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Sum Rules for Inelastic Electron Scattering*
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Sum rules are constructed for the analysis of inelastic electron scattering at high energy (~150 Mev)
from light nuclei. EAects taken into account are: nucleon charge, recoil, and magnetic-moment currents;
exchange currents; finite nucleon size; nuclear center-of-mass motion; and the kinematical factors describing
the correct relation between initial and final electron energies, the scattering angle, and the nuclear excitation
energy. It appears that a sensitive test of the role of exchange currents in the nuclear ground state is pro-
vided by a sum rule for the energy-weighted cross section for fixed-momentum transfer:

&E— co' (Eq 9) IE6.
I g) =const

I. INTRODUCTION

HIS paper describes the construction of sum
rules for the analysis of inelastic scattering of

high-energy electrons from light nuclei. Sum rules,
rather than detailed inelastic spectrum calculations,
are valuable because they do not require knowledge of
the much too complicated final-state wave functions
for excited nuclear systems. The purpose of such sum
rules is to provide information about the nuclear
Hamiltonian and the structure of the ground state
beyond the static charge distributions, as determined by
elastic scattering. In particular, one may inquire into

. the role of charge exchange forces which give rise to
exchange currents, of finite size of the elementary
nucleons, and of internucleon correlations in the ground
state.

The original dipole sum rule of Thomas, Reiche, and
Kuhn' for the absorption of light by atoms was ex-
tended by Heisenberg' in 1931, to include eGects of
retardation and indistinguishability of the atomic elec-
trons in atomic x-ray studies. His result, expressed as a
ratio of the total cross section for absorption of x-rays
of momentum Aq by an atom of atomic number Z to
the single-particle cross section, is Z+Z(Z —1)fs, where

fs= lpo(rt' ' 'rz) I'e's t -"drl' ' 'drz
J

is the form factor for two-body correlations and
corresponds to the square of the elastic scattering (i.e.,
one-body) form factor in the approximation of single-
particle wave functions (not antisymmetrized) .Feenberg
and Siegert' first pointed out that exchange currents
arising from charge exchange forces, which may
be operating to bind the nuclear ground state, wi/1

modify the sum rule, Eq. (1), for the nuclear photo-
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effect. Starting with the work of Levinger and Bethe'
in 1950, these modifications have been studied exten-
sively in recent years with the aim of tying down the
role of exchange forces by their contribution to the
observed photoeffect in light nuclei.

In extending sum rules to apply to the case of elec-
tron-nuclear scattering, it is again of interest to see
what can be learned about exchange forces and two-
body correlations. The electron and photonuclear inter-
actions differ in two principal features: (1) the Moiler
potentials for the electron interaction contain important
scalar and longitudinal components in addition to the
transverse parts operating in the photo process; (2) the
possibility of precise measurements with monoenergetic
electron beams means not only a more accurate com-
parison of calculations with experiments, but also a
greater flexibility in the type of sum rules which can be
constructed and studied. An approximate ratio of the
form (1) can also be written for total electron cross
sections taking into account only the Coulomb inter-
action with each nuclear particle. The four main correc-
tions to this result which will be analyzed in this paper
are (a) contributions from recoil and spin currents of
the nucleons, (b) contributions from exchange currents
arising in connection with charge exchange forces
operating in nuclei, (c) kinematical corrections which
arise from use of the energy and momentum conserva-
tion laws to relate the momentum transferred by the
electron to the energy of the final nuclear states, and
(d) corrections resulting from the Rnite extension of the
nucleon charge and current distributions.

In this work, we limit our considerations to light
nuclei (Z&8) so that the interaction with the electron
may be accurately treated in the first Born approxima-
tion. A correct treatment of the nuclear center-of-mass
motion is thus important, and this will be given, using
the method of Gartenhaus and Schwartz. ' This correc-
tion is of interest in relating the two-body correlation
function, such as given in Eq. (1), with the elastic

' J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950).' S, Gartenhaus and C. L. Schwartz, Phys. Rev. 108, 482 (1957).
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scattering form factor

Xexp[iq (ri —A 'P r;)]drt dr~, (2)

divj+ (i/5) [H,pj=0, (3)

when shell-model wave functions are used.
Typical experimental conditions of interest here

correspond to momentum transfers
l ql &200 Mev/c,

giving nucleon recoil velocities s/c&1/5. We put 200
Mev/c as an upper limit on our considerations because
our extensive ignorance of the relativistic many-body
problem restricts us to a nonrelativistic one-time de-
scription of the nuclear system as a collection of "Pauli"
particles with static interaction potentials. This means
that we include corrections to the interaction currents
which are related by the continuity equation,

through what may be described as an oscillating com-
ponent of the charge distribution of the nucleus, which
exchanges energy with the scattering electron.

II. FORMAL DEVELOPMENT

In this section we construct a sum rule for the total
cross section, J'dkf(d'o/dQdkr), for an electron to be
scattered into a given solid angle dQ by a nucleus of
charge Ze. The electron is treated in Born approxima-
tion and the relevant matrix element is

(M E )f0= d4x(fir, (*)lo)j,(q)s"*/q', (4a)

where j„(q)=(u(kf) lp„lg(ks)) is the electron current
corresponding to a four-momentum transfer q'= (AE)'
—tl q; u=mtP, y„= (P,Pe), and (fir„(x) l0) expresses
the nuclear transition current. densities at x which-we
take of the following form:

to the appearance of charge exchange potentials in the
nuclear Hami1tonian; but we ignore those meson
resonance effects which are known to be of major
importance for the nuclear photoprocesses at energies
& 100 Mev.

Because we limit our considerations to
l ql &200

Mev/c, charge and single-particle magnetic moment
scattering are the dominant contributions to the total
cross sections for incident electrons, The resulting sum
rule for fixed angle of electron scattering is insensitive to
exchange current contributions, and the two-body cor-
relation function fs in Eq. (1) is pretty well tied down by
the two requirements that Ps give the observed charge
density, and that the exclusion principle be considered.
Quantitative results are presented in Sec. III and the
above given conclusion is the same whether we con-
sider the low-resolution experiment which accepts elec-
trons of all energies at a given scattering angle or the
high-resolution experiment which selects both angle and
final energy so as to keep the momentum transfer
constant.

However, it appears that a sensitive test of the role of
exchange currents in the nuclear ground state is pro-
vided by a sum rule for the energy-weighted cross
section

(fir„(x)IO)= d'x . d'x +(x, x )

Xg g p, ~(x—x;)r„(i)fs(xi, x~). (4b)
a i=1

In Eq. (4b) the index n labels the several types of
current interactions, such as charge, magnetic moment,
and exchange, with p~(x —x,) the invariant density
function for the electromagnetic interactions of the
ith-bound nucleon. As a consequence of the assumed
one-particle coordinate dependence of the densities
p~, the matrix element Eq. (4a) becomes

with

f,~(q) = d4x p, ~(x)s~s ~

the form factor corresponding to the four-momentum
transfer q2. '

Reducing to a one-time description of the nuclear
particles, we obtain finally,

4
( g [ =const

eo(c,q)dei' (3')
(M E )ro=&(Energy) P (dr) qf*(ri, r~)

a, i J

where e is the energy of each final nuclear state (relative
to its center-of-mass) and the momentum transfer

l ql is
held constant. In Sec. IV it is shown that the exchange
currents contribute as much as 40% of as for Rosen-
feld-type forces.

The relative importance of the contribution of the
exchange currents to r~ may be understood as follows.
Notice that a~ weights against the elastic in favor of the
inelastic scattering, and recall from Eq. (3) that the
exchange currents contribute, in Born approximation,

q2

'The general current operator deduced from a Geld-theoretic
analysis of the many-body problem in quantum Geld theory has
terms whose coordinate dependence cannot be expressed simply
by the invariant (x—x;)s. Crossed diagram corrections to the
ladder approximation to the Bethe-Salpeter equation for the
two-body problem give rise to such terms. They may depend on
the four-momentum transfer to various nucleons which &g& for
inelastic processes. This uncertainty as to general form-factor
arguments is unimportant in the energy regions to which we limit
out discussions. This is because (fP)' lies within 20% of unity
and the peak of the inelastic cross section corresponds closely to a
direct ejection of a single target nucleon.
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where ie(ri r~) represents a space wave function for
particles multiplied by 2 two-component Pauli

spinors, appropriately antisymmetrized. Kinematical
errors introduced by a nonrelativistic description of the
nucleon motion are q'/M'(5% for the energy range
considered here. There are also dynamical corrections
of this same order to the single-nucleon current operator
as is evident when the scattering of electrons by Dirac
protons with added anomalous moment, as calculated
by Rosenbluth, is compared with the analogous result
for a Pauli proton. The form factors in Eq. (6) will be
taken to be the same as those measured by Hofstadter'
and collaborators for free nucleons. The best argument
for this assumption is the observed absence of magnetic
moment quenching in nuclei. '

There is no real meson production to states which
can be reached at these energies, and in order to specify
the current operator P„(i) one assumes that all mani-
festations of the meson cloud not contained in the free
nucleon's anomalous moment and form factors, can be
summarized in static binding potentials. The nuclear

Hamiltonian is thus written as

p,2

+Z pro(i, i)+2 x' ~,.lr. (i,i)
2M

The presence of the charge exchange interaction V, gives
rise to the so-called "gauge-currents, "which have been
discussed extensively by Sachs' in terms of line integrals.
Their presence is required to maintain the continuity
equation. There is no unique treatment of these path-
dependent line currents since only the divergence of the
current is fixed by the continuity equation. For sim-
plicity, we shall use straight-line integrals in discussing
these terms. The uncertainty due to these terms is quite
small because the over-all contribution of the gauge
currents is small. However, we shall see that the charge
exchange forces give rise to important and uniquely
specified contributions to the energy-weighted cross
sections.

With these assumptions, Eqs. (6) and (7) combine
to give as the scattering matrix element"

(M.E.)rp =8 (Energy) ORro,'

A

Sitro ——
(
—

) p dri dry 4pr*(ri, rg) f(q) (N(kr)
~

I( k)p) e,
e'&'* (24(kr)—(4r(N(kp))

Eqs j i laJ=
)is

(p;e'&"'+e'& "p)e, /2 M+i 4rXqe'& "p,/2M+2e p (x;Xx,)2 ds V, (r;;) exp(iq. s)
2(&s) r '

X q o(r„ra). (8)

The first thing which we do here is to extract the state-
ment of momentum conservation from Eq. (8). This
we shall do according to the method of Gartenhaus and
Schwartz' in order to keep the interaction terms sym-
metrical in all the nuclear particles. The result of the
Gartenhaus-Schwartz transformation is that the coordi-
nates r, in Eq. (8) are replaced by p, =r,—R, with
R= (1/A)P; r, , and momentum operators p, by
22, =p, —(1/A)P, with P=p, p;. The added terms
generally contribute 1/2 corrections and will be kept
only as they appear in the leading terms of all subse-
quent calculations.

We next construct measurable cross sections from
this matrix element which do not require any state-
ments about the excited nuclear sta tes, q y. The sim-
plest problem from the experimental point of view is
the low-resolution total cross section (elastic plus
inelastic) for electrons of all energies emerging into a
given solid angle dQ. To simplify the development,
consider first just the first term in Eq. (8) corresponding

7 Hofstadter, Bumiller, and Yearian, Revs. Modern Phys.
(to be published).

4 R. J. Blin-Stoyle, Revs. Modern Phys. 28, 75 (1956).' R. G. Sachs, Phys. Rev. 74, 433 (1948).
'4 A common form factor f is consistent with present data: p;(x)= —,'e(1+r4')p(x) =e p(x), p;(x) =14+ (1+r44)+zrp' jp(x) =pp(—x).

to the Coulomb interaction. The cross section is

o-,de = 2m de ' ky'de 5 Energy SR'p 7 9
r J

with

=o,f2(q) Sdn, , (10)

e4 cos'(8/2) 2kp
00= 1+

4ko2 sin4(8/2) AM
sin'(8/2)

P=Z+Z(Z —1) (dr) pop* expt'iq (p;—jo;)j4ep.

where Pr denotes the sum over final nuclear states and

( ) indicates sum over final and average over initial elec-
tron spins. In the closure approximation this reduces to

e' cos'(8/2) de
o,de = f'(q)

4kp' sin4(8/2) 1+(2kp/AM) sin'(8/2)

1 Sp r
X— (dr) pp*P P (1+a kp)e;

4 1+cos8 ~ 'c

Xexpg —iq prj(1+n k&)e, expLiq 8;j4pp
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de
kg'

d (kg+ ko+ ) q—j '/2AM)

and (c) the nucleon form factor

f(V)=1+6&'(r')

Equation (10) is usually applied with factors (a), (b),
and (c) evaluated for zero nuclear excitation (&=0) and
it is one of our first tasks to evaluate ~ corrections to this
sum rule. We treat these corrections by expanding
those factors which depend on the final nuclear excita-
tion energy in a power series about ~=0, keeping terms
through second order in e/ko To estim. ate the accuracy
of this expansion, we note that the most probable value
of e is approximately that for single particle ejection
from the nucleus; vis. ,

or
~, y[qf /2AM=[qf /ZM,

e .~.=(~ q~'/2M) (1—1/A) =20 Mev

for ko ——150 Mev, and 0=m./2.
We remark here that an accurate e/ko expansion

limits the electron energy from below while ignorance of
mesonic and relativistic effects limits it from above.
Physically, the region of electron energies is bounded

by the requirement that a complete set of nuclear states
be energetically available to the target system. This
will not be the case for too low an incident electron
energy. For too high an electron energy Eq. (7) will be
an inadequate approximation to the nuclear Hamil-
tonian since dynamical e8ects of meson production by
the electron current, which are here neglected, become
appreciable.

The following relations,

(12)

This result is the usual sum rule, Eq. (1), due to Heisen-
berg. (Note that the center-of-mass corrections drop
out. )

The matrix elements in Eq. (9) contain several factors
which vary with the 6nal-state energy and, in the above
closure calculation, these have been treated as con-
stants. These factors are (a) the momentum transfer q
which is related to the nuclear excitation, e, by the
energy conservation relation

ko=kg+
~
q)'/2AM+a,

q=kg —kp,

(b) the volume in phase space available to the scattered
electron

The Hamiltonian commutators which are introduced
in this way carry interesting information about the
nuclear forces since one may be taking derivatives of
potentials, or picking out the e- or ~-dependent parts
of the interaction. In the present approach to a low-
resolution sum rule these terms show up only as small
corrections to the total cross section. In Sec. IV we
shall design a sum rule, Eq. (3'), for as with the aim
of emphasizing these commutator terms.

The measurement of 0.~ poses an additional experi-
mental problem in that high-resolution studies are
required to construct the weighted sum. In high-
resolution work the experimental advantage of electro-
disintegration (over photo-disintegration) comes out
most strongly. The possibility of high-resolution experi-
ments suggests a further constraint in the computation
of O.z from measured inelastic spectra which will greatly
simplify the theoretical analysis. This is to keep the
momentum transfer

~ q ~
6xed, instead of the scattering

angle, by adding cross sections for diGerent scattering
angles and final electron energies, as related by the
conservation laws Eq. (11) for constant

~ q~. As is
evident from Eqs. (8) and (11), a constant

~ q~ cross
section is the natural one for study since the exponen-
tial factors need not be expanded about &=0 in its
construction.

With this in mind, we proceed now to a calculation of
the low-resolution cross-section sum rule.

k '/(q')'= $4ko sin'(8/2)] ' (13)

de 1+e/A M+0 (e'/A'M2)

d(k~+ e—ko+
~

q'
~
/2AM) 1+(2ko/AM) sin2(8/2)

exp(iq p&) =exp( —ekr Vao) exp(iqo y,)

(14)

=[1+icky y,——',c'(kg g,)'7 exp(iqo. y,),

~h)=—1+la'&")=1—l~o'(")(1—~/ko).

III. CALCULATION OF LOW-RESOLUTION
CROSS SECTION

First, , we carry out the expansion of the q-dependent
terms in the matrix element (8) about their a=0 value,
reduce the e dependence with relations (12) and carry
out the closure sum. We again, for illustrative purposes.
confine our remarks to the Coulomb matrix element.
Their extension to the current interactions is straight-
forward and will be indicated at the end of this section.

Using the kinematical relations (11) and denoting by
qo the value of the momentum transfer q corresponding
to &=0, we have

can then be used to remove e from the matrix element inserting these into (g) and (9) we hand (for the (.ou-
and permit thereby the closure sum to be effected. lomb interaction)
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1 p 1 qp'(r')~
IrodQj np—f (qp)dQj F+—

I +
2 (AM 3ko j

X (dr)op*a {e'exp(iqo e'), I.H, e exp( —iqo ej)]}qp
1'1 7

+— (dr)Ijp*g Le, exp(iqp p). , {H, ejkj yjexp( —iqo yj)]}qp
2 t f 7

1+- (dr)yp*P (kj Vqp)'tH, e, exp(iqo g)]{8, e;exp( iq—o yj)]qpo
4 j

f A A

+2 (dr) pp P { 8& kj' Vqpe; exp(iqp. jj;)]LH, kj Vqpe; exp( iq—o gj)] qpo, (1&)
e f 7

=Ze'—
l

1——
l

—Pg e,e, exp(iqo g,j)
M 4 A) '~~ AM

—e' PP V, (ij){:1—exp(iqo p,j)]
ig7'

X (pi' 4j rpjrpj) I

—g Le;exp(iqp y,), {8,kj y;ej exp( iqp y—j)]}2', 7

2ko sin'(8/2) ( 1 )= —Zep
l

1——
l

A)

Z—1
Xl 1— exp(iqo ~'j) I

Z(Z —1) qo'
kj' Vqp exp(zqp g;j)

A 235
A

&J.mao
exp(iqp y;j) V, (ij)

i/7 2

X (P~ 'P j—Tpjrpj) j {.'7=—{.'—e7= *'—r7

through terms of order indicated in the above expan-
sions. With the Hamiltonian (j) the commutators
linear in H are evaluated directly to be

P { e, exp(iqp y;), {8,e, exp( —iqp'p )]}

"(dr) q p* P e, exp (iqp g~)2J
X {kj y;, LH', k y,]}e,exp( iqo g—;)qpo

Z
(dr)qo*eP exp(iqp p,)8 exp( —iqp p;)

M~
(T) Ze'koo——Ze2 2

M 3P
sin'(0/2),

where (T) represents the average ground-state kinetic
energy per nucleon, and the 6rst term is worked
out in (16).

Et is at any point near here that the theoretical
preference for constant

l q l
cross section is most

evident. Collecting these results the Coulomb contribu-
tion to the total cross section is

We notice the appearance in the above of 1/A recoil
terms expressing the interparticle correlation, for i&j,
through the center-of-mass motion. In the calculation
of the commutators involving H to the second power
the cross i/ j terms become very complicated. Hence,
we shall keep for consideration only the one-particle
terms (i= j) in the second-order correction to the
exponential (14). We shall show that these contribute
negligibly.

With this simplification, the last two lines of Eq. (15)
become

1 ) 2kp sin'(8/2) Z—1
Ir,dQj Irof'(qp)dQj F—Z——

l
1——

l
1— (exp(iqo y;j))

1 ( 1 qo'(r')) Zqo' 2 Z(T) Zko' qo'(r') qo'
+—

l

—+ l

—— — sin'(8/2) — — Z(Z —1)(exp(iqp y, ,))2(M 3ko) M 3 M 3P 6ko AM

1( 1 qo'(r')) Z(Z —1) q,'+ l p (V, (ij)L1 exp(iqp —fj;;)](~, ~; rp, rpj))+ "— —kj'Vqp(exp(iqo p, j))
2 (ALII 3kp ) j&j A 23II

——,'kj V'qp p (V,(ij) exp(iqp fj;j)(~, T., rp;rp )) "(17)—
7'

where () denotes ground-state expectation value.
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Before proceeding to the current terms, let us es-
tablish the order of magnitude of the correction terms
in the above formula by evaluating them for the par-
ticular case of electron scattering from deuterons.
In this example 5=1 and the various kinematic correc-
tions in the above serve to increase the cross section
by 2% when evaluated for 90' scattering of 140-Xev
incident electrons. In the evaluation of this number, a
Rosenfeld force" is assumed to operate between the
nucleons of the deuteron, and a Hulthen wave function
is used to describe the ground state of the deuteron.
The correction decreases to 0% if the binding forces
are assumed to have no isotopic spin dependence.
For the deuteron, we have also calculated the two-body
correlation terms in the second-order commutators of II
which were neglected according to the discussion below
Eq. (16), and found them to contribute (1%.

Additional contributions to the sum rule for the total
differential cross section come from the interaction of
the electron with the currents of the nucleons. The
contributions of the recoil and spin currents are
calculated explicitly for the deuteron in the work
of Jankus. " Our considerations here then provide a
measure of the gauge current and kinematic corrections
to Jankus' sum rule. In view of the smallness of
the correction terms in (17), we confine our analysis
of them here to the deuteron. We 6nd, using the
same methods as applied in the discussion of charge
scattering, that the phase space, kinematical, and
gauge current corrections are negligible and add up to
(1%for the previous physical parameters of 140-Mev
incident electrons scattered by deuterons through 90'.
The electron-deuteron sum rule reads finally

o,dQg o.pf'(qp)dQ——g

( qp'
1+ +{2sec'(8/2) —1}

4M'

1 (T) qp'
X — + (v,'+p ')

3 3f 4M'

2 qp'

+— ls,p, „(exp(iqp 9)) +X ~, (18)
3 4M'

FIG. 1.Vector diagram relating incident e)ectron momentum kp,
final electron momentum kf, momentum transfer q, and scattering
angle 8.

"L. Rosenfeld, iVNclear Forces (North-Holland Publishing
Company, Amsterdam, 1948), p. 234.

"V.Jankus, Phys. Rev. 102, 1586 (1956).

Pro. 2. Vector diagram for fixed
~ q~ and Axed kp.

where X contains all correction terms to the Jankus
result due to use of proper kinematics and due to gauge
currents. , and provides a correction of less than 3% in
the energy range under discussion here. We display X
in Appendix A. With neglect of the correction term X
the sum rule for a light nucleus of Z protons and
S=A —Z neutrons reads

( Zqp'
opf'(qp)de~ P.+ +{2sec'(fl/2) —1)

2AM'

2 Z 90
(T)+ (Zp„'+1'„')

3 AM 4M'

In concluding this section, we remark that low-
resolution studies in this intermediate energy region
do not promise to provide any new nuclear information.

IV. HIGH-RESOLUTION STUDIES

With the dual aim of constructing a sum rule which
contains information on the structure of the nuclear
ground state, and which avoids the complications
encountered in the previous section when we had to
expand exp(sq y~) about the elastic q value, we focus
our attention on high-resolution cross sections. To
this end, we consider cross sections summed in such a
way that the momentum transferred by the electron is
held constant. For a fixed incident electron momentum
kp the final momentum and scattering angle 8 in the
laboratory system are related by k;= kp+ q as shown in
the vector diagram, Fig. 1. In order to establish a sum
rule for fixed

~ q ~
we shall consider cross sections for these
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angles 8 and energies ky for which q maps out a circle,
Fig. 2. In Fig. 2, the smallest 8=8, for fixed

~ q~ value
corresponds to elastic scattering and the larger angles
to smaller kf values and inelastic scattering.

We construct the sum for the total cross section at
constant q in the form

d2a

, de
dQgdkf

where the weighting factor is

(2o)

with
% = o o'(8, ko, ky) f'(q),

e4 cos'(8/2) 1
ao'(8, kp, ky) =

4koo sin'(8/2) 1+(kr kp cos8)/AM

and serves to remove the phase-space and form-factor
dependence on the inelasticity e as expressed in (14)
from the final-state sum in order to allow closure. 'H is
known as a function of scattering angle 8 for fixed

~ q~

through the kinematic relations (11),

cos8= (kr'+koo —
~
q~')/2kiko,

(22)=k,—k,—
~ q~ /2a)lf.

Here the incident electron energy ko is kept fixed. The
more general case in which both ko and kf are varied
with constant

~ q~ is discussed in Appendix B.
The experimental total cross section corresponding

to this sum rule is constructed as follows. First values
for ko and q are specified. Then for each value of kj, the
corresponding scattering angle 8 is determined from
(22) and the experimental differential cross section
d'o/dkjdQf is measured for each pair kr, 8. The weight-
ing factor 'N(8, kr) is calculated by (21) and (22) for the
same kr, 8 values and the ratio (d'o/dk~dQ~)/% is plotted
as a function of kf. The area under this curve is the
desired total cross section for the specified momentum
transfer q and incident energy ko.

The virtue of this method of constructing a high-
resolution sum rule lies in the fact that the closure sum
for the charge interaction terms can be e6ected directly
with no expansions since the e dependence has been
completely removed from them for fixed q. The current.
interactions, which are smaller than the leading order
charge terms in the energy range considered here, vary
with the scattering angle for Axed q. The expansion of
the scattering angle about the value of 0 corresponding
to & =0 corresponds here to the q expansion of the low-
resolution studies. However, now the correction terms
appear only for the current interactions and not for
the dominant charge terms. This is because we have
kept q constant whereas the current interactions de-
pend on the direction as well as magnitude of q. If
we replace the actual angular dependence by its value
at elastic scattering, the closure result follows from our
calculations of the preceding section and is given by
1/opf'(q)XEq. (19) with X—&0 and with the angular

factor given by (q'=—
~ q ~')

2 sec'(8/2) —1

3—cos8 3—(1—q'/2kp') =—3 I'(q, k p) (23)
1+cos8 1+(1—q'/2kp')

to leading order. I" remains close to unity for scattering
angles near 90'. The correction terms of order (e/kp) to
Y can be handled by expansion as in the previous
section, but they provide small corrections to terms
that are already small for the range of physical param-
eters under discussion here. One can actually avoid
this expansion by considering an experimental program
which varies both incident and final energies, ko and
kj, in such a way as to keep both scattering angle 8
and q, and hence I', hxed; this method is discussed in
Appendix B.

Whereas the high-resolution sum rule for constant q
appears to be the more natural sum rule on theoretical
grounds of simplicity than the low-resolution one for
constant scattering angle, it contains little nuclear
information of interest. As applied to the deuteron,
the structure of the ground state manifests itself
only through the average kinetic energy in the term
((T)/M) V, and through the spin correlation term
(q'/2M)1ivp (exp(iq 8)). The first of these terms gives
rise to a contribution of 3% in comparison with the
leading-order charge scattering for (T)=30 Mev; and
the second one, —

5%%uo for a Hulthen ground-state wave
function. It is clearly then impossible to study varia-
tions of these terms with assumed deuteron model in
the present sum rule. For other light nuclei containing
at least two protons, there appears in the sum rule (20)
also a two-body charge form factor as seen in Eq. (10)
for F. Whereas this term provides an important contri-
bution to the total cross section, its actual value is quite
well tied down by the requirement of matching the
observed elastic form factor. This is because we are
dealing with momentum transfers 200 Xev/c corre-
sponding to a reduced wavelength X=1/q 10 " cm
and it takes the higher resolving power of a shorter
wavelength to probe variations with nuclear model of
the two-body correlation function f&, Eq. (1), for fixed
observed elastic scattering form factor f.i, Eq. (2).
We give here typical numbers for He' and 0".For He',
we 6t the observed rms radius with a product of
Gaussian wave functions exp( —vr'/2), so that one has

f,i
——exp( ——,'q'/4v),

where the factor —,'=I ——,
' is the center-of-mass cor-

rection. Taking into account the finite proton size,
the rms radius observed by Blankenbecler and Hof-
stadter" is 1.4 f [where 1 fermi(f) =10 " cmj, so that
v= (9/8)(1/(r')) =057&&10' cm P and fo=exp( q'/2v)—
=0.41, for 90' scattering of 140-Mev electrons (q=200
"R. Blankenbecler and R. Hofstadter, Bull. Am. Phys. Soc.

Ser. II, I, 10 (1956).
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Mev/c). The two-body correlation term thus con-
tributes about 30% of the total cross section, but its
calculated value is completely tied down at these q
values by the elastic scattering requirement. For
larger q values f2 begins to depend on other factors than
f,i, such as repulsive cores between pairs of particles
for separations (-', X10 ", but then the over-all con-
tribution of f2 ceases to be important for these large

q values. The upper limit of the short-range correlation
contribution to f2 is the ratio of the volume of the
excluded region to the volume 42r/3qp and this is less
than 10% in the present case, or &3% of the total
cross section.

For 0", we fit the observed rms charge radius of
2.66' j.0 "cm" with a Gaussian shell-model wave func-
tion, obtaining for the elastic form factor"

f (1 rg)e—is(1-1/Ai

and for the two-body correlation function

= Z IZ(~~l8'Ip )I'
f i=I

=&pspI+8;*H8,
I qpp), (25)

where () indicates sum over final and average over
initial electron spins, as in (9), as well as integration
over nuclear coordinates, and where

e8;= &22(kf) IN(kp))e;

xexp(iq y;) —(N(kf) I eI21(kp))

with VP defined by (21). This cross section corresponds
to weighting the curve of the preceding high-resolution
study by the energy of excitation of the nuclear system
for each value of 8, kf for fixed q, as expressed in (22)
and then computing the area under this weighted curve.

Comparing with (15), and using (12), we have

f2= fi —2x+(5/84)xsje *, with x=q2/2v.

..= dk I
"~-, I

I de dkf I q =const
(24)

Taking out the proton size, we have v=0.334X10"cm '.
For the same momentum transfer of ~200 Mev/c, we
have 2:=1.51 and f2 ——0.084, so that the two-body
charge correlation term contributes about 37% of the
total cross section. Although sum-rule measurements at
these energies in 0"will be valuable as a consistency
check on the observed elastic form factor, they do not
appear to oBer much hope of providing new clues as
to the structure of the ground state. Interesting short-
range internuclear correlations will show up prominently
in f2 at higher q values but then the total contribution
of f2 will be reduced relative to the single-nucleon term
in F. Also, at higher q values, it will not be clear how to
disentangle the various effects arising from the rela-
tivistic motion of the nucleus.

We turn finally to the construction of the energy-
weighted total cross section which removes the contri-
bution of elastic scattering from the sum rule and
thereby emphasizes the role of the fluctuating nonstatic
properties of the nuclear ground state relative to its
average properties. Such a sum rule is a sensitive probe
of the charge exchange process in nuclei since these
give rise to oscillating contributions of the charge and
spin densities which can take up energy from the
scattered electron.

The specific sum rule we construct is

ei
~ Lqp; exp(iq y;)+exp(iq p;)22;j2'

&Pi+ tr'Xq exp(iq y;)+2e P (~,X~~)s
2M 7(~')

X exp(iq s)ds V, (ij) .

We are once again led to the commutators of the Hamil-
tonian which appeared in the earlier low-resolution
calculation, (16), but now these are the main terms.
In particular, as in (16), isotopic-spin-dependent inter-
actions give rise to important contributions.

We compute (25), first for the deuteron for simplicity
in order to establish which are the large terms. Dividing
0; into charge, moment, and recoil plus gauge current
terms, e,', e,', e;", respectively, we find that the major
contributions come from the charge-charge and the
moment-moment terms. Thus.

(2 plZ 2 8'*&8"
I ~o)

=2(p ply I8'*, L&, 8"3II 2 p)

2

+2(pspl I v (p)+vs(p)]L1 —exp(iq g)$I psp)
4M

for a general two-body Hamiltonian

's U. Meyer-Berkhout (private communication)."For the harmonic-oscillator shell model, it can be shown quite
generally that the inclusion of the center-of-mass correction
simply introduces the factor (t —1/A ) in the Gaussian exponent
of the elastic scattering form factor. A private discussion with
L. Tassie has been very helpful in this matter.

P'
H= +—+V (p)+~1.~2V, (p)

4M M

+ 21' 22121' tr2Vp(p)+trt' tr2Vs(p) p
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and

s(v oI 2 2 le*"', [&,e'"3 I I ~s)

4M ~ 2 )
v(e) l

3 g
X — [1+s((p,lexp(iq 0) I s sH

4 235

+2(p()l v, (p)[3—exp(iq 0)j+2vb(p)

X[1—exp(iq 0)g —V, (p)[1+exp(iq 0)ll 9o) .~

~

According to all of these models (26) gives a correc-
t;ion of &1% to 0),. It is felt that Models (I) and (II)
provide a liberal estimate of this contribution since the
entire interaction is of form V and V~ in these cases,
being ~ ~~ ~~. In the Gartenhaus potential there is a
near cancellation" of V, and V&.

For simplicity, we divide the contributions of the
current-current terms into parts due to recoil and due
to gauge currents. The result by direct calculation of the
Hamiltonian commutators in (25) for the recoil cur-
rents alone is

1 g
V sr'+4[1+exp(iq 0)j(V,+Vb) ss'

2M' 2M

2~ ea -V(*a e)-~)
(V.+ Vb)

SM' q' Cf g

2 ~ q. !0 sinq. y d

i' & qp &(vp)

sinq 0)

q0)

X(V.+Vb) . (26)

In order to estimate these and succeeding minor terms
in (25), we consider three deuteron models. Model (I)
assumes a Hulthen ground-state function (s state only)
and a Rosenfeld" two-body interaction of Vukawa
spatial dependence

For simplicity in writing these terms, we have replaced
p„'+p„'= 11.4 and —2p~p„= 10.7 by s [(g),—g )/2j'
= 11.0; the resulting error in the final sum rule is &1%.

Betore evaluating these terms further, we look at
additional contributions to (25). The e ev and 0'8'
cross terms vanish upon spin average since they form
vectors in spin space. The charge-current cross terms
8'8" are calculated straightforwardly to give

q
' s' V.+Vb

+ —D+~xVba e)j)
4M 3M' M

—( '(V.+V)j—L p(a p) (V.+V)l) (2))

The first term of (2'7) can be written as (I7'/4M) V(T)/M
and provides a 3% correction to the sum rule. The
appearance of second derivatives in . the remaining
terms of (27) makes their values sensitive to details
of the shape of the wave function and potential at small
distances. For example, in the second term of (27), we
can replace s'/M operating on the deuteron ground
state by —2.2 Mev —V and thereby obtain an expres-
sion quadratic in the interaction potential. For Model
(I), according to which lim, ()(p'PV'))0, an appreci-
able contribution to (27) results from the region of
p—)0. Setting aside the first term of (27) for the moment,
the contribution of the remaining terms of (27) is =5%
according to Model (I). These terms contribute neg-
ligibly according to Models (II) and (III) which remove
the singularity at p—v0 with an assumed finite potential
in case (II) and a "repulsive core" in the case (III).

Similar results obtain for all contributions of the
gauge current terms. Writing, for simplicity, the ap-
proximate upper limit of these terms for unit deuteron
form factor [exp(iq 0)—+1j, we have

1 ) dy
16K —

l
6+-,'p—! (V,+Vb)'

dp)

Vi = vt ss (0.1+0.23tri ' es) Vp, +p' —(V.+ Vb) +2p'(V.+Vb)'
'1

dp

with p '=1.4f, V()——40 I))lev. Model (II) differs from
Model (I) in that a Gaussian shape is assumed for the
two-body interaction in order to remove the singu-
larity of the interaction at the origin. Thus,

Vii = si ss(0.1+0.23trt ~.os) exp( —0.46+'r ) (0.7 Vp),

with the depth and range chosen to give the correct
effective range for low-energy scattering, and binding
energy. Model (III) is the Gartenhaus model" for the
deuteron s states.

's S. Gartenhans, Phys. Rev. 100, 900 (1955).

+(V.+V)p—(V +V.)),
dp

which is again negligible for Models (II) and (III) but
contributes 15% due to the p—v0 contributions of
Model (I). Since we believe these terms to be of un-

physical origin, we drop them for future discussions
and con6ne our attentions to the charge and moment
contributions plus the recoil kinetic energy term of (27).

'v S. D. Drell, Phys. Rev. 100, 97 (1955) (see Fig. 2, p. 102).
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In this approximation, for the deuteron

(2'&i

4ML &

3 (g.—g-i '
+-I I

V [1+l(exp(iq 9)&]4( 2 i 2M

(f.
+2((V.+Vb) [1 e—xp(iq p)]&+

4M ( 2

2V 4Vp
[3—exp(iq 9)]+ [1—exp(iq ti)]

M M

2V,
[1+exp(iq 9)] . (28)

M

Extending this formula to an arbitrary nucleus with
Z=A/2, we have

.,= zl1-—
I

A) 2M'E M i

g 2 Z ((1+2~") exp(iq. e')&
8AM

3q' (g.—g-) '(
v

I I
1——

I
— v

2M SM20 2 j 4 Ai SAM 4M'

cases. In these cases the charge-exchange terms add
0.19 (q'/4M) and the moment exchange terms 0.16
(qs/4M). The added terms in Model (III) a,re —0.10
(q'/4M), coming mainly from the spin exchange term.
Summarizing 6

g2

(a@)r=(o'z)n = (1.39+0.35),
4Jtf

g2

(&z)rir = (1 39—0 10).
4M

These numbers are intended to indicate primarily the
expected orders of magnitude of the exchange current
e6ects on the average energy loss. Clearly inclusion of
D-state and tensor-force terms, together with a better
understanding of the forces and wave functions them-
selves, are required in order to achieve a good theoretical
number. On the other hand, it is just this sensitivity to
the nuclear ground-state properties. as indicated in the
above estimates, that makes o-z an interesting quantity
for experimental study. "

In applying (29) to He', we have assumed He' to
consist of 4 nucleons in an s-state with central forces,
so that (e,"e;)—+—1, (~, ~,&

—+—"1, and (e; e,~; ~,&
—+

—3 and the average energy loss formula simplifies to

)3q' ~ (T&
I 1+ —s(exp(iq 9')&

L4Mi

XI
(gr ei' e&e'' e&'

—-', Q Q ((V,+Vse,' e,)~,"~,

~xu(~a. e ))
3q' Q.—g-i'

+ I I V[1+a(exp(iq 9')&]
SM' t. 2 ]
8 V,+3Vb (g„—g ) '

+- [1—exp(iq 9'f)] +4VI
3 (q'/2M)

q' (~.—g-~ '
XI 1—«p(iq 9')]&—

4M' & 2

XQ Q (V.~,"~,[1—-', e,"e, exp(iq y,;)]

V,+2 Vs+ V,
X [1—exp(iq 9;,)]

M

3 2)
I[1.23+5],

+Vs[ad,"e,+e,"e,—ss,"s,e; e;exp(iq 9,,)]

+V,e; e,[1—ste; g, exp(iq 9;;)]& . (29)

For numerical results, we consider D, He', and 0".
Applying (28) to the deuteron, we find that the first or
kinematic terms are insensitive to the assumed deuteron
model and add up to

(1+0.39)q'/4M,

for scattering of 140-Mev electrons with a 190 Mev/c
momentum transfer. Both Models (I) and (II) give
essentially the same results for the second terms since
the volume of the interaction is the same in these two

where 5=0.4 for Model (I&, and 5=0.5 for Model (II)
of the interaction potential, for the same q and ko values
as above. In both cases the o.-particle ground-state wave
function is taken to be a Gaussian of observed rms
radius 1.4 f (allowing for finite nucleon size).

Finally, we have carried through a shell-model calcu-
lation of these exchange contributions to 0-g for 0"ac-
cording to Model (II), assuming gaussian wave func-
tions with the same exponent for both s and p shells.
The pertinent reduction formulas are in Appendix C.
Here, we give just the results; again for ko ——140 'Mev;

' Calculations of the photo eQ'ect sum rules by Levinger and
collaborators Lsee, for example, M. L Rustgi and J. S. Levinger,
Phys. Rev. 106, 530 (1957)g show a similar sensitivity to exchange
forces which play a comparable role in the dipole sum rule J'adW.
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q= 190 Mev/c:

o s=Z(1 —1/A) (q'/2M)

X I 1.02 —0.03+0.30+0.03+0.20+0.01)
= 1.53 (15q'/4M),

where the terms are in the order of those of (29).

V. CONCLUSIONS

To summarize, we have constructed sum rules for the
analysis of inelastic scattering of high-energy electrons
from light nuclei. Corrections to previous sum rules
arising from nucleon recoil and spin currents, from ex-
change currents operating in nuclei, from finite nucleon
size and from kinematical factors have been considered.

The analysis has been limited to light nuclei so that
the interaction of the electron with the nucleus can be
treated in first Born approximation. " It has also been
limited to an energy range corresponding to momentum

transfers 200 Mev/c in order to allow description of
the nuclear system as a statically bound collection of
"Pauli" nucleons. "

This work has shown that sum rules for total cross
sections at a fixed scattering angle (low resolution) or
at a fixed magnitude of momentum transfer (high
resolution) are insensitive to nuclear ground-state
properties. However, the energy-weighted cross section

q =const
eo (e,q)de

appears to provide a sensitive test of the role of ex-
change currents in the nuclear ground state. Typical
numbers for og have been given in Sec. IV for simple
models of the D, He', and 0" where it was seen that
exchange forces arising in the Rosenfeld model of the
nucleon interaction increase the average energy loss by
as much as 40%.

APPENDIX A

V, ( sinqp) 2 ( && 1—cosx 1 ( sinqp)I= —
I

1— I +2 secs(8/2) 2P'V 'L1—
s cos'(t)/2) j— dh ——V 'I 1—

M( qp) qp ~o x k() 4 qp )
2 ~1 2

ter+—[2 sec'(tt/2) —tj V, ~~ Ct j (2Pt) + tt+3 tec'(P/2)j PV, ' dt j,(pet))
M 0 3M

2 cosqp —(qp)
' sinqp q' V, ( sinqp& ( 2M

+—sec'«/2) V' + + —
I
1-

I I 2+
M 4pk()' SM' M L qp ) ( 3k() )

kp )) kp sin'(0/2) sinqp ( 2M & 4 sinqp
+2if v, V, +I 1+ q'(v') I

—i~ v, V,'
2M) M qp 4 3ko ~ -M qp

g sing p 2ko stnqp) if V, q
lj"V V — »n'(0/2) V,

I 1+ I

—(V 'jt(qp))
2M' qp M' )). qp ) M M

2 (2') 1 sinqp 2 ( sinqpP+- + I:q'+2(ti ij)'j—8(if &.)' V' +—V
I

1+
3M 4M' qp M ( qp 2

sinqp 4(ir «)(ij &s)»nqp
+—( v,)' V, + V, + ~& ~,)'(qV'& (qp)).

3E qp qp M

v/ p'

dp

APPENDIX 3
We describe here the general form for total cross

sections where the greatest possible use will be made of
variation of the experimental parameters of incident

'9Problems encountered in the construction of sum rules for
high-energy electrons scattered by nuclei of large Z have been
considered by W. K. Drummond using the Schiff high-energy
approximation. See %. E. Drummond, Ph. D. thesis, Stanford
University Physics Department, 1958 (to be published), and L. I.
SchiiI, Phys. Rev. 103, 443 (1956); Nuovo cimento 10, 1223
(1957).

energy ko, final energy kf, and angle of scattering 8.
It has already been indicated that one will want to
keep tI constant; tl=kr —ks. The dependence of the
differential cross section on all the parameters as they
come from the Moiler potential, final-state phase-space
factors and nucleon form factors is all factored out in

(21). We are here interested in the relative variation

'ORelativistic efFects for higher energy collisions have been
analyzed in the case of the deuteron by R. Blankenbecler, Phys.
Rev. 111,1684 (1958);Bull. Am. Phys. Soc. Ser. II, 2, 389 (1957).
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with parameters other than
~ q ~

of the separate parts of
the matrix element.

We write (8) in the form

ORfp (u(J'pr) [e(kp))Q —(m(&r) )
n

~
N(&p)) ' J

where Q, representing the scalar part, and J, the vector
part of the nuclear matrix element, depend on no
parameter of the scattering other than q.

Squaring and summing over the electron spin orienta-
tions yields

o ~ QQ(1+cos8)+ (kp+kJ) . (JQ+Q J)
+J J(1—-', cos8)+2(kp Jkr J—-.', kp krJ J),

where the carets signify unit vectors. When we sum
over the complete set of nuclear final states with any
weighting f(e), and average over the orientations of the
original angular momentum of the nucleus, we must
be left with only scalar quantities. Since q is the only

dropped these terms with 6 in our calculations as they
are small); but we could keep I" constant and. thus
avoid the necessary approximation made in Sec. IV
that I" was given some average value and its variation
(for fixed kp) with e was neglected. This result is achieved

by the simultaneous variation of ko and ky described

by the vector diagram Fig. 3.

APPENDIX C

The techniques of atomic and nuclear shell-model

spectroscopy are well known and we give here the re-
sults for the several matrix elements in (29) for the
1s4, 2p" ground state of 0", with harmonic-oscillator
radial wave functions

Rl, ——lVl, exp( ——',rr'), Ep~ Xp„r exp——(——',lr'),

(T)= (9/8) (A'l /M) .

All the other operators can be summarized in the form

ZZQ';,

tic

Flo. 3. Vector diagram for fixed
~ q~ and fixed tt.

Q12= (8+561' o2+c pl' p2+do1' &2'pl' 'p2) V(rip)e

where a, b, c, and d can have any numerical value; V
can be put equal to one, q can be put equal to zero to
give all desired terms. Since the nucleus has no orienta-
tion the answer cannot depend on the direction of q,
so we can average over the angles of q, and set

Q(r) = V(r) (sinqr/qr).

vector in the function J, we may then make the replace-
ments

J~»(» J)/q'

JJ—
a J J~(»»—p» q)(» J» J—pq'J J)/p(q')'.

Factoring out (1+cos8) which belongs in 'N, we

finally have

"QQ+(~/q)(Q» J+q JQ)+J»
——,'(V—6'/ ')(q. J» J——',J J).

Here 6=k~—ko is almost equal to e, the nuclear excita-
tion, and Y is the familiar angular function (1—

p cos8)/
(1+cos8). In measuring a total cross section one will

certainly rlof want to keep 6 fixed (we have in fact

For the ground state of oxygen we get

vd 4J' d2

(p Q Q~f) = l & Ap —Al——+Ax
iHj 3 dv 15 dv

dr r' exp( —ere/2) Q(r),
&~) ~p

Ap
——93(a—tc),

Al ——102a+90te,

Ax=45(a-w),

w =b+c+3d


