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A straightforward method is developed for obtaining the principal components of the asymmetric tensor
g and its orientation in a crystal system. The necessary paramagnetic resonance data involve three crystal
rotations about arbitrary orthogonal axes. Although the spin Hamiltonian is probably not applicable
except for S=-'„ the development, which is based upon a calculation of the second moment of the energy
levels about their mean, is quite general.

K=P(g;S;H .+g„.S„H„+g,S;H, ). (2)

The constants g, , g„, and g, as well as the orientation
of the principal axes relative to the crystal axes must
be determined from experimental data.

H the direction of the principal coordinates relative
to the crystal axes can be inferred from the symmetry
properties of the crystal, the determination of the
constants g, , g„, and g, is indeed simple. However, in

many cases the orientation of the principal coordinate
system is not suggested by the crystal symmetry and
an analysis of the data becomes correspondingly more
troublesome. In the following procedure' paramagnetic
resonance measurements, obtained from three crystal
rotations about arbitrarily chosen orthogonal reference
axes, are used to obtain numerical values for the
components (g');; of the symmetric tensor (g'). This
tensor is then diagonalized to provide values for the
principal components of (g') and of (g) as well as the
orientation of the principal axes relative to the reference
axes.

PROCEDURE

Although the spin Hamiltonian (1) is probably not
applicable except for the case S= ~~, a general derivation
for any S can be given and is preferable to a more
restricted tratement. If Eq. (1) is rewritten as

x=pS (gH), ac=ps H', (3)
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INTRODUCTION

~'OR the case of a paramagnetic ion having no
nuclear spin and having S=-,', the paramagnetic

resonance properties of the ion in a crystal can be
predicted from the spin Hamiltonian

ac=pS g H=pp;Q, S;g;~H;, (1)

where H and S are vectors and g is a symmetric second-
order tensor. In the principal coordinate'system of the
tensor g the Hamiltonian takes the simpler form

Tr(5c') =»Z'pS'(SH) Z,pS;(AH);
=Z Z,p'(ilH)'(gH), »(SA)
=-:S(S+1) (2S+1)p'EZ (aH)'(AH), 5',
= sS(S+ ) ( S+1)p'(aH)' (6)

The subscripts i and j range over x, y, and s in any
arbitrarily oriented system. Finally from Eqs. (5) and

(6),
(»)'=p'(gH)'

=P'Z, E,Z ag;,&;g;I,&A

=P'Z;2 s(Z;g;~g;~) &,&A

=p'Z Z~(A'), 'II;&~,
where

(g ) '= Z'g'C's

can be represented by a symmetric matrix (g') which
is the square of the symmetric matrix (g).

Alternatively, it can be seen that Eq. (3) implies that

from which
hv= p I (gH) I,

(hv)'= O'I (gH) I'.
'L. Carlton Brown and Paul M. Parker, Phys. Rev. 100, 1764
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where H' represents a transformation of H by g, then
it follows that the resulting energy levels will be
equally spaced for any fixed relative orientation of g
and H. Thus, with Z taken along the direction of H',

(m —m') hv =E —E„,
where E and E are any two levels and hv is the
spacing between adjacent levels. A reorientation of g
with respect to H (rotation of the crystal) will modify
the magnitude and direction of H' and thus change hv,
but will not affect the validity of Eq. (4).

The second moment' of the energy levels about their
mean can be calculated from Eq. (4) as follows:

(nz —m')'(hv)'= Q„Q„(E„—E„.)',
from which

—,'S(S+1)(2S+1)(hv)'= P„E„'=Tr (5C'). (3)

The trace of 5C' can be obtained from Eq. (3) by writing
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g, = hv/PH p, (10)

is measured at a number of orientations in each rotation.
Consider a rotation about the x axis such that

H, =O,

Hp ——Hp cosp~,

H, =Hp sing, .
(11)

For this case Eq. (7) reduces to

g,'= (g')» cos'P + (g') „sin'P,
+2 (g') „,cosP, sing, . (12)

Equation (9) can then be reinterpreted to obtain

(hv)'= p'(gH)',

again leading to Eq. (7).
In a practical application some convenient crystal-

6xed xys coordinate system is chosen and the crystal
is rotated in the magnetic field about each of the three
axes in succession. The effective value of g, defined as

Similarly, for a rotation about y

g,'= (g') „cos'@„+(g'), sin'P„

+2 (g') „cosp„sing„, (13)
and about s

g,'= (g') „cos'@,+ (g')» sin'@,

+2(g') „cosP.sing, . (14)

A Fourier analysis of the measured values of g,' as a
function of rotation angle thus provides experimental
values for the constants (g'),; which appear in (12),
(13), and (14).The corresponding matrix (g') can then
be diagonalized by the usual methods to obtain the
principal components of (g'). The square roots of
these components are the principal components of the
tensor (g). Furthermore, the transformation which
diagonalizes the experimental (g') gives the correct
relationship between the reference xys system and the
principal coordinate system of (g).
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