inserting a delay between one counter and the coincidence circuit.

The pair spectrum shows the strong 6.05-Mev electric monopole pair line from O¹⁶. Internal pair peaks are seen corresponding to 3.86, 6.92, and 7.12 (unresolved), and 8.87-Mev gamma rays from O¹⁶, and a 4.43-Mev gamma-ray grom C12. The counts near 11 Mev are due to background from cosmic rays and electronic noise. The vertical lines indicate standard deviations. Because of the few counts, some of the fluctuations may be due to effects other than statistics. No peak is observed corresponding to a 10.98-Mev pair transition This spectrum was corrected for accidental coincidences and decomposed into its individual line shapes, giving

number of 10.98-Mev pair counts $< 2 \times 10^{-2}$.

number of 3.86-Mev pair counts

The internal pair formation coefficient⁹ for a 3.86-Mev M1 gamma ray is 10^{-3} . This gives

⁹ M. E. Rose, Phys. Rev. 76, 678 (1949).

number of 10.98-Mev pair transitions

$< 2 \times 10^{-5}$. number of 3.86-Mev gamma-ray transitions

If the single-particle estimate¹⁰ of 6×10^{-16} sec is taken for the mean life of the 3.86-Mev M1 transition, a lower limit of $\tau > 3 \times 10^{-11}$ sec is obtained for the partial lifetime of the 10.98-Mev $0 \rightarrow 0^+$ pair transition. Surveys of radiative transitions in light nuclei by Wilkinson¹¹ together with recent theoretical arguments by Morpurgo¹² indicate that the mean life of the 3.86-Mev M1 transition in O¹⁶ should be about 700 times greater than the single-particle estimate given above. If this is the case, then a lower limit of $\tau > 2 \times 10^{-8}$ sec is obtained for the partial lifetime of the 10.98-Mev $0 \rightarrow 0^+$ pair transition.

¹⁰ S. A. Moszkowski, in Beta- and Gamma-Ray Spectroscopy, edited by K. Siegshah (North-Holland Publishing Company, Amsterdam, 1955), Chap. 13, p. 391.

¹¹ D. H. Wilkinson, Phil. Mag. 1, 127 (1956) and Proceedings of the Rehovoth Conference on Nuclear Structure, edited by H. Lipkin (North-Holland Publishing Company, Amsterdam, 1958), Session IV, p. 175.

12 G. Morpurgo, Phys. Rev. 110, 721 (1958).

PHYSICAL REVIEW

VOLUME 112, NUMBER 2

OCTOBER 15, 1958

Isomers in Tb¹⁵⁸ and Ho¹⁶³^{+*}

N. B. GOVE, R. W. HENRY, L. T. DILLMAN, AND R. A. BECKER Physics Department, University of Illinois, Urbana, Illinois (Received June 27, 1958)

The isomeric transition in Tb^{158} , with 10.5-second half-life and 111-kev transition energy, is designated M3. The isomeric transition in Ho¹⁵³, with 0.8-second half-life and 299-kev transition energy, is designated E3.

I. INTRODUCTION

N isomer in Tb¹⁵⁸ of half-life 11 sec and one in A $H_{0^{163}}$ of half-life 0.8 sec have been reported by Hammer and Stewart.¹ These isomers have been further studied to determine the modes of decay, energies, K-conversion coefficients, and hence the multi-polarities. With 65 and 67 protons, respectively, terbium and holmium are approximately midway between closed shells at 50 and 82. In this region relatively large nuclear deformations are found and hence the isotropic shell model must be replaced by a distorted model such as that used by Nilsson,² or by Gottfried.³ In such a model the angular momentum of the last unpaired nucleon is not a constant; the levels are identified by the com-

ponent of the angular momentum along the nuclear symmetry axis.

II. APPARATUS

The irradiations were performed with x-rays from the University of Illinois 22-Mev betatron. The energy of this instrument is continuously variable below 24 Mev. A sealed-off ceramic doughnut with an internal Ni target was employed. The source holder was taped onto the doughnut in the position of maximum x-ray intensity. The source was moved from the betatron to the detector through a $\frac{1}{4}$ -inch Tygon⁴ tube by air pressure. With an air pressure of 100 psi the source was able to make the 22-foot journey to the detector in about $\frac{1}{4}$ second, indicating an average speed of 60 mph. The air switch was reversible and synchronized with the betatron injector voltage so that cyclic operation was possible. Two features of the arrangement, as compared with stationary source techniques, are that

[†] This work was supported in part by the U. S. Atomic Energy Commission and the Office of Naval Research. The former is to be thanked for providing radioactive standards for calibration

^{*} The authors gratefully acknowledge the loan of 100 mg of pure terbium metal by the Ames Laboratory of Iowa State College,

 ¹ C. L. Hammer and M. G. Stewart, Phys. Rev. 106, 1001 (1957).
² B. R. Mottelson and S. G. Nilsson, Phys. Rev. 99, 1615 (1955).
³ K. Gottfried, Phys. Rev. 103, 1017 (1956).

⁴ Product of U. S. Stoneware Company, Akron, Ohio.

FIG. 1. Activation curve for terbium.

the source-holder is closer to the betatron and the detector is farther from the betatron.

The radiations were detected with a NaI crystal and with a proportional counter filled with argon or krypton. Standard high voltage, photomultiplier, and amplifier circuits were used. The low-noise pre-amplifier was modified from a circuit by Enslein and Brainerd.⁵ The pulse heights were measured and recorded in an RIDL 100-channel analyzer.⁶ This device uses an analog-to-digital-converter and a 1600-ferrite-toroid memory. A scope circuit provides visual observation during and after data-taking.

III. TERBIUM-158

Tb¹⁵⁸ was produced by a (γ, n) reaction on stable Tb¹⁵⁹. The observed threshold for this reaction is 8.1 ± 0.5 Mev by comparison with O¹⁶(17.15 Mev) and Cu⁶⁸(10.17 Mev). The activation curve is shown in Fig. 1. The half-life was measured with a Geiger counter and pen recorder which indicated the time of every thirty-second count. The average of five measurements is $t_{\frac{1}{2}}=10.5\pm0.3$ seconds. The value of Hammer and Stewart is 11.0 ± 0.1 seconds.

The prominent radiation from Tb is at 44.3 ± 0.5 kev, indicating a Tb x-ray. The energy determination was

done with a proportional counter by comparison with K x-ray energies of Hf, Sm, and Gd. This result agrees with Hammer and Stewart's critical absorption experiment. The NaI spectrum in Fig. 2 calibrated with Pd¹⁰⁹, Ta¹⁸⁰, Eu¹⁵², and Ce¹⁴⁴, shows a weak gamma ray at 111 ± 2 kev. The two unmarked peaks are considered to be due to escape of iodine x-rays from the detector. By comparison of the gamma-ray and the x-ray intensities the K-conversion coefficient was found to be 61 ± 9 , after correction for fluorescence yield, escape of iodine x-ray from the NaI detector, crystal efficiency, and selfabsorption in the 100-mg terbium source. Upon using theoretical K-conversion coefficients of Sliv,⁷ the best agreement is for M3 ($\alpha_{\kappa} = 55$), followed by E5 ($\alpha_{\kappa} = 42$) and E3 (α_{κ} =3.1). The half-life formula of Weisskopf, when corrected for K and L conversion,⁸ indicates either an M3 or E3 assignment. Considering both the K-conversion coefficient and the half-life, the 111-kev transition in $\mathrm{Tb^{158}}$ is designated as M3.

Assuming that the deformation of Tb¹⁵⁸ is the same as that of Tb¹⁵⁹ (δ =0.31), the level scheme of Nilsson predicts that the last proton is in the $\Omega_p = \frac{3}{2} +$ state and the last neutron is in the $\Omega_n = \frac{3}{2} -$ state, where Ω , as employed by Nilsson, is the projection of the nucleon's angular momentum on the nuclear symmetry axis. The two possible resultant values are $\Omega = 0 -$ or 3 - so that a transition between the two lowest levels could well be

FIG. 2. Photon spectrum for Tb^{158m}.

⁷L. A. Sliv and I. M. Band, Leningrad Physico-Technical Institute Report, 1956 [translation: Report 57ICCKI, issued by Physics Department, University of Illinois, Urbana, Illinois (unpublished)].

(unpublished)]. ⁸ E. Feenberg and G. L. Trigg, Revs. Modern Phys. 22, 399 (1950).

⁵ K. Enslein and B. Brainerd, Rev. Sci. Instr. **24**, 916 (1953). ⁶ R. W. Schumann and J. P. McMahon, Rev. Sci. Instr. **27**, 675 (1953).

*M*3, in agreement with the above result. In Gottfried's level scheme the last proton is in the $\frac{1}{2}$ or $\frac{3}{2}$ + state, while the last neutron is in the $\Omega_n = \frac{3}{2}$ + state. If $\Omega_p = \frac{1}{2}$ -, the ground state is either 1- or 2- and the transition is *M*1; if $\Omega_p = \frac{3}{2}$ +, the ground state is 0+ or 3+ and the transition is again *M*3.

IV. HOLMIUM-163

The observed threshold for the 0.8-second activity in Ho is 16.2 ± 0.5 Mev indicating a $(\gamma,2n)$ reaction. The activation curve is shown in Fig. 3. The (γ,n) reaction leading to the known 37-minute activity⁹ in Ho¹⁶⁴ was observed in the present work to have a threshold of 8.0 ± 0.5 Mev. The photon spectrum of Ho¹⁶³ after a two-second irradiation is shown in Fig. 4. The energy of the gamma ray was found to be 299 ± 3 kev by comparison with Eu¹⁵², Hg²⁰³, Cr⁵¹, and Sn¹¹³. The energy reported by Hammer and Stewart is 305 kev using Ba¹³³ as a calibration.

FIG. 4. Photon spectrum for Ho^{163m}.

The K-conversion coefficient was found, by use of the same method as for Tb, to be 0.17 ± 0.06 . The Sliv values are 0.14 for E3, 0.10 for M1, and 1.3 for M3. Noting that the Weisskopf half-life is usually too small for E3 transitions, the half-life is consistent with both M3 and E3. Considering both the K-conversion coefficient and the half-life, the isomeric transition in Ho¹⁶³ is designated E3.

Assuming that Ho¹⁶³ has the same deformation as Ho¹⁶⁵ Nilsson puts the last proton in the $\Omega_p = \frac{7}{2}$ – state. The 96 neutrons do not contribute to the spin. The first excited state is $\Omega_p^* = \frac{1}{2} +$ so that the transition would be *E3*, in agreement with the above result. In Gottfried's model the ground state of the last proton is again $\Omega_p = \frac{7}{2} -$. The first excited state is $\Omega_p^* = \frac{1}{2} -$, yielding an *M3* transition instead of *E3*. The second excited state is $\Omega_p^* = \frac{1}{2} +$, so that if the two levels were reversed the transition would be *E3*.