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is seen to be favorable, but with an important difference
in implication. From their data there is no indication
that 0p has yet begun to level off toward a constant
value. The present work, however, indicates a leveling
off in the neighborhood of 3°K with an approach to a
value between 128 and 129°K for 7=0°K. The average
of the ten points below 3.5°K gives 0xr=128.3°K. The
value of 3°K is in rough agreement with Blackman’s
criterion of 6o/50=2.6°K. Norwood and Briscoe,? in a
companion paper to this one, describe measurements of
the low-temperature elastic constants of KI. Again
comparison of the elastic-constant 6 with specific-heat 6
may be made. They report two values, depending on
the method of calculation. Using DeLaunay’s tables,?
they derive 6o=1314-2. Using Houston’s method!? as
extended by Betts, Bhatia, and Wyman,** they get
6o=129-2. The agreement with either is felt to be good.

In light of a recent paper by Ludwig,'s the agreement
may be even better between the data on elastic con-
stants and the specific heat data. He indicates that
because of anharmonic terms in the crystal potential
which are normally neglected there will generally be a
slight difference between the 6, derived from data on

18'W, V. Houston, Revs. Modern Phys. 20, 161 (1948).
14 Betts, Bhatia, and Wyman, Phys. Rev. 104, 37 (1957).
18 W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).
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elastic constants and that derived from specific heat
data. For LiF he reports, as for certain other alkali
halides, that this should have the effect of making
f(elastic constants) a percent or two higher than
0 (specific heat). Barron and Morrison,'® by another
approach, consider the effect of anharmonic terms
retained in the frequency distribution functions. They
find a slight change in the specific-heat 6.

The present work adds confirmation to the not very
extensive body of low-temperature data that the
Debye 6’s derived by elastic means and by thermal
means do substantially agree. It is hoped, further, that
this work, coupled with the elastic constants experi-
ments, will contribute to the increasing effort being
made to evaluate anharmonic terms and their influence
on the physical properties of crystals. More work of
this nature is needed to test recent extensions of the
simple Debye model.
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Equations for the thermal equilibrium concentrations of Schottky vacancies and vacancy pairs are pre-
sented; these equations allow for the effects produced by Debye-Hiickel screening.

N the study of lattice defects in ionic crystals and
semiconductors the concept of ‘‘association” be-
tween defects bearing opposite effective charges—as
borrowed from the theory of electrolyte solutions—has
played a useful role.'=® In many applications it is good
enough to treat the assembly of defects on the assump-
tion that those pairs of oppositely charged defects
which are close together are bound into neutral com-
plexes, while defects at large separations move inde-
pendently with their full effective charge available for
interaction with external fields. It is sometimes desirable,
however, to refine this picture and in a previous paper
the question of the association between impurity ions

1]. Teltow, Halbleiterprobleme (Friedrich Vieweg und Sohn,
Braunschweig, 1956), Vol. 3, p. 26.

2 Reiss, Fuller, and Morin, Bell System Tech. J. 35, 535 (1956).

3 A. B. Lidiard, Handbuch der Physik (Springer-Verlag, Berlin,
1957), Vol. 20, p. 246.

and vacancies in ionic conducting crystals has been
discussed in higher approximation.* The notion of
associated pairs is retained but the unassociated defects
are described by the Debye-Hiickel theory which takes
account of the correlated motion caused by the long-
range Coulomb interactions among the defects. The
same approach can be used to refine the theory of the
formation of Schottky and Frenkel defects.5:® This
topic was reviewed again recently by Theimer” who
suggests that these previous calculations are incomplete,
in that they neglect the effect of the Debye-Hiickel
screening on the energies of formation of the defects,

4 A. B. Lidiard, Phys. Rev. 94, 29 (1954).

5 E. G. Spicar, thesis, Technischen Hochschule Stuttgart, 1956
(unpublished); quoted by A. Seceger, Handbuck der Physik
(Springer-Verlag, Berlin, 1955), Vol. 7, Part 1, p. 401.

6 T, Kurosawa, J. Phys. Soc. Japan 12, 338 (1957).

70. Theimer, Phys. Rev. 109, 1095 (1958).
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specifically in that term called the polarization energy.®
It is the purpose of this note to show that this assertion
is wrong and to present correct formulas for the con-
centrations of Schottky defects and vacancy pairs.

Two distinct approaches to the problem should be
noted. The one used previously*=® assumes that the
energy of a crystal containing defects is made up of
two parts, (a) the energies of formation of the defects
calculated without regard to one another and (b)
their interaction energies—of Coulombic form ¢.q,/er:;
at large separations although somewhat modified at
close distances.??® Now Theimer draws attention to the
polarization energy part of the energy of formation of
a vacancy: this is one-half the energy which the ion
to be removed would have in the field of the surrounding
ions if these had the configuration and electric moments
appropriate to the vacancy.® But the moments on these
surrounding ions will be altered by the presence of other
vacancies acting as centers of polarization in the lattice.
Theimer therefore calculates the average energy of
formation of a vacancy by calculating the polarization
energy from P= (1—1/¢)D/4mr, with D the displace-
ment around a vacancy with its Debye-Hiickel screen-
ing cloud and not ¢/7? as usual. In doing so he abandons
in principle the continuum dielectric model and works
instead with a lattice of ions having electric charges
and moments dispersed ¢ vacuo. This is the second
approach to the problem. It is valid provided the electric
fields are evaluated as for charges 77 vacuo. In particular
this means that in the total energy of the crystal there
are (a) energy terms for vacancy formation as evaluated
by Theimer and (b) interaction terms between the
vacancies which must now be written as g.q;/7;; and
not as g.q;/er;; as in the first approach.

On this basis we see that the electrostatic interaction
term U(ng) in Theimer’s equation (11) is too small
by a factor e. If we correct this and if we generalize the
equations to conform to the limitation that two ions,
or two vacancies, cannot approach closer than the

8 See, for example, F. G. Fumi and M. P. Tosi, Discussions
Faraday Soc. No. 23, 92 (1957), and papers cited there.

9 M. P. Tosi and F. G. Fumi, Nuovo cimento 7, 95 (1958).

10 M. P. Tosi and G. Airoldi, Nuovo cimento 8, 584 (1958).

lattice spacing then we find that the term U(na)
cancels with the term coming from the 1 of the (1—1/¢)
factor in Theimer’s ¢[®(#4) —®(0) ]. The remainder is
the energy of interaction of the vacancy with its
screening cloud as evaluated in the first approach. Thus
Theimer’s approach consistently applied gives the same
result as previously obtained.

To conclude, we present the correct equations de-
scribing the thermal equilibrium concentrations of
Schottky vacancies and vacancy pairs. The equation
for the molar fraction of vacancy pairs, %,, is unaffected
by the accuracy with which we describe the effects
of the interactions among the unassociated defects,

xp=2 exp(—g,/kT), 1)

where g, is the free energy of formation of a vacancy
pair and z is the number of distinct orientations of the
pair (6 for NaCl). This equation is exact in so far as we
can neglect the small dipolar interactions of the vacancy
pairs with one another and with the unassociated
defects. The equation for w,, the molar fraction of un-
associated Schottky vacancies, is, in a crystal where
anion and cation have equal valency,"!

qu:exp[k_*;(g—zlf—KTR))]. (2)

Here =4-¢ is the charge on the vacancies, g is the free
energy of formation of an unassociated Schottky pair
(evaluated in the absence of other defects), « is the
Debye-Hiickel screening constant,

k2= (8wq%.)/ (vekT),

where v is the molecular volume and R is the distance
of closest approach of two unassociated defects. Similar
formulas with only minor modifications apply to Frenkel
defects and to Schottky defects in crystals where the
ions have differing valencies. The relation of Egs. (1)
and (2) to experimental results on ionic conductivity
and diffusion has recently been discussed elsewhere.?1?

11 The correction term given by Spicar should be divided by 2;

the error appears also in Seeger’s quotation equation (10.8).
2 A. B. Lidiard, J. Phys. Chem. Solids (to be published).



