let us introduce a phase angle
»p( —«) according to

ImM(«) = tan»s( —«) ReM(«)8( —«—4''), (3.38)

where the step function appears because the lowest
mass configuration which contributes to (3.31) is the
two-pion state. Of course, (3.38) determines»s only to
within an additive multiple of m. It is physically
reasonable, however, to suppose that tang( —4ii')=0,
and we shall make the convention that q (—4is')=0.
In place of (3.30) we can now write

(3.35)

C I
Bs I'+2

I
Bn I'3&

[k!'
(3.36)

where ! cV! is given by (3.35). In order to obtain a rough
upper limit on ImM, we set the nucleon form factors in
(3.34) equal to their static values: Fi=e/2; Fs
=(p —p )/2. We further allow !Bs! and IBii! to
take on separately the maximum values permitted by

The unitarity limits on the amplitudes Bq and BD
are obtained by computing the total pair production
cross section from (3.33) and demanding that this cross
section be no larger than what is allowed by unitarity
for pion-pion collisions in the J= 1, I= 1 state. We And

tan» («') ReM( —«')
M(«) =1—— d«' . (3.39)

«'(«'+« —~.)

We now regard the function»s(«) as a known
quantity. Then Eq. (3.39) may be interpreted as an
integral equation for M(«), the general solution to
which is easily given. The information about M which
may be read from (3.39) is the following: (1) The
function M(«) can be extended to a function analytic
in the «plane cut from —~ to —4p'. (2) Just below
the cut the real and imaginary parts are related
according to (3.38). (3) M has the value unity
at «= 0. Evidently we seek a solution such that
tang («) ReM( —«)/«approaches zero since otherwise

the equation as it stands is meaningless.
The mapping problem posed by Eq. (3.39) is a
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standard one and the general solution is'~

M($) =P($) exp —— d(', (3.40)m~4„' ' —ie

where P(P) is as yet an arbitrary polynomial. As a
matter of fact the more general problem where the 1
in (3.39) is replaced by a function of $ may also be
easily solved but we shall not go into the question here.
The only restrictions which we may impose upon the
polynomial P($) are that P(0)= 1 and the degree must
be no higher than would permit the existence of the
integral in (3.39). This leaves, of course, a great deal of
arbitrariness, in general, depending on the asymptotic
form of p($). It may also happen that io(P) is such that
there is no solution to Eq. (3.39) even with P($) =1;
this would mean that the equation as it stands is
meaningless and further subtractions (which would
introduce new constants into the theory) would be
required. We shall not consider this possibility further
but assume in fact that solutions do exist and see to
what extent they may be uniquely specified.

The existence of a multiplicity of solutions to dis-
persion equations like (3.39) is an old story, and the
problem cannot be disposed of without supplying more
information from the outside. One simple way to get
rid of P(P) is to assert that M has no zeros in the finite
plane. There is no physical basis for such an assumption.
What is equivalent to this, however, is the requirement
that the solution (3.40) be chosen such as to agree with
the iteration solution of (3.39). Thus we imagine that io

has a parameter of smallness associated with it and
insist that the power series expansion of (3.40) agree
with the series generated by the iteration solution of
(3.39). This evidently leads to P($) =const=1 and we
take finally as our solution

M(&) =exp —— dg'
~"4o' Y(Y+5—i&)

(3.41)

We shall discuss below, through an analysis of the
two-pion contribution to (3.31), the physical meaning
of io($)—at least for small $. For large $ we have no
simple physical interpretation of p and have no feeling
about its asymptotic behavior, which is, of course,
crucial for the asymptotic value of M. It may be possible
to prove by the method of Lehmann, Symanzik, and
Zimmermann" that M($) in fact approaches zero at
infinity and we shall assume that this is true. [A
sufhcient condition for this to happen is p(g) —+ con-
stant= ps)0; in this case M($) —+ lpl "'t g. If iM'(g)

does approach zero at in6nity, then since we require
it in our dispersion integrals for only moderate P values,
the precise asymptotic form of p will not play an

» N. I. Muskhslishvili, Stmgatar Iwtegra/ Equations (P. Boord-
hoff N. V., Groningen, Holland, 1953).

'8 Lehmann, Symanzik, and Zimmermann, Nuovo cimento 2,
425 (1955l.

important role. In the model to be discussed below, y is
probably given quite reasonably in the interval
4ti'($(30tis and what happens beyond that is for our
purposes not important.

In a related problem which we have discussed else-
where by use of reaction matrix techniques, " it has
been shown that in a situation of the sort under dis-
cussion we can express q in the form

Re(e" sin5)
tang =

1—Im(e@ sin5)
(3.42)

where r and s are isotopic labels and p and t are the
four-momenta of the intermediate pions. The Grst
factor is just the vertex we are studying and is expressed
in terms of the form factor M by (3.35), in the case of
two-pion "in" states; for "out" states, one replaces
M by M*. Recall that half the sum of "in" and "out"
states is implied in (3.43). The second factor in (3.43)
is proportional to the scattering amplitude for pion-pion
scattering and it is clear that we are always in the
physical region. Obviously 30=0 in the rest frame of
the pions; and since j transforms like a vector it is
evident that only two-pion 7=1 states contribute. It
is also evident that only the isotopic-spin-one states are
relevant here. The matrix element is then completely
characterized by the complex phase shift 6 for pion-pion
scattering in the J= 1, I= 1 state. The precise relation
is as follows:

(—~)i
(p.t. o«I~ I~'&=(gpstoVo) '—

~2 (—-'5—t ')'

)5„;"o„—o„,o„~
X3e" sinful l(p l) (q

—k), (3.44—)
2 i

where (= (g+k)' and 6 is to be regarded as a function
of g through its dependence on the center-of-mass wave
number (—is)—ti')'*. For an "in" state the right-hand
side of (3.44) would be replaced by

'
its complex

conjugate.
We now have all the elements required for the evalua-

tion of (3.43), and hence of the two-pion contribution

where in the present problem 8 is to be identified with
the (complex) phase shift for pion-pion scattering in
the state of angular momentum unity, isotopic spin
unity (J=1,1=1). To see how this comes about in
dispersion theory, and to obtain some idea of the range
of $ for which it has validity, let us turn to the calcu-
lation of the absorptive part A„of (331).For values of

$ suKciently small so that the main contributions come
from the two-pion state, we have

t d'p dsl
a„=~q,&g (0l~„lp, t,)

(2m)s

X(p,t.l~ lg»(p+t-~-~) (3.43)
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to ImM. We 6nd the result

ImM(g) =Re(M*e" sin5)8( —$—4p')

hence

(3.45)

m'-a PHASE SHIFT TAKEN

TO 8E 8 = ton k a, a = 2/~

-20 IO 0 10

cr /4p

FIG. 1. Real part of the pion form factor; the pion-pion scatter-
ing phase shift is taken to be S= tan '(k'o'), where k is the wave
number in the center-of-mass system and q is the scattering length
chosen to be 2/wr

-50

Re(e" sin8)
ImM($) = ReMe( f—4—p') (3.46)

1—Im (e" sinb)

This is precisely the result stated in (3.42). The argu-
ment given in reference 11 makes it plausible, as we also
see here, to retain a complex value of 8 even though
we have dropped states other than the two-pion state.
The point is that other states could be relatively
unimportant in contributing to ImM, at least for small

g, even if they play an important role in pion-pion
scattering when inelastic processes compete with the
scattering. Of course, 8 is real below the threshold
for inelastic processes.

Needless to say, we have no experimental —or
theoretical —information on the pion-pion scattering
phase shift. However, since the scattering presumably
takes place through virtual baryon pairs it is reasonable
to assume that the "range" of the interaction is small.
Consequently we propose to represent the energy
dependence of the phase shift by a scattering length
approximation; namely, with k the center-of-mass
wave number, we take

tanb( —
p) =ksas = (——,'t —p,')»a', (3.47)

where a is the scattering length, expected to be of order
ws '. Of course, the representation of (3.47) makes no
sense for large k, when inelastic processes can seriously
compete with scattering and cause 6 to become complex.
But as already said, we are only concerned with the
behavior of the form factor M for not too large g
insofar as we restrict our attention to the low
momentum-transfer structure of the nucleon.

Because in our model the phase shift 8 is taken real,
we see from (3.42) that the phase p is just identical

1+n+rs' ( n'( —y —1)+1
ReM(y) =

1++ E Las( —y —1))s+1 3

1+n+cr'
ImM(y) = Lu'( —y —1)j»

1

y &—1, (3.48b)

'(—y —1)+1 ix! y& —1. (3.48c)
& P~'(-y- 1)3'+1&

'

We see that for large positive y, M(y) y»; for large
negative y, ReM(y)~( —y) ', ImM(y) (—y)-'*.

For the mean square charge radius of the meson we
And the result

3 f' n'+rr rr+2-
(")=

4p' & (rr+1) (rr4+n'+1) 2
(3.49)

There is no need to emphasize that this quantity is not
at present accessible to direct measurement. For
illustration, we plot in Fig. 1 the function ReM(y) for
the case a=2/m, hence rr=0.3. For this choice, (r')
=0.08/p', which is twice as large as the upper bound
on the contribution from the nucleon-pair state.

F. Quantitative Summary

Although our evaluation of the meson form factor M
has no validity for large $, it is clear that if M really
does vanish asymptotically then the convergence
properties of the dispersion integrals for the isotopic
vector nucleon form factors would be greatly improved.
This raises the more general question as to whether it is
really necessary to use a subtracted dispersion relation
for the isotopic vector form factor F~~, as we have
done. If it is assumed that no subtraction need be made,
one in effect assumes that he can compute the charge
2F&v(0). This point has been discussed by Chew, 's

who carries out the computation by determining
ImFtv( —o') in perturbation theory and cutting off
the dispersion integral at 4m'. In this way he Ands

2F,v(0)=1.28e. Taking into account rescattering we
find 2Ftv(0)=0. It may be that the rescattering
estimates are unreliable, or that higher mass con6gura-
tions play an important role. The matter evidently
cannot easily be decided. We prefer in the absence of
trustworthy calculations to adopt a subtracted dis-
persion relation.

We now return to the main question, which is to
introduce the structure of the meson into the problem

'9 G. F. Chew (to be published).

with 8. We can now evaluate (3.41). Setting n=pe and
y= $/4p' we find

1+n+n' ( crs(y+1) —1
!ReM(y) =M(y) =

1+n (Lets(y+1)1»—1&

—1&y&~, (3.48a)
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of nucleon structure. We carry out the evaluation of the
nucleon isotopic vector form factors using (3.48)
together with (3.10) and (3.11). The rescattering
corrections are treated as before. In the dispersion
integrals we drop contributions from (mass)' values
larger than 4'', since we have already seen from
unitarity arguments alone that such contributions are
small. For illustration we again take the pion-pion
scattering length to be a=2/re In. Table I we exhibit
the whole numerical situation for the contributions
from the two-pion state. Qualitatively, the situation
can be summarized in the following way: the isotopic
vector magnetic moment and magnetization density
radius seem to be reasonably well accounted for in
terms of the two-pion state contributions. The charge
density radius on the other hand turns out to be far
too small relative to the experimental value. It may be
that this quantity is peculiarly sensitive to our re-
scattering correction approximation; or what is equally
likely (assuming the experiments are correct!) higher
con6gurations are playing an unexpectedly important
role. It is amusing to note that if the charge density
radius is computed under the assumption that we have
no subtraction in the dispersion relation for Fiv [and
hence is given by —6Fiv'(0)/Fiv(0) instead of
—12Fiv'(0)/e7 we would get a very large value, since
Fi (0) 0 according to our estimates.

G. Three-Pion State

TABLE I. Summary of the two-pion contributions to the isotopic
vector magnetic moment pI, magnetization density mean square
radius ((rpP)r), and charge density mean square radius ((rP)v).
In the 6rst column the quantities in parentheses denote the limits
of integration in the appropriate dispersion integrals.

Pert. theory (4y' ~ ~)
Pert. theory (4p,' ~ 4m')
Pert. theory+pion form factor

(4p' ~ 4m')
Pert. theory+rescattering

(4p' ~ 4m')
Pert. theory+rescattering

+pion form factor
(4' —+ 4m')

((»')&) &(&1')F)

1.67 e/2m
0.87 e/2m

0.12/ys
0.22/p'

0.24/ps
0.19/p'

0.77 e/2m 0.28/y' 0.20/p'

1.90 e/2m 0.16/s' 0.03/s'

1.39 e/2m 0 23/ys 0.07/pr

The least massive state which contributes to the
isotopic scalar properties of nucleons is the three-pion
state; and one would expect this state to be the most
important one in determining the isotopic scalar
magnetic moment and mean square radii. Un-
fortunately, we are unable to make any even crude
quantitative estimates of the e6ects from the three-
pion state. Even a perturbation calculation (lowest
order ~eg' is prohibitive.

What we shall do, therefore, is merely carry out an
analysis which separates o8 purely kinematic e8ects and
exposes the basic structure of the problem. From (2.9)
we see that what is involved here is the product
(0 I J„lBs.)(Bm I f I p) In the rest fr.ame of the nucleon pair

(which is, of course, also the rest frame of the three-pion
system), the first matrix element describes the process
of a virtual photon producing three pions in a state of
total angular momentum unity. The second matrix
element describes the process of pair annihilation into
three mesons. One sees that only the 'S~ and 'D~ pair
states are involved here. From charge-conjugation
invariance it follows that the three pions must have
different charges (i.e., IBs-)= Is+s. harp)). This, together
with gauge invariance, (p++p +ps)„(OIg„ I p+p pp) = 0,
leads to the structure of the matrix element, which
must transform like a pseudovector, given by

(olj„lp+p-pp out)
'L(Sw+w —wp) ep—„igpr pi pr H, (3.50)

where H is a scalar function of the momenta and the
pion energies have been denoted by m.

In the rest system of the three pions let us denote by
k the relative momentum of s.+ and ~ and by q the
momentum of m .Let 2E denote the total center-of-mass
energy, so that E is the energy of either member of the
nucleon pair. Then in the rest frame ie„„i„p„+p—i, p,p

reduces to 2E(kXq)„, p=1, 2, 3 (@=4 does not con-
tribute). In terms of the well-known Dalitz description sp

in which the relative angular momentum of (s.+,s. ) is
denoted by l and that of x' relative to the center of mass
of (s.+,vr ) denoted by L, we have /=L=odd integer.
In the rest frame we then have

(0li I
p'p p'«t)

=2E(kXq) (Swpw wp)-iH*(k', q')) '), (3.51)
where

)s=k q/Ikf Iql.
The other matrix element which we require is that

describing pair annihilation into three pions, Retaining
only the contributions from pairs in the 'S& and 'D&

states, we have in the center-of-mass system

~(7)(p+p p'«tlflp)
= —(m/E)l(8w~w wp) '*7r„*{ne kXq-

—(P/V2)LBe PP (kXq) —o (kXq)7}X„, (3.52)

where n and P are, respectively, amplitudes for three-
pion production by nucleon pairs in the 'S& and 'D&

states. They of course depend on the variables k', q', X'.
The expressions (3.51) and (3.52) are now to be

inserted into (2.9). Some of the integrations can be
carried out explicitly and one Ands for the contribution
from the three-pion state, in the rest system,

4E «'& «p ~& p1 —h'y
A~(3s.) =+ q'dq k'dk

I

3(2 ) ep s~„(aa) E )t' i
(2E (p'+k')&)—

XI IX@* e Re(H*n)
(~s+ks) 1

+(Be pp —e)—Re(H*p) x~; (3.53)

~ R. H. Dalits, Phys. Rev. 94, 1046 (1934).
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where influenced by the interaction between nucleons and
strange particles. In particular he considered the
coupling of E mesons to nucleons on the basis of a
cutoff model and found rather sizable eGects. More
recently, relativistic perturbation theory calculations
have been carried out along these lines. "For reasons
to be discussed in Sec. IV in connection with nucleon
pair intermediate states we feel that such calculations
are meaningless. What might be more reasonable
Ldepending on the size of E-nucleon-hyperon coupling
constants' is to treat the contribution of the E-meson
current to nucleon structure by perturbation theory
and neglect that coming from the intermediate hyperon
current. In view of the fact that g~'&g ', the use of
perturbation theory may be more reliable in the present
instance than it was for the pion current.

The algebra of the ~2E) contribution is essentially
the same as that for the

~

2s.) state; the only difference
is that the mass of the intermediate hyperon, a A or a Z,
is diferent from that of the nucleon. 'Zhere is, of course,
also the question of the parity of the Emeson relative to
baryons. We have done the calculation for both cases.
For the proton, there are two diagrams, corresponding
to p —+ (Zs,As)+E+ —+ p; whereas for the neutron we
have only tr —+ Z +E~~ e in lowest order. The
couplings are taken in the form given by Gell-Mann. "

Using for convenience the same mass for Z and A,
chosen intermediate between the two actual masses,
we obtain the numerical results shown in Table II.
If, as has been suggested by Schwinger, "g&'=gz', we
have only isotopic scalar contributions. It is impossible,
however, for any value of g,' or choice of parity to
obtain both a large charge mean square radius and a
small anomalous moment. For example, if g,'~1 and
the E meson is pseudoscalar, the moment is of reason-

able size (but wrong sign) but the charge radius is

negligibly small. If the E meson is scalar and g,' 15,
the charge radius is reasonable ( 0.2/p, ') but the
moment is absurd ( 2.4e/2m).

We conclude that E mesons very likely do not play
any important role in nucleon electromagnetic struc-
ture, unless the coupling constants turn out to be so

large that, here as in the pion case, rescattering correc-
tions to perturbation theory are very important.

q(E) =L(E—ll )'—l ']',
(3''+4q' 4E—')'

E(q,E)=

1
l

k'q'
( p&+qs+ —

(

k'q' 0 4 )
1 ~

ks~-'—L2E—(~'+k')'7 —2I ~'+q'+ —I, (3 54)

and «(q,E) is the value of k which corresponds to )%, =1
if such exists; otherwise a =0. Finally, for the imaginary
parts of the isotopic scalar form factors we obtain the
results

4m r'(~)
ImF P(p+p)'j= — q'dq

3(2~)'~s

f 1—X'q )2E (y'+k')'y—
X i k'dki

"„ts,s) & )ts ) ( (p'+ks)'*

E ( 1 i 3mE 1
a*~ ~+—P ~+ —a*P; (3.SS)

E+m ( V2 ) E'—m' K2
XRe

4m (.«s')

Imp, 'L(p+p) j=— q'dq
3(2~)"o '.(., ~l

p1 —X'q (2E—(p, '+k')&~ H* ( 1

I
+-

,) P (ps+ks)& ) 2(E+~) ( 2 )
3E 1

H*P (3.56)—
2(E' nP) v2—

TABLE II. Contribution of E'-meson current to nucleon struc-
ture. To obtain the isotopic scalar and vector contributions, in the
above table set g'= gs'= (3gz'+gs')/16 or g'=gv'= (gs' —gz')/16,
respectively.

Pseudoscalar coupling Scalar coupling

and E'= —sr(p+p)'. We have not written it in, but
each of the above expressions should be multiplied by
the step function 8L—(P+p)' —(3lr)'$.

It is scarcely necessary to remark that one cannot
obtain any quantitative impressions from these results.
There are suKciently many unknown functions here so
that one could easily arrange it to produce a large
isotopic scalar charge radius and at the same time a
very small magnetic moment. It is unfortunately the
case that the three-pion state, which is perhaps the
most significant contributor to the mysterious isotopic
scalar properties of the nucleon, cannot be treated
quantitatively without prohibitive labor. We remark
again that even a perturbation calculation would be
very worthwhile.

H. X Meson-Pair State Contributions
Fs(0)
Fs'(0)
Fx'(0)

g'(0.0573)e/2m—g'(0.0074)e/2m'—g'(0.0101)e/m'

—g'(O. i 6)e/2m
g'(0.030)e/2m3—g'(0.0475)e/m'

It was suggested some time ago by Sandri" that the
electromagnetic structure of the nucleon would be

"G. Sandri, Phys. Rev. 101, 1616 (1956).

sa Y. Nogami, Nuovo cimento 4, 985 (1957).
N M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
s4 J. Schwinger, Phys. Rev. 104, 1164 (1956).
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IV. ROLE OF NUCLEON-ANTINUCLEON PAIRS

The last topic we shall treat is the role of intermediate
nucleon-antinucleon pair states in the electromagnetic
structure problem. In lowest order perturbation theory
such states appear simultaneously and on essentially
an equal footing with the two-pion state. It has long
been recognized that in perturbation theory the pairs
make an unreasonably large contribution to the
anomalous moment; there have been frequent specu-
lations that a more accurate treatment would correct
this situation.

The results of lowest order perturbation theory,
calculated either directly by Feyoman methods or
from the dispersion formula (4.2) [ into which one inserts
the lowest order amplitudes], are as follows:

e ~g'y 1
—;F,s(0) = —2F2i'(0) =-

2m&a &4~

g&(1—3g)
X (1+2&)y&(1—

&) in&+ cos-
l

—
[

(1—i!/4)' E 2 ! ..

= —1.13e/2m;

e (1) ~g'q 1
-', F2's(0) =—2F '~(0) =-

2m im2& &4 ' S~

2i!'—(19/3) i)——,
'

X + (vj —-', i!) in'!

( 4o I(&l
+I 20—~+2~' ll

& &4—&&

=0.181e/2m';

e (g2~ 1
—:Gi"(0) =—2Gi'"(0) = ——

I

—
I

m' (4~& 16

4—Si!+2'
X +—in'!

3 (4—i!) 3

(~ )'
+ I I (4—4m+le') cos-'[ —

I

= —0.1e/m"'. (4.1)

[nl'

3~i.p( —~'p)

CTy (F2

Pn 3+i n( —o, n)

8 [n['

where, as usual, we take half the sum of "in" and
"out" pair states. As we have described in Sec. II,
8(p)(en[ f l p) is proportional to the amplitude for
nucleon-antinucleon scattering. The first factor,
(0.[j„[nn), is the very quantity we are studying; just
as in the case of the pion vertex (see Sec. III), we are
generating an integral equation. In Appendix A we
discuss the solution of this equation for the isotopic
scalar quantities, F& and Ji2, when the nucleon-
antinucleon amplitude is treated in lowest order
perturbation theory. This is a sort of ladder approxi-
mation similar to a treatment given by Edwards. We
find that although this represents a great improvement
over perturbation theory it is probably not a very
accurate approximation.

The evaluation ot (4.2) is most conveniently carried
out in the rest frame of [Nn). As we have discussed
several times before, one need then consider only '5&

and 'D~ intermediate pair states, and only the nucleon-
antinucleon amplitudes leading to these final states
are required. A certain amount of caution must be
exercised in expressing the scattering amplitudes in
terms of two-component spinors since we have been
using negative-energy four-component spinors, n(p),
in our discussion instead of true antiparticle quantities.
In particular, for a matrix element in Pauli spin space
such as (n [Q l p) we must for consistency write
X„-*0&"Qro "iX-„where the X's are the usual two-
component spinors. This has the eGect of changing the
signs of all quantities linear in e since 0-& )e 0 &') = —e.

We write then for the relevant part of the nucleon-
antinucleon scattering amplitude, in the rest system
p+p=n+n=O,

4rp~ (m) &- 3+ei (—e2)
8(s)(NN, out[Zip)= —

l

—
[ P.

m'[p[ ~po& . 4

psD 3ei Il(—e2 n)

The anomalous moment is seen to be quite large,
whereas the contributions to the mean square radii are
seen to be negligible.

The dispersion-theoretic treatment of the pair
state proceeds from Eq. (2.9) where the state [s) is
taken as [en). We have

where

3&i'P(—&2 p)

g y
=X~ QX2))

Q2= X~ QX)1

(4.3)

(4.4)

tt'po) ' ~d e d38
~„~(xE)= —

l

—
[ P .-(p)

(m& spins & (2w)'

x(OI j„l+@)(+@Ifl p)5(N+@ p p), ——

The over-all minus sign in (4.3) as well as the factor
4m pa/m'[ y [

are inserted so that the p's have the familiar
scattering-matrix significance. For example, Ps

(42) =Lexp2ig, —1)/2i with b, the complex phase shift
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A~(x—E)= x„*«—, R. p, l
A. *+ 3)

where

PsD p &*) PD (4r u)u+ I

A~
vZ i 3) 3 .~ (yl'

3psn (xRe —
I

A*+ (+PDa*, (4.5)
v2 E 3)

A —Fg+2mFop

2mFo Fg+2mFo
lpl'

mPo Po(Po+m)
(4.6)

Comparison of (4.5) with (2.9) yields for the pair state
contribution to ImF~ and ImF2 the results

ImFg = Po mPp

o+m (p('
(4 &)

where

ImFo —— C+ D,
2(pp+m) 2

I p I'

describing 5—S scattering. The unitarity restriction
states that IPsl «&» (Peal «&1/2 IP&I «&1

sign that appears with e2 in the various projection
operators has been explained above; the superscript T
on the last curly brace in (4.3) means that the oo
operators are to be written in the order opposite to their
appearance. The expression is then reduced to a linear
function of e~ and e2 and the result interpreted accord-
ing to (4.4). For (0(j„Inn) we use the form given in
Eq. (3.16).

The evaluation of (4.2) with these expressions is
elementary. Still in the rest system, y+p=0, we have

and similarly for PsD and PD. LThe unusual signs in the
projection operators have the same origin as those
appearing with 4ro in (4.3).]The sum over intermediate
isotopic spin states in (4.2) leads to

(j '+ jpo;)(4ps'+~ps')
+r'(j'+7jo. ')7.*(4ps' 'Ps'—)-

=Ps'j;+Ps'rjo, '. (4.10)

Thus the isotopic vector and scalar parts of ImF~ and
ImF2 are obtained by taking the corresponding isotopic
amplitudes P in Eqs. (4.6—4.9).

Ke confine our attention to the isotopic scalar
quantities since these are not coupled to the two-pion
contributions discussed earlier. Substitution of Kq.
(4.7) into the dispersion relations (2.5) leads one to a
very complicated system of two coupled integral
equations. This system may be reduced to a single
Fredh o1m equation about who se solution little can be
said without very much eGort. Rather than attempt
this, we have made only rough estimates of the contri-
butions to the magnetic moment and charge radius.

The following rather drastic assumptions will be
made: (a) Only the amplitude Ps will be retained;
inclusion of Ps~ and P~ should not modify the results
appreciably. We assume that Ps has the maximum
value allowed by unitarity, independent of energy. One
would in fact expect it to be much smaller since there
is an appreciable annihilation probability. (b) In
computing ImF& and ImFps from (4.6) we shall
replace F~ and Fo (which occur in A and 8) on the
right-hand side equal to their zero momentum transfer
values, namely FP(0)=e/2, Fos(0) =0. Furthermore
we neglect 8 in comparison with A. With these approxi-
mations, only the real part of Ps enters and this is set
equal to one-half. Substituting into the dispersion
integrals (2.5), we find for the pair state contributions

C=«psl A*+ 3) 1 r" po 1 e
(F,"(0)(

&- dg g' x-x-
m„4 ~ Pp+m 2 2

(1—ln2) =
Sm-m2

Psn ( &*) PD+ I
A*—

(
8* ' (4.g)——

ural

3) 3
0.012e

)
m2

a=« —3
I

A*+ - (+P~a* .
&2' 3)

For substitution into the dispersion relations we must
imagine all quantities to be expressed in terms of the
invariant variable —(p+p)' according to pp'
= ——'(p+p)o ly(p= —~(p+p)' —m'

We have not kept track of the isotopic spin labels in
the above equations, but these are easily inserted now.
The scattering amplitudes are expressed in terms of
isotopic scalar and vector parts (i.e., I=O, I=1)
according to

1 1 1 e
(F '(0)( &- dye ' x-x-

m" 4 2(pp+m) 2 2

(4.11)

Ps=4(3 'p~ ~o)ps +4(1+&~ &o)ps ~ (49)

ln2 e e
X =0 &1

2m 2m 2m

where pp'=g/4 in these integrals. We conclude from
these estimates that the pair plays a numerically
unimportant role in nucleon structure, at least for
small momentum transfers.

There are a few points in connection with the above
calculations which should be discussed further. In
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particular the replacement of the F's on the right-hand
side of (4.6) by their static values requires comment.
First let us assume that there are states less massive
than the nucleon-pair state (e.g. , three pions) which
contribute appreciably to isotopic scalar quantities.
By analogy with the behavior of the pion vertex
(0~j„~~m) treated in Sec. III, we would expect the
Fi(—$) and F2(—$) in (4.6) to rise from their static
values and then fairly soon after the threshold of the
important masses (say $ 9p,') decreases strongly; their
value at $= 4m', which is the lower limit for the nucleon
pair contribution, should be much less than the static
value, so that our rough procedure of using the static
values should be a gross overestimate. If, on the other
hand, the nucleon-pair state itself is the first significant
source of isotopic scalar, the fact that the F(—4m')
might be significantly larger than the F(0) might cause
some concern over the validity of our estimate. We
have studied this question in some detail and, using
various models for the F's discussed in another connec-
tion, " have found that in spite of the fact that
F(—4m')) F(0) (as much as seven times larger in one
example) and that, for $)4nz', F( g) rises —further
before falling, there are no appreciable modifications of
our estimates. The point is that the width of the peak
in F( (), described —as g increases, is very small and
that much of the large $ contributions to the values
given in (4.11) are lost by the fact that F(—$) ap-
proaches zero quite rapidly in all of the models treated.
(The higher the maximum the more rapid is the de-
crease for large $.)

We have further studied certain special models of
nucleon-antinucleon scattering for which the coupled
integral equations described above could be exactly
solved. For example, if one sets PD ——0 and PsD/&2 =Ps
and forms Gi ——Fi+2mF2, the integral equations for
G~ and F2 decouple. The solutions are too complicated
to exhibit although they are readily obtained. Rough
evaluations of these based on reasonable assumptions
for Ps, such as used in reference 11 lead to contributions
which lie within the estimates given in (4.11). The
perturbation example treated in Appendix A is charac-
terized by the relations (Ps Pri) =P—sD/W2 and
PD

——Pe/2. The latter condition is very pathological, of
course; in addition, the numerical value given to PB in
that Appendix violates unitarity by about a factor of
six. If the value of the quantity p appearing there were

approximately reduced to correct this violation, we

would again find values for Fis'(0) and F2e(0) within
the range of (4.11).

Our conclusion is then that the structure of the
integral equations obtained by substituting (4.6) in
(2.5) is such that the nucleon-pair intermediate state
is quite unimportant and that a quantitative limit on
the contribution of this state to Fi's(0) and F2e(0) is
provided by the simple iteration scheme leading to Eq.
(4.11).

V. CONCLUDING REMARKS

We have made quantitative estimates of all of the
low-mass con6gurations which would be intuitively
expected to dominate the low-momentum-transfer
characteristics of nucleon structure. The theoretical
understanding we have obtained is disappointingly
small. Let us summarize the results of our investigation.

First, with regard to isotopic vector quantities, we
had expected the two-pion intermediate state to provide
the bulk of the contributions. This is probably true but
it is not easy to say how true, since there is no way at
present to make a believable calculation. It had been
argued in C that, in fact, perturbation theory could be
relied upon for a quantitative estimate. We have shown,
however, by a rigorous argument based on unitarity,
that once the mass 0- of the two-pion intermediate state
exceeds 2m, the perturbation theory must be wrong.
The rescattering corrections, together with the very
likely appearance of a pion form factor, must reduce
the contribution of the region 0-&2m to a very minor
one. Now we cannot conclude from our argument that
because perturbation theory is bad for r)2m it is
necessarily bad in the unphysical region 0- &2m to which
our unitarity argument does not apply. It seems very
unreasonable however, to expect that the rescattering
efFects are suddenly unimportant for 0 &2m.

The practical implication of these remarks is the
following: The perturbation-theoretic value for the
vector magnetic moment is 1.67e/2m which is quite
close to the experimental value, 1.86e/2m. Un-
fortunately, half of the value 1.67 comes from the
region 0-)2m and must be almost totally discarded.
We have evaluated the rescattering corrections using
the method proposed in C, which involves a probably
unwarranted analytic continuation of pion-nucleon
scattering amplitudes; it is, however, the only known
way of making an estimate. Aside from the questionable
continuation procedure, we make no approximations
beyond the familiar one of including only the (3,3)
pion-nucleon scattering amplitude. We find then an
additional contribution to the magnetic moment of
about the right order of magnitude, namely about
1.03e/2m, which together with the 0.87e/2m from
perturbation theory makes for impressive agreement
with experiment. Inclusion of the form factor for pions
given in Fig. 1 reduces the total answer to 1.4e/2m
which, considering that the ~2n-) state is one of an
infinite number, would be quite satisfactory. The
rescattering correction is, however, uncomfortably
large (it must be judged independent of the pion form
factor) and we have little confidence in it. It is not
impossible that in fact even the sign of the correction
is wrong, in which case the role of more massive states
would become unpleasantly important. The quanti-
tative situation for the magnetic moment is thus
uncertain.

The mean square radius of the magnetization density
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is also affected by the rescattering corrections to
perturbation theory and by the pion structure. Lowest
order perturbation theory yields ((r22) r )=0.12/ti', a
surprisingly small value, pointing again to the im-
portance of large 0- values in the dispersion integral.
Inclusion of rescattering and the pion form factor
causes this number to increase to 0.23/y', a rather more
reasonable value„The correspondingly experimental
quantity is not directly obtainable. To the extent that
the isotopic scalar contribution to the proton or neutron
radius is negligible Lwhich will be the case unless
((re')s) 20((r2')v)j, one may hope to find ((r&')v)
from the electron-proton scattering experiments. Un-
fortunately, the magnetization density plays a minor
role in the scattering until the momentum transfers are
so large that the form factor F2~ can no longer be
characterized by a mean square radius alone. Extensive
curve fitting in the large-momentum-transfer region
has led Hofstadter and his collaborators to a value
((tee),)=0.32/p', in view of the way this number has
been deduced it cannot be regarded as being in convict
with our theoretical number. Unless ore knows the actual
functional form of the magnetisation form factor, no
amount of curve fitting at large momentum transfers can
yield a meaning ful value for the initial slope.

The situation with respect to the charge density
mean square radius is much more distressing. The
prediction of lowest order perturbation theory is that
((rp)v)=0 24/p'; .if we accept the empirical fact that
for a neutron ((rP) !=0 (which imPlies ((r~') v)
=((rP)s)j this leads to ((rP)„)=0.24/ti'. The proton
charge radius is in principle subject to direct measure-
ment with electron scattering experiments at very low

momentum transfer. What are needed are accurate
absolute cross-section measurements in a region where
the cross section is varying rapidly for uninteresting
(i.e., ordinary Coulomb scattering) rea, sons and one is
looking for small superimposed variations. The current
interpretation of these dificult measurements by
Hofstadter leads to a mean square charge radius of the
proton of 0.32/tr'. If this is, in fact, true, the theory may
be in a very difticult position. The same rescattering
effects which were helpful in connection with the
magnetic moment have a devastating efI'ect here. In the
first place, the perturbation contribution from the
region o & 2m must be discarded; this amounts to about
one-fourth of the above-mentioned value 0.24/tr'.
Secondly, the rescattering and pion form factor correc-
tions in the region 0.&2m reduce the value further to
0.07/tr'. Thus if the two-pion state is assumed to be the
principal contributor to the isotopic vector charge
radius, we appear to have a sharp disagreement with
experiment. If we accept the small value of the neutron
charge radius, we cannot rely on the isotopic scalar
contribution to raise 0.07/ti' to 0.32/tr'. It is obviously
of crucial importance to obtain an accurate determi-
nation of the proton charge radius.

One may, of course, argue that the charge density

form factor receives contributions from very high mass
values and that we should not be too distressed by our
inability to get a large radius from the two-pion con-
figuration. It was, in fact, a certain fear of these high
masses which led to our original forms for the dispersion
relation for F&8, F&~. One argument supporting the
importance of high mass values may be found by
evaluating the integral over ImFi (—o')/o', which, if
it exists, should equal c/2. Using our approximate
rescattering and pion form factor we find instead
approximately 0. As we have stated previously, we have
very little confidence in our method of calculating the
rescattering eGects; it is not out of the question that
the charge radius shows an extraordinary sensitivity
to the pion-nucleon continuation method not shared by
the magnetization density and that the large eGects
noted could be easily upset by changing the numbers
slightly. Our inability to carry out a reliable calculation
of the rescattering makes it difficult to draw any sharp
conclusions.

In order to try to get some feeling for the possible
contributions of higher mass configurations, we have
studied several particular ones. The most important
(in that it is the least massive) isotopic scalar contri-
bution should come from the three-pion state. We were
unable to even estimate this. The configuration of two
E mesons was treated in perturbation theory; barring
incredible accidents it is hard to see how this state can
be of much importance. The nucleon-antinucleon pair
states which have long played a rather enigmatic role
in the nucleon structure problem have also been shown
to make very small contributions to the moments and
radii. Which, if any, of the high-mass states (i.e.,)2v, 3v.) are important we cannot say.

Of all of the quantities we have attempted to calcu-
late, only the vector magnetic moment and magneti-
zation density mean square radius appear to be reason-
able. If our estimate of the two-pion state is reliable, we
are unable to explain a proton charge radius any larger.
than about one-fifth the presently alleged value without
an appeal to high-mass (and needless to say in-
calculable) configurations. If we somehow got a large
vector charge radius we would still face the old dilemma
of finding a sufficiently large isotopic scalar charge
radius to explain the difference between neutron and
proton. As has been emphasized by Yennie, "one then
must also insure that this prolific source of charge
radius should not yield too large a scalar magnetic
moment.

In conclusion, there remain at least the following
four alternatives: (I) The experiments are wrong and
the proton charge radius is very small (this would

obviously be the nicest solution for theoreticians).

(2) The two-pion state is grossly mistreated in our
theory so that one gets a large vector charge radius, and
necessary isotopic scalar quantities ultimately appear,

2~ D. Yennie (private communication).
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24(n) r,y 28(n) v(p) r,~224(p)+g', , (A 2)
(n+n) +12 2p

It is convenient to use (0~j„~nn) in the following form
(Eq. 1.3):
(npnp/m2) &(0

~j„~nn, out) = —v (n) (Gi~[(n+n) 2/iy„

+G2*[(n+n)2](n —n)„)l(n). (A.3)APPENDIX A. LADDER APPROXIMATION TO THE
NUCLEON PAIR CONTRIBUTIONS TO THE

ELECTROMAGNETIC STRUCTURE When (A.3) and (A.4) are substituted into (A.1) and
the spin sums carried out, the second term in (A.2)
does not contribute. We Gnd, in fact,

We noted in Sec. IV that if the nucleon-antinucleon
scattering encountered there were treated in pertur-
bation theory, one would obtain a kind of ladder
approximation to the vertex operator. An approach
similar in spirit was made some. time ago by Edwards. 'o

His techniques were quite diferent and his results
rather more ambiguous.

We proceed from Eq. (4.2) for the absorptive part of
A„~(ÃN) which for convenience we reproduce here:

plg2
t

dpn d'n 8(n+n P p)——
A„~(NN) =—, v(P) r,yp

4( 22)r&2npnp (n P)'+—pp

X ( iy n —m) [2y„—ReGl+ (n —n) „ReG2j

X ( iy n—+m) r,apl(P) (A..4)

We have, as usual, taken half the sum over "in" and
"out" states and this accounts for the appearance of
ReG», ReG2. In the present approximation, the nucleon-
antinucleon amplitude is real. [Compare (4.3) and the
discussion following (4.4).$ Recalling that the G's have
the structure Gs+rpG, we see that the effect of the
r s in (4.4) is to convert G into G =3Gs—rpG~. Finally
we rewrite (A.4) in the form

(pp) 2 t'd n d n
A.'(NN) = —

I

—
( 2 8(S)(m) 3 (2 )'

X(0[j„~nn)(nn[ f[P)5(n+n —P—p). (A.1)

The second matrix element is to be calculated in lowest

presumably from the three-pion state. (3) States of order perturbation theory (with f~ ig—ppr, &,/+And);
uncomputable complexity are important. (4) Our whole we find
dispersion approach is wrong. The last possibility would
be catastrophic.

—prg p t t v(7i)i7 k[iy„ReG,—(n —n)„Re625iy kN(p)
A„~(NN) = d'n d'n ' d'k

(22r)2~ k2+p2

X&((p—k)'+m )&((k+p)'+m')8(n —p+k)8(n —k —p) (A.5)

g'
t [iy„ReGi+(p —p —2k)„R(G2jiy k24(p)

d'k v(p)iy k Xh(k A)5(k2 —P k), (A.6)
2 (22r)2~ k2+ p2

where we have introduced 6=p+p, P= p p; note that P'= —4m—'—6'.
The integrations in (A.6) are most easily carried out in the rest system of p+p, namely 6=0. Comparison

with the standard form (A.3) yields

g' 0(—4m' —62) P2+~2
ImGi(LV) =— P' 2I42P'+2Jtl' lil Re—Gl(LP)

42r 8P2(—LV) 2 p2
(A.7)

g' 8(—4m' —LP)
ImG, (LV) =-

4r 2P(—LV) &

P*+"
m ——+ —

~
+—

~
ln Re@i(62)

2 P' ( P4 P2)

t'~' ~') P'+~'
t+ y2 —

~

—+—
~

ln ReG2(LV) . (A.8)
E 2 P22 P2
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We shall be particularly interested in the scalar part
of these equations. So long as states with 3, 5, - pions
are neglected, the only source of isotopic scalar contri-
butions is the pair state under discussion and the
equations are entirely uncoupled from the two-pion
state. Although it is not at all necessary, for simplicity
we shall set the pion mass equal to zero. . Experience
with perturbation theory shows that this does not cause
appreciable error. In this limit we have

where

1(1—p) s

2 ( p )22/2

Gi (—4m') 2 t'g'/2" tan —'y
=exp — I dy

m~p 3'Gis(0)

Gis(0) = 2e+2222/t„we find from (A.15)

(A.16)

(A.17)

3 (g'
~ (—42222 —LV) '

ImG (LP) =—
I

—
[ ~ [ 0(—4m' —&')

g&4) I —~2 )

ImGis (62)
= —2m

(—a2 —4')

XReGis(LV) (A.10)

(A.11)

XReGi~(62), (A.9)

3 t' g' q M8( —42/22 —62)
ImG, s(a2) = ——

j
—

~

4 E42r) f(—62—42222) (—62)j'*

2 (2r 1 1 1
=exp -~ -»1+— + —"I, (A1g)

.~(2 y 32y2 52'' )
and 7t=3g2/322r=5. 6. For this value of 1t, p=6.28, and
/4, —0.42e/2222. This value is about three times larger
than the upper limit given in Eq. (4.11), a first indi-
cation of the inadequacy of our ladder approximation.
The derivatives of G~ and G2 at 6'=0 are also
easily found:

G,s(0) ~7t2+1 1
Gis'(0) =—

(
tan 9,——

~,
4~m2 & 7,2

The mathematical problem posed by the condition
(A.9) together with the dispersion relation

8 //' 2

162/22p E 2rX
(A.19)

ImGis( —0')
G s(62) G,s(0) do' (A 12)

2l r tT (tT +6 24)

is exactly the same as the one met earlier in connection
with Eqs. (3.39) and (3.41), and the solution which

agrees with perturbation theory in the limit of g' ~ 0 is

oo

Gis(A') =G,s(0) exp ——
I do'

O'(/7'+6' i4)—
3g' //o' —42N2)

'*

Xtan ' I, I
. (A.13)

322r 0

The solution for G2s(62) is obtained immediately by
substituting (A.11) into the dispersion relation for G2s:

1 /-" ImG2s( —0')
G2s(h') =— ' d0'

tr +~

G,s (0)

e= —0.010—.
m2

0.095 e
/ .+ is'(0) =+

4m2 2m m2 2

0.105e
(A.20)

Fis (0) G,s 22/2G2s
2' m2

This value of Fi '(0) is about nine times larger than
the upper limit given in (4.11), again showing the
poorness of the approximation.

In spite of the fact that the ladder model is not very
good in any absolute sense, it does represent a consider-
able improvement over perturbation theory: The
magnetic moment is reduced by a factor of about four,
Gis'(0) by about fifteen, and G2s'(0) by about three.
The asymptotic forms (LV —+ +~ ) of (A.13) and (A.15)
are quite di8erent from perturbation theory for which
Gi -+ ink' and G2 —+ lnh'/LP. In the present treatment

2m p" ImG s(—p2) we have

) p2 p
(1/r) sra tank

(~ 4m ) (~'—+Z') Gi'(~') ~Gi'(o)
~

t,42/22)

Making a partial-fraction decomposition, we find

immediately
2m

G2s(h') = LGi (6') —Gis( —42/2') j (A 15) 2m
/t 2+4m2 G2s(&2) ~ — G s(—42222)

Q2

g2 —0.44

G s(0)(
&4m )

(A.21)

It is worth noting some of the easily obtained proper-
ties of these solutions. Recalling that by definition

G2(0) is the scalar anomalous moment, /t„and that

2mpG, s(0) G,s(0) (42242)

L a')
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The general form of our solution is similar to that found

by Edwards" who studied certain aspects of the same
problem. The two approaches are not directly com-
parable; he typically obtained asymptotic behaviors
like (LV) "~ so that the results coincide for small X.
The solutions (A.13) and (A.15) cannot be expanded
in powers of t unless P«1 which is not satisfied
experimentally.

element &NN
I f I p) in lowest order perturbation theory.

In fact, we use Eq. (A.2) for the matrix element.
Substituting (A.2) and (8.2) into (8.4) (with Is) taken
as INN)) and carrying out the indicated operations,
just as in (A.6), we find by comparison with (8.2)

g' ()(—62—4m')
ImE(62) =

162r

APPENDIX B. MESON-NUCLEON VERTEX

The meson nucleon vertex which describes the
scattering of a nucleon by an external meson field
occurs in a variety of problems such as m-p decay and
m' decay. The mathematical treatment of it follows so
closely what has been developed in this paper that we
felt it worthwhile to include the discussion here.

The quantity of interest, I, is defined according to
Eq. (1.12) as

I= (p.'p./ ')'(p'l~'I p&
= —

I '+(p —p')'j~ L(p—p')'j (p')F (p'p) (p)
= —is~(p') "»N(p)«(p —p')'), (3.1)

where we imagine that E'(—p2)=1; the renormalized
meson propagation function A~, is normalized so that
the product of the first two factors in (3.1) is unity in
the limit (p —p')2~ p2. Evidently we have to do with
one scalar function, E(62), whose structure we must
study.

As in the corresponding electromagnetic vertex, it is
rather more convenient to study a quantity Jdered by

J=(popo/m')'&oI~'II p, in)

=tgo(P) n'N(p)E((p+I)'); (3 2)

the analyticity assumption we customarily make enable
us to relate the scalar functions involved in I and J in
the simple fashion indicated. Making the standard
reduction, dropping an equal-time commutator as
usual, we have

. (&»' (',

@2 P2+p2 4+2P-
X I' ——ln

I' p2 +2+~2
«E (62), (8.5)

where P2= —52—4m2. The first two terms in (8.5)
come from the first term in (A.2) whereas the last
comes from the second term. We have purposely
separated these contributions, since the first two terms
in (8.5) comprise what may be called the proper
vertex part o(p)F2(p, p)N(p), while the second comes
from a nucleon bubble in a meson propagation function
and represents the deviation of (LV+p2)hg, (LP) from
unity. As we' ll see in a moment, keeping or dropping
the modified propagation function has a very profound
eGect.

For simplicity we set the pion mass equal to zero.
Then if we drop the last term in (8.5), we will have to
do with the proper vertex part; and this quantity,
which we shall call F(62), is directly comparable with
the ladder approximation to G~ in Appendix A. For I',
we have then

g'
p
—6'—4m'~

'

ImF(Z2) =
162r ( —LV )

X«F(&2)0(—LV —4m') (8.6)

the solution of the integral equation. is

The structure of (8.6) is exactly that of (A.9); since
the dispersion relation in this case is taken to be

+2+~2 (too IrnI'( —o')
F(LV) =1— do' (3 7)

7t' 4~' (o' —p, )(o' +LP—Zg)

(F2++2) ~aa

X&OI LJ;(0),f(x)j8(—xc) I p) exp(ip x). (8.3) F(LV) =exp ' da2
~ 4m' (a' —p2) (a'+62 —ig)

The absorptive part, Ag, is given by

Ag ———2r(pc/m)'* p, 8(p)&0I J;Is)
X&&Ifl p)~(p p u) (3 4)——

The least massive intermediate state is that consisting
of three pions, the neglect of which by this time scarcely
needs comment. The first state to be considered is that
involving a nucleon-antinucleon pair, and, as always,
we take half the sum over "in" and "out" states.

We shall 6rst treat this problem in the same way
we did in Appendix A, namely by describing the matrix

g2 o'—4m'
Xtan-'

I I, (8.8)
162r 0 o' )

F (+2) ~ (4m2/+2) (1/3 ) arc taa(g'/46~) (8.9)

If we keep both the proper vertex part and the
propagation function modi6cation, i.e., the whole of

and it has been chosen to agree with perturbation
theory in the limit of small g'. The asymptotic form of
F(52) is easily seen to be
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(3.5), with tg2= 0 we have

3g' ( 6' —4m—'~ '
ImE(~2) =—

16~ E —a2 )
XReE(62)0 (—LV—4m')

and the solution corresponding to (3.8) is evidently

( g2+tg2 co

E(62) =exp& dp.2

j pr v g~m (0' —
tg ) (0 +LB—zp)

p 3g' p
-

~~ 4m —
y

~

X tan-'(
&16 ) ( 2 )

Thus h~, —+ 0 rather slowly for large g2 in this approxi-
mation. The results of our ladder approximation to
I'(62) are quite similar to those of Edwards. "

We turn finally to a more accurate treatment of the
problem. Instead of using lowest order perturbation

(3 10) theory to describe the nucleon-antinucleon scattering
amplitude v(77)(IVII| f ~ p), we shall chars, cterize it by a
complex phase shift. The crucial observation which
makes this possible is that the matrix element
(0(I;)») is diA'erent from zero only if the nucleon-
antinucleon pair are (in their rest system) in a state of
angular momentum zero, odd parity, and isotopic spin
unity. There is only one such state, namely 'So' where

(3 11) the superscript 3 designates the isotopic triplet. We
write now, in the rest frame of the pair,

The asymptotic form of E(62) is easily seen to be J= (Pp/m)zg/t. *"XnE((P-+I)'), (8.16)

E (g2) ~ (g2/m2) (1/w) are tan(3g~/16~) (3.12)
1'V)(»l flP) =—

Thus we see that I'(dP) approaches zero for large 62
whereas E(52) increases indefinitely in the present
approximation.

This behavior does not contradict any general
principles. Making reasonable assumptions about the
propagation function As, it has been shown by Lehmann
et a/. ,"quite generally, that I'(62) -+ 0 aS 62 ~ np. On
the other hand PP+y'jhF, ((h'+zP)) in the limit of
large dP approaches the renormalization constant 1/Zg
which is generally believed to be infinite, so that having
E increase is not necessarily unreasonable. It is amusing
to combine (8.11) and (8.8) to give a formula for
hz, which sums nucleon bubbles with various numbers
of ladders going across the bubbles. We hand

( mgq ' 3X„-*X—„X„*&n—X„-*gX—„X„*gX

E 2Zp' 4

where here

pp= sin8 exp (i8), (8.18)

and 8 is the complex phase shift for the 'So' nucleon-
antinucleon state and is a function of wave number,
t -!(&+1)'- '7:

The calculation is now trivial and follows what should
by now be well established patterns. Substituting
(8.16) and (B.17) into (8.4), we find by referring to
(8.16)

t'~'+tg')
&F.(&2) = exp I

62+@,2

d02
(o 2—tg2) (02+g2 —zp)

ImE(LV) = Re(E*Pp),

Repp
ReE(LV).ImE(62) =

1—Impp

from which we obtain

(3.19)

(8.20)

- t. -4m21 ~ (3g
x~

&161r)

This is of the standard form discussed in Sec. III in
connection with the pion vertex. The phase angle p
dined there has exactly the same form in this case,

where

(o 4m)* (g—
+J f

tan-']
o' ) (16'.)

1—xi
&4m2)

'

(8.13)
tan 22( —LP) =RePp/(1 —ImPp). (3.21)

If we 6x p by the requirement of +=0 at zero wave-
number (—age'= m') and further assume that E has no

(3 14) zero, we have

(g2+p2)-
E(62)=exp—

1 tr3g') ( g' )
x=—tan '/ ]+tan '/

&162r) &16n-) . 2 (~')
X d6' (8.22)

2 2 2 2
16 42rq (a zg ) (0 +6 zp)

=i—
~

—~+. ~ (3 iS)
32r (g') in accordance with our normalization convention.
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e 'v sin2$
tang=

1+e '& cos2$
(B.23)

It may be argued that since in (B.4) we dropped

The asymptotic form of E depends on what happens
to p for large a'. If p —+ 0 at infinity, E(h') -+ 1; if
q approaches a positive constant, E —+0. Within the
framework of our model as expressed by (B.21), if
there is any absorption whatsoever, p is less than rr(2.
This may be seen by writing bo $+——irt and noting that

reference to all states other than that involving a pair,
we have no right to contemplate complex 80's, for it is
Just those states which lead to the complexity of the
phase. It is our feeling, however, that there is sense
to our procedure, since what we require for the validity
of the approximation made is con6ned speci6cally to
(B.4): The other terms may be small because of
(0~ f;

~
s) being small irrespective of the structure of the

other factor. This point is also discussed in reference 11
where in addition the structure of IC is examined for
some simple models.
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Interaction Current in Strangeness-Violating Decays*

S. Oxvno AND R. E. MARSHAK, Uucverscty of Rochester, Rochester, New York
E. C. G. SUDARsHAN, Harvard UNieersity, Cambridge, Massachusetts

W. B.TEUTscH, Tufts Urtvverssty, 3Eedford, Massachusetts

AND

S. WzINszRG, ColumNa University, Eem Fork, Sew Fork
(Received June 30, 1958)

The consequences of the hypothesis that the current of strongly interacting particles contributing to
strangeness-violating decays has the transformation properties of an isospinor are investigated. The six
Processes Q+—&++@,++@, E ~7r +P, +P, E1 ~++Ift, +P, EI ~x' +IJ,++v, E2 ~7('++Inst, +P, E2 ~x'
+p++ p would then have the same rates, angular correlations, spectra, etc., and likewise for electron modes.
This prediction is compared with available experimental data. The evidence from the nonlepton decays is
brieAy examined.

1. INTRODUCTION

ECENT experimental and theoretical develop-
ments' lend some support to a rather specific form

of the interaction responsible for weak decays which
conserve strangeness. This interaction can be con-
sidered as the self coupling of a chiral current, the
current itself being constructed additively from baryon
and lepton parts. The structure of the lepton current
is quite well determined (provided the leptons are
assumed to have no strong couplings) but the same
cannot be said of the baryon currents in view of the
complications introduced by the strong interactions.
Nevertheless the present experimental position in P
decay is consistent with a chiral baryon current with
the transformation properties of an isotopic vector. 2

In the decays of strange particles, one has two
general groups of decay modes according as whether
there are leptons in the 6nal state or not. For those
cases in which there are no leptons, the expression of
the weak interaction as the coupling of a strangeness-

*Some of these results were presented at the 1958 International
Conference on High Energy Physics at CERN.' E. C. G. Sudarshan and R. E. Marshak, Proceedings of the
Padua-Venice Conference, September, 1957 (to be published);
Phys. Rev. 109, 1860 (1958).R. P. Feynman and M. Gell-Mann,
Phys. Rev. 109, 193 (1958).' See M. Gell-Mann (to be published).

conserving current with the strangeness-nonconserving
current is consistent with all experimental data. One
notices that while in principle the transition matrix
element depends on the interaction in a de6nite manner,
lack of adequate methods of studying such a system of
strongly interacting particles makes this information
on the currents practically inaccessible. In particular
cases quantitative estimates of the interaction can be
made and the decay of the A hyperon is such a case.a

But in general, one must look to the lepton decay
modes for direct information on the strangeness-
violating current of strongly interacting particles, since
here the transition matrix element is simply expressed
in terms of the currents gtt" (see Eq. (1)j.

In the case of the strangeness-conserving decays, the
current coupled to the leptons has transformation
properties similar to the positive chiral part of the
current to which pseudoscalar mesons are pseudovector
coupled. Arguing from analogy, one is thus led to
postulate that the strangeness-violating current coupled
to leptons has isotopic spin transformation properties
similar to the positive chiral part of the current to
which pseudoscalar E mesons are pseudovector coupled.
We shall not discuss here the consequences of the

' Okubo, Marshak, and Sudarshan (to be published).


