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This paper describes a procedure for the calculation of electron
energy bands in certain solids from spectroscopic data for the
corresponding free atom. This method is an improved version of
one used by Kuhn and Van Vleck to calculate the energy bands
of sodium, potassium, and rubidium. It avoids explicit construc-
tion of a one-electron potential to represent the interaction be-
tween the valence and core electrons.

We assume that the interaction between a valence electron and
an ion in the crystal is approximately the same as in the isolated
atom. If the interaction is accurately represented by a Coulomb
potential outside the ion core, we may express solutions of the
radial differential equation in this region as linear combinations
of standard Coulomb functions. The combination corresponding
to the solution which is well-behaved at the nucleus involves a
coupling constant which depends upon the ion potential through
a parameter that is a slowly varying function of the energy. At
an eigenvalue this parameter can be evaluated from the quantum
defect. Hence if the eigenvalue spectrum is known, we may obtain
this parameter by extrapolation for arbitrary nearby energies, and
the regular solution of the radial equation is consequently de-

termined explicitly, outside the core. This is sufFicient information
for the calculation of energy bands with available techniques.

We establish an approximate formula for the ratio of the ampli-
tude of the wave function near the nucleus to its value at a point
outside the core. For an s function this relation involves only the
nuclear charge, standard Coulomb functions, and the aforemen-
tioned parameter derived from spectroscopic data. It therefore
provides a convenient means of calculating Pz and Pz, the squared
amplitudes at the nucleus appropriate to the Knight shift and
the atomic hyperfine splitting, respectively. In the latter case our
result is identical with a formula given by Fermi and Segre,
which gives reasonable agreement with experiment.

Arguments are presented in support of the thesis that the
quantum defect method takes very general account of exchange
and correlation interactions between the valence electron and
core electrons. Relativistic effects, including spin-orbit coupling,
are also included naturally. We also discuss modifications in the
method to take into account deviations of the ion or crystal
potential outside the core from Coulomb form. Tables of the
essential data, including improved polarization corrections, are
given for the alkali metals.

l. INTRODUCTION

'HE quantum defect method described in this
paper is an improvement and extension of a

procedure used by Kuhn and Van Vleck' ' in calculating
the ground state energy and effective mass for metallic
sodium, potassium, and rubidium from the experi-
mental spectroscopic term values of the corresponding
free atom. This approach to energy band calculations
has the advantage of avoiding both explicit construc-
tion of a crystal potential for the valence electron in
the solid and numerical integration of the usual Hartree
or Hartree-Fock equation. However, it is applicable
only when one can assume that to a good approxima-
tion the interaction between the valence electron and
the ion core is the same in the solid as in the free atom
and that the mutual interaction of the valence electrons
can be taken into account by a free electron approxima-
tion and a suitable modification of the crystal potential
in the volume outside of the ion cores. These assump-
tions are best suited to the alkali metals and somewhat
less well suited to the monovalent noble metals. Ap-
plication of the quantum defect method has so far been
con6ned to these solids~' although other applications

' T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950).
2 J. H. Van Vleck, P'roceedings of the International Conference on

Theoretical Physics, Kyoto and Tokyo, 1953 (Science Council of
Japan, Tokyo, 1954), p. 640.

e T. S. Kuhn, Phys. Rev. 79, 515 (1950).' H. Brooks, Phys. Rev. 91, 1027 (1953).
e K. Kambe, Phys. Rev. 99, 419 (1955).
6F. S. Ham, Ph.D. Thesis, Harvard University, Cambridge,

Massachusetts, 1954 (unpublished).
r H. Brooks, in Theory of Alloy Phases (American Society for

Metals, Cleveland, 1956), p. 599.

of the method to divalent and trivalent metals have
been started. '

The quantum defect method has several advantages
over the procedure of Kuhn and Van Vleck. Like Kuhn's
WKB method, ' it depends upon the extrapolation of a
parameter which is obtained directly from the experi-
mental spectroscopic term values and which varies
less rapidly as a function of energy than does the
logarithmic derivative used by Kuhn and Van Vleck
in their extrapolation. However, the quantum defect
method makes direct use of Coulomb wave functions,
tables of which are now available, ' instead of approxi-
mate WKB-type functions. Consequently it does not
encounter the difficulties met in Kuhn's method when
the WEB turning points in the Coulomb potential are
close together or o6 the real r axis. ' This situation occurs
at energies of interest in band calculations for values
of the angular momentum 1. greater than zero. The
quantum defect method is simpler in application than
Kuhn's method once the Coulomb functions have been
tabulated, and the theoretical arguments for its justi6-
cation are more satisfying than those advanced by
Kuhn and Van Vleck for their method.

In an article elsewhere, ' one of us has discussed the
quantum defect method" primarily from the point of
view of the Hartree-Fock approximation. In the present

F. S. Ham, Technical Report No. 204, Cruft Laboratory,
Harvard University, Cambridge, Massachusetts, 1955 (un-
published) ~

'F. S. Ham, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, jnc. , New York, 1955), Vol. 1, p. 27.

We shall henceforth refer to the quantum defect method by
the abbreviation QDM.
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paper we shall first present the complete WEB deriva-
tion that provides the principal justification of QDM,
in order to develop an important formula for the ampli-
tude of the valence wave function at the nucleus. We
shall then give arguments to support our view that
QDM takes account of correlation and exchange eGects
in the interaction between a valence electron and the
ion cores. We shall also show that the method seems to
include relativistic eRects, including spin-orbit coupling,
so that QDM offers a valuable tool in calculations
involving the heavy elements. In our initial presenta-
tion in Secs. 2 and 3 we shall neglect such complicated
eRects for the sake of clarity and shall assume that the
valence-core interaction can be represented by a simple
one-electron potential. In the course of this discussion
we shall occasionally refer to the previously mentioned
article, ' where some arguments are given in greater
detail.

P(r)= P Ar, srY~~(o, q)(1/r)U~(r), (2.1)

we find that within the smallest sphere in which the
crystal potential is equal to V (r) the Schrodinger equa-
tion for f(r) separates in spherical coordinates, yielding

O'Ui
+ ——V(&)—

e2

L(L+1) Ui= 0. (2.2)
r2

"The unit of energy (1 Rydberg unit) is the ionization energy
of the hydrogen atom with in6nite nuclear mass (me4/2A'); the
unit of length is the radius of the smallest Bohr orbit (A2/me~).

» W. Prokofjew, Z. Physik 58, 255 (1929)."F.Seitz, Phys. Rev. 47, 400 (1935).This potential was pub-
lished incorrectly in Seitz's paper, although Seitz used the correct
potential in his calculations. The correct potential has been pub-
lished by W. Kohn and N. Rostoker LPhys. Rev. 94, 1111(1954)j.

2. DEVELOPMENT OF THE QUANTUM
DEFECT METHOD

We consider a monovalent atom and assume that the
interaction between the valence electron and the ion
can be represented by a spherically symmetric one-
electron potential V(r) which is equal to the Coulomb
potential —2/r (in atomic units") outside a "core
radius" ro. Such potentials have been constructed by
Prokofjew" for sodium and Seitz" for lithium, the
former reproducing the experimental term values to
within 1%, the latter to an even. better accuracy.
Furthermore, we assume that the crystal potential for a
valence electron in the solid may be approximated
within each atomic cell by this same V(r) associated
with the ion in the cell. This assumption is probably
not too well justified, but it forms a convenient starting
point for the calculation. Later, we shall see that it can
be improved upon by 6rst order perturbation calcula-
tions. The "core radius" ro shall be less than or equal
to the radius of the sphere inscribed in the cell.

Expanding a Bloch function in the solid in spherical
harmonics about the position of one of the ions,

Our problem is to determine explicitly for r)ro the
solutions U~(r) which satisfy the boundary condition
U~(0) =0, for arbitrary values of the energy e= —1/e'.
Once these are known we may calculate the eigenvalues
at various points in the Brillouin Zone by finding the
energy for which (2.1) satisfies the appropriate bound-
ary conditions on the surface of the atomic cell or of the
equivalent sphere. Such calculations may be done using
the spherical approximation of Wigner and Seitz, ' "
together with Bardeen's treatment of the eRective
mass, " or more recent methods of Howarth and
Jones " Kohn and Rostoker " Slater and Saffren ""
and Leigh. " These methods all require knowledge of
U~(r) on the surface of either the atomic cell or a
sphere of radius comparable with that of the inscribed
or equivalent spheres. "

Since for r)rs we have assumed V(r)= —2/r, we
can express U~(r) in this region as a linear combination
of any two independent solutions of the Coulomb radial
diRerential equation. It is shown in a paper" by one of
us and in earlier work by Wannier'4 and Kuhn" that
two such independent functions are

'U. '"(&)= (z/2)~s~i" (z)
= t'~~'/I'(2L+2) jM„~i(2r/ts), (2.3a)

(2.3b)

where z= (Sr)' and the notation is that of Wannier.
The 6rst of these functions vanishes at the origin,
whereas the second is singular there and consequently
cannot contribute to U~(r) in the special case of a pure
Coulomb potential. If V(r) has a non-Coulomb core
region, however, we have, for r) ro,

We shall now show that n(ri)/p(n) may be determined
for all energies from the spectroscopic data.

This ratio is known at any eigenvalue of the free
atom, for at such an energy U~(r) satisfies the additional
boundary condition of vanishing at infinity and must
therefore agree in the Coulomb region with the only
solution of the Coulomb diRerential equation that has
this property. This function, W„,z+f(2r/ri), can be
expressed in the form (2.4)." We find that, at al

'4 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).
's E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934).
's J. Bardeen, J. Chem. Phys. 6, 367, 372 (1938).
'r D. J. Howarth and H. Jones, Proc. Phys. Soc. (London)

A65, 355 (1952).
"W. Kohn and N. Rostaker, Phys. Rev. 94, 1111 (1954)."J.C. Slater, Phys. Rev. 92, 603 (1953).
ss J. C. Slater and M. M. SaBren, Phys. Rev. 92, 1126 (1953).
+ R. S. Leigh, Proc. Phys. Soc. (London) A69, 388 (1956).
~ See reference 9 for a discussion of the use of QDM with these

procedures.
~ F. S. Ham, Quart. Appl. Math. 15, 31 (1957).
~ G. H. Wannier, Phys. Rev. 64, 358 (1943).
's T. S. Kuhn, Quart. Appl. Math. 9, 1 (1951)."E.T. Whittaker and G. N. Watson, A Course irl, Modern

ANatysis, (Cambridge University Press, Cambridge, 1952),
fourth edition, Chap. 16.
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ei gaulle,

n(e)

V(e)

1'(e+I.+1)
e'z+q'(e —L,) tan(~b„)

(2 5)

where 8 is the quantum defect in terms of which the
eigenvalue is expressed as

s= —(4e—8„)—'. (2.6)

47 I. lmai, Phys. Rev. 74, 113 (1948).

Here ns is an integer that increases by unity between
successive terms of a given series. Furthermore, we can
prove that if b is known at the eigenvalues correspond-
ing to a given I, the ratio n(e)/y(e) is determined for
all energies. This follows from the assumed form of
V(r) because it can be shown' that this ratio equals
a known function plus a meromorphic function of the
complex variable e. The latter is therefore determined
in principle from (2.5) for all energies if 8 is known. at
the eigenvalues of this L, since there are an infinite
number of eigenvalues with &=0 as a limit point.
Hence n(e)/p(e) is determined in principle for all s by
the spectrum. In practice, of course, we know only
approximate values of 8 at a Rnite number of eigen-
values, so that n(e)/y(e) is not completely determined
at all energies. We shall show below that we can express
this ratio in terms of a parameter which is a slowly
varying function of energy throughout the range of
energies near the valence eigenvalues, and which there-
fore can be determined in this range if a few eigenvalues
are known.

Kuhn and Van Vleck' determined n(e)/p(e) by
arguing that for reasonably small values of r, the loga-
rithmic derivative LU~(r)7 'fdU~(r)/dr7 is a slowly
varying function of energy which can be determined
at the eigenvalues and interpolated between these
values. The resulting curve and the values of the Cou-
lomb functions and their derivatives can then be used
to obtain n(e)/y(e) at an arbitrary energy. However,
the analytical argument given by Kuhn and Van Vleck
for the slow variation of the logarithmic derivative as
a function of energy is valid only for r smaller than the
radius of the innermost node of the wave function, and
consequently it can give no information concerning the
behavior of, say, a 2s or 3p function outside the core.
Hence it is little more than an empirical observation
that.,:for the larger radius the logarithmic derivative is
su%ciently smooth to be of any use. Moreover, at a
radius clearly outside the core this function does vary
sufficiently, especially near a zero of U~(r), to make the
necessary extrapolation rather uncertain.

Kuhn' has suggested an alternate means of ap-
proximating Uz(r) outside the core by replacing the
Coulomb functions in (2.4) by approximate solutions
of the Coulomb radial equation obtained from Imai's
revision of the WKB procedure. '7 He shows that the
ratio of the coe%cients corresponding to n(e) and p(e)

can be expressed as a function of a parameter obtained
by plotting a smooth curve through the experimental
values of the quantum defect. This procedure is unsatis-
factory at energies so low (below —0.4 ry for 1.=1)
that the WKB turning points are close together or at
complex values of r, for the approximate Imai functions
are inaccurate or ambiguously defined at such energies. '
Kuhn's method shares with the quantum defect method
the use of an extrapolated parameter closely related to
the experimental quantum defect, but, even for L=O,
it necessitates more laborious computations.

We shall now express n(e)/y(e) in (2.4) in the form

n (e) F(e+I.+1)
y(e) e"+'I'(e—I.) tans. v(e)

(2.7)

This is valid for al/ energies, whereas Eq. (2.5) is valid
only at eigenvalues of the free atom. This relation
def4ees a parameter v(e) which at an eigenvalue differs
from the experimental quantum defect 8 by at most
an integer. We assert that v(e) is equal to 8 at the
eigenvalues and is obtained at other energies from a
smooth curve drawn through these given points. The
only uncertainty occurs at energies below roughly the
lowest eigenvalue of the Coulomb potential for the
value of L under consideration or the energy at which
the outer WKB turning point penetrates the core
region, whichever is the higher. There is unfortunately
no rigorous proof that this procedure is correct, and
indeed below this limiting energy the extrapolation of
the quantum defect can be shown to be inaccurate.
However, we shall give a derivation based on the WKB
approximation which shows quite clearly that between
the higher eigenvalues v(e) is slowly varying, so that
our procedure is an excellent approximation in this
range. We shall then discuss the appropriate modifica-
tions necessary in the lower energy range. We should
remark at this point that although we use the WKB
approximation to provide some of the evidence that the
quantum defect method is correct, the latter is evi-
dently more accurate than the WKB method because
it is based directly upon the experimental eigenvalues.
This view is supported by the results of an exact
calculation on a convenient potential model.

Following Kuhn, ' we introduce into the radial diGer-
ential equation (2.2) the change of variable x= ln( —sr)
= in(r/e'), 44(x) =exp( —x/2) U, and obtain

where
(d'44/dx')+P (x)I=0, (2 g)

P(x) = $—e'e'~ —e4e'~V(e'e~) —(1.+-,')'7. (2.9)

The vicinity of the real axis in the x plane is shown
schematically in Fig. 1.Points x~ and x2 are the turning
points, where P(x) =0. On T~, the part of the real axis
between x~ and xs, P(x) is real and positive. The limit
as x approaches —~ along S2' corresponds to the ap-
proach of r to zero along the positive real r axis.
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The WEB approximation tells us that far from x2
(and far from other turning points as well), sc is given
accurately by

I [P(x)] '[Ae"+Be '*] (2.10)

if the constants A and 8 are appropriately chosen and if
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s= [P(x)]Idx. (2.11)

As At+sB——r,

~2 ~17
(2.12)

on T2. Similarly upon expanding about x1, we have

However, as we follow a path encircling x2, we must
choose different values of A and 8 in different regions
bounded by the Stokes lines S1, S2, and S3, on which s
is pure imaginary, in order to represent a given single
valued function. ""Assuming that x1 and x2 are
suKciently well separated to allow us to consider
asymptotic expansions about either point, and choosing
the phase of the square root in (2.11) so that [P(x)]I
is positive real on T1, we may use Furry's result~ that
a single-valued function given on Ti by (2.10) with
A» and 81 has a similar expansion with

FIG. 1. The complex x plane near the WEB turning points x&

and x2. The curves S are the Stokes lines on which z or z' is imagi-
nary. On the curves T, z or z' is real. All three of the quantities
s, s', and LP(g)g& are real and positive on T&, which represents the
real x axis between the turning points.

on Ts. Requiring that (2.18) be identical with (2.17)
on T1, we find that

I = (P+s)~ [P(x)]Idx, (2.20)

(r)c( )yeim /4 (2.21)

where p is some integer which is chosen once and for all
in defining p. These relations provide the link between
the asymptotic expansions (2.16) and (2.19) valid on
S2' and T2, respectively.

We now dehne'

(2.13) [P(x)]'*dx—
tss +2

4 &sr

[P.(x)]Idx, (2.22)

s'= [P(x)]Idx,
f'

A s' A i'+iBi', ——
~2 ~1 p

p, =s (p+I.+1 n "o„). — —(2.23)(2.15)
At an eigenvalue, rc must approach zero as r or x—++ m

along the real axis (Ss in Fig. 1), and from (2.19) and
the chosen phase of the square root in 2 this shows that
sing, =0. Hence at an eigenvalue p, is an integral multiple
of m, and

on'T2' if A1' and 81' are appropriate to T1.
The function e vanishes at r=0, so that the coefE-

cient As of the increasing exponential in (2.13) is
identically zero in the vicinity of Ss . From (2.15) we
have therefore A1'= —F1', so that if on S2' (2.24)e =—rc = —(its —8~)

(2 14) where Py, (x) is obtained from (2.9) with V(r) = —2/r
for all r. The second integration can be done exactly,
and we obtain

we have on T1
[P(x)j-IBi'e (2.16)

rc~[P (x)]-IB,'[ ie'"+e '*'].— —(2.17)

On T1 we can also make use of the asymptotic expan-
sion about x2,

I [P(x)] I(; cos(s+p —m-/4), '(2.18)

which leads via (2.12) to

sc rsC[P(x)] ' exp(iw/4) [2 sinlce'*+e '* '&], (2.19)

8 E. C. Kemble, The Fundamental Principles of Quantum
3Eechaer'cs (McGraw-Hill Book Company, Inc. , New York, 1937),
Sec. 21.

~ G. N. Watson, A Treatise on the Theory of Bessel Fgnctions,
(Cambridge University Press, Cambridge, 1948), second edition,
p. 201.

~ W. H. Furry, Phys. Rev. 71, 360 (1947).

From the definition of p, we see that m is an integer
which increases by unity in going from one eigenvalue
to the next. Thus, as Kuhn has shown, ' 8„ is the WKB
approximation to the experimental quantum defect
at the eigenvalues and is, moreover, a slowly varying
function of the energy provided that the outer turning
point is in the Coulomb region. We shall now show that
8„ is to be identi6ed with the parameter v(rc) defined

by (2.7) and used in representing the exact solution
(2.4) as a linear combination of the two Coulomb
functions.

To do this we shall compare the asymptotic form of
the WKB solution with that of the exact solution in
Coulomb functions in the vicinity of the line T2 of
Fig. 1, where exp(is) is oscillatory. We assume that the
outer turning point x2 is in the Coulomb region, in
which V(r)= —2/r. We could then evaluate exp(is)
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and

n(n)

V(n)

I' (n+L+1)
n'~'I'(e —L) tanm 5„

(2.28)

n-~1(—)~i-21 (n+L+ 1)-~
C=y(e)

sinm8 vrI'(n L)—(2.29)

We have used (2.28) in establishing (2.29). From (2.28)
and (2.7), we see that v(e) in (2.7) is to be identified
with a slowly varying funct. ion coinciding with the
experimental quantum defect 8 at the eigenvalues,
at least to the accuracy of the WKB approximation.
We have already seen that v(e) must differ from 8 at
the eigenvalues by at most an integer, so that the WXB
argument confirms our assertion that v(n) is to be
interpolated smoothly between the experimental values
of 5 . The WEB dervation can be extended to positive
energies and leads again to (2.28) with 8„defined by
(2.22) as before, provided that the energy is not so high

by carrying out the integral (2.11) from x2 to some x
far out along T2. If we do this for a pure Coulomb poten-
tial, for which U~(r) ='U, ~ "(r) is the exact solution.
satisfying U~(0) =0, we find that the asymptotic form
of the WEB solution is correct in the limit n~ and
that otherwise the error is O(1/

~
e

~
). Such an error is of

course characteristic of the WEB approximation, and
this method usually gives a worse approximation to the
wave function than to the eigenvalues. "However, if x2

for a potential with a non-Coulomb core region lies in
the Coulomb region, the integral (2.11) defining s is
exactly the same as that for the pure Coulomb poten-
tial. Hence, we may "evaluate" it by replacing exp(is)
by the "correct" value obtained from the asymptotic
form of the exact solution for the pure Coulomb poten-
tial when —m. (arg(2r/e) (0,"
'U z ~(r) [n+~'/I'(L+1 —e))(2r/e) ~ exp(r/e)

+(n +' exp(mi(n —L—1))/I'(n+L+1))
X (2r/e)" exp( —r/n). (2.25)

We find in this manner

exp(2iz) =exp(2r/e) (2r/e) '"(2m) '

XI'(n+L+1) I"(n —L). (2.26)

For a potential with a non-Coulomb core region, we
must compare the asymptotic expansion of (2.4) along
T2 with (2.19), into which (2.26) and (2.23) are inserted
on the assumption that x2 is in the Coulomb region.
From (2.25) and the expansion

'U, ~ "(r)~Pn vr
' exp(in')7

X(expt i~(L—i)) sint~(n L))
XI'(L+1 n) exp( —r/—n) (2r/n)"
—I'(L+1+n) costa. (n —L)7

Xexp(r/n) exp( inn) (—2r/e) "), (2.27)

for —x (arg(2r/e) (0, we obtain in this way the con-
nection relations

that the inequality exp( —2m
~

e
~
)((1 is violated. ' How-

ever, at negative energies at which x2 is in the non-
Cou, lomb core region, it can be shown' that the WKB
result (2.28) is not accurate. Consequently we cannot
justify with the WKB procedure the use of (2.7) with
an extrapolated v(n) below about —0.9 Rydberg unit
for l,i and Na for L, =O and —0.7 Rydberg unit for
K, Rb, and Cs for 1.=0. For I=1 this minimum energy
is about —0.4 Rydberg unit for all the alkalies.

At negative energies there is the further complication
that the factor

I'(n+L+ I) (n2 —L2) Ln2 —(L,—])27. . . (n2 —1)
(2.30)

e' +'I'(e —J.) ~2L

n (e)/y (n) = —1/tanirit (n), (2.31)

we shall find that it(n) is more suitable for extrapolation
than v(e). Of greatest importance, tan~it(n) has no
forced zeros, and (2.30) increases monotonically to
unity as &~0 for energies above the highest forced zero
of tanmv(n). Consequently we should expect rl(n) to
be as well behaved as v(n) in the range of energies
corresponding to the valence eigenvalues and better
behaved at lower energies. These expectations are com-
pletely borne out by the values of rl(n) and v(n) for
the alkali metals as derived from the eigenvalue spectra.
They are also supported by calculations on a model
potential

V (r) =—2Z/r for r (ro
= —2/r for r) ro,

(2.32)

results for which were given elsewhere. ' This potential
is not a realistic model for an ionic potential because of
the discontinuity at ro, but it should serve to illustrate
the behavior of v(n) and it(n) for a potential with a
nonhydrogenic core.

If it is necessary to extrapolate p far from the energy
range of the valence eigenvalues, there are some general
rules which can be helpful. "Most of these are of little
consequence in calculations of energy band structure

3' Reference 9, pp. 164-5.

vanishes if 1/e' equals the reciprocal of the square of
any integer less than or equal to I.. Since from (2.4) it
is clear that n(n)/y(n) cannot vanish for all potentials
at such energies, we see from (2.7) that tan~v(n) must
vanish and that v(n) must equal an integer at such
points. These "forced zeros" of tanvrv(n) were not sug-
gested by the WEB analysis and lead to an inconvenient
oscillation of v(e) as a function of energy between these
points. Consequently extrapolation of v(n) into this
region (below —0.25 for L=2) is quite unreliable.

In view of these uncertainties concerning the extra-
polation of v(e) towards large negative energies, we

may seek another parameter that can be extrapolated
more safely. Several considerations lead us to expect
that upon setting
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for the alkali metals, for which a simple quadratic
extrapolation of p from the valence eigenvalues usually
suffices (Appendix C). However, for the noble metals
Kambe' has found it essential to recognize that addi-
tional points on the rt(rt) ns energy cur've may be ob-
tained from the energy parameters appearing in the
Hartree-Fock equations for the ioeised core (tMt the
neutral atom). ' Furthermore, for the alkali metals K,
Rb, and Cs, we have been able to eliminate some un-
certainty in the extrapolation of p for L=2 to the
ground state energy of the solid by expressing the neces-
sarily positive integral Js' [U~(r) jsdr in terms of rt,
the derivative of p with respect to energy, and standard
Coulomb functions (Appendix B).The resulting expres-
sion is not inherently positive for all values of p, so that
this requirement places bounds on the extrapolation.
Details are given in Appendix C. Needless to say, energy
band results depending sensitively on uncertain extra-
polations are not reliable.

2n'/r4, — (3.1)

in which o.' is a constant determined by the polarizability
of the ion core."I.et us suppose that we wish to de-
termine the value of the logarithmic derivative of a
radial function U~(r) at a radius ro at which (3.1) and
other non-Coulomb terms are not insignificant. We
introduce a new fictitious potential V'(r) which equals
V (r) for r(rs and 2/r for r) rs. Since U~(0—) =0, the
function U~(r) satisfying (2.2) is the same function of
r for r(ro for both V(r) and V'(r), except perhaps for
an arbitrary multiplicative constant. We can therefore
apply the analysis of Sec. 2 to V'(r) and can determine
U (r) at r =re from (B.3) (Appendix B) if we determine
rt(e) from the eigenvalues of V'(r) rather than from
those of V(r). Similarly, we can use this rf(tt) in (B.S)
to evaluate Js"' LU~(r) j'dr.

Finding the eigenvalues of V'(r) from those of V(r)

"J.H. Van Vleek, The Theory of E/ectric and Magnetic SNs-
ceptibitities (Oxford University Press, Oxford, 1932), Chap. 8.

3. CORRECTIONS FOR DEVIATIONS FROM A
COULOMB POTENTIAL OUTSIDE THE CORE

In speaking above of obtaining rt(rt) from the experi-
mentally determined eigenvalues, we have been assum-
ing that the ion potential V(r) equals —2/r outside a
core radius rp which is no larger than the radius of the
sphere inscribed in the atomic cell. We have also as-
sumed that in the solid the best one-electron potential
within each cell is the V(r) of the free ion. We shall now
relax these assumptions.

For a monovalent atom the potential outside the con-
ventional core radius differs from pure Coulomb form
not only because of the small but finite probability
that a core electron will be found at such a distance
from the nucleus but also because of the polarization
of the core by the valence electron. The latter effect
introduces into the one-electron potential a term

is relatively simple if V(r) is known accurately for
r)rs and if

~

—(2/r) —V(r)
~

is small enough for
r& r p to allow the use of perturbation theory. This
situation holds for the alkali metals, and the details of
the application of this procedure to the alkalies are
given in Appendix C. We should remark here that this
procedure leads to results significantly different from
those obtained elsewhere' with the WKB approxima-
tion. We believe the difference is due to the inaccuracy
of the WEB method in calculating the difference in q
for two potentials differing by a rapidly varying dis-
continuous function (2rr'/r4, r) r,).

In applying QDM to a solid, we may wish to let the
one-electron potential in the cell differ, for r&R, from
that of the free ion. Such deviations arise if we try to
include interactions with other conduction electrons .

and nearby ions. We may apply the above procedure to
obtain U~(r) and its derivatives at r=R, and we can
integrate (2.2) explicitly to larger r with the chosen
potential (assuming spherical symmetry) using bound-
ary conditions of continuity at E.. A similar procedure
should be useful with divalent and trivalent metals,
for which we can obtain a smoothly varying p from the
spectrum of the suitably ionized alkali-like atom.
Neglecting the contribution to the potential of the other
valence electrons within the core, we can use this
procedure to include the effect of their interaction
(which we must estimate) outside the core. Further
deviations within the core can be taken roughly into
account by a perturbation procedure (assuming we can
estimate the form of the wave functions over the de-
sired region). Deviations from spherical symmetry
could be corrected for by similar perturbation methods
after an approximate set of wave functions has been
determined for the solid.

V(r) = —(2Z/r)+ Vs (4 1)

in (2.2) and that the inner turn. ing point xr of (2.9) lies
in this inner Coulomb region where (4.1) is valid.
Here Z is the nuclear charge and Up the potential at the
nucleus due to the core electrons. Introducing the
variables

n*2 Z2 82

Zf )

Up,
(4.2)

we find from (2.2) that in this region U~(r) satisfies the
equation

d'U~ 1 2 L(L+1)
+ — + U~=O, (4.3)

4. CALCULATION OF WAVE FUNCTION
AT THE NUCLEUS

The arguments of Sec. 2 may be extended to a cal-
culation of the wave function in the vicinity of the
nucleus. We assume that near the nucleus
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which has the form of the standard Coulomb differen-
tial equation in the starred variables. Since UL(0) =0,
we must have in the inner Coulomb region

UL(r) =A 'U, L (r"**) (4.4) and

in the notation of (2.3a). Equating the lowest term in
the power series expansion of (4.4) in r with (2.16),
upon recalling that n(x)=exp( —x/2)UL, we find on
52' the connecting formula

) rq-& (2r*)L+'
g3 '(L+ i) $e iz'—~x—l4 A i— (4.5)

r(2Ly2)

P*(x*)=[ n—*'e'**+2n*'e*' (—L+—',)']
n*4e2~* 1 2Z

Z2 ~2
Vp—

(L+-')'
(4.12)

r2

=P(x),

t
1n(r~in~')

s'*(r*)= [P*(x*)]~dx*, (4.11)

where we have used

lim [P(x)] &=e '~~'(L+oi) &.

x-+~, on Sg'

where we have used (4.2) and (2.9). Since dx*=dr*/r~

(4 6) =dr/r, we obtain from (2.14) and (4.11) with the use
of (4.12)

s'*(rZ) =s'(r), (4.13)This does not yet suffice to relate 8&' to A insofar as
e '" has not been determined accurately. Instead of
carrying out the integral (2.14), we proceed as in
Sec. 2 to "evaluate" e '" by comparing the WEB solu-
tion with the asymptotic expansion of an exact solution.
This time we use the assumption that x~ is in the inner
Coulomb region, so that e '" on 52' is defined just as
it would be if the potential were equal to (4.1) every-
where. For such a potential (4.3) and (4.4) hold every-
where, and we can introduce the WEB approximation
to relate the asymptotic expansion on 52' with that on
T2 and thereby to evaluate e '" in (4.5). Thus, intro-
ducing

which gives us immediately from (4.10)

2 (2Zr/n*) ~'*
exp[—iz'(r)] =

I'(2L+2)

m.r (n*+L+1)(L+-,') -
&

(4.14)

We may now use this expression in (4.5), which con-

nects the WEB arid exact solutions in the inner Cou-
lomb region of the ion potential (which equals 2/r-
outside the core). We find

x*=ln(r*/n*&)

n*= exp( —x*/2) U,
(4 7)

r(n*—L)
a,'=a~~*&~»Z~e'-~ (4.15)in (4.3) and using Eqs. (2.10) through (2.21) in terms

of the starred variables, we find from (2.19), (2.25),
(2.26), and (4.4) that

27rr (n*+L+1)

-2 r(n*—L) -~
C*=A(—) n*i~*i-

m- r (n*+L+1).

Combining this result with the WEB formula (2.21) to
(4.8) link the inner and outer Coulomb regions, we obtain

from (2.29)
Then from (2.21) we obtain

r(n' —L)
a, '*=~e'-~ ~*(~-:)

. 2sr(n*+L+1)
(4 9)

Substituting this into (4.5) [first placing an asterisk on
all the parameters in (4.5)], we obtain

2 (2r*/n*) ~l
exp( —is'*) =

r(2L+2)
-~r(n*+L+ 1) (I,+-;)-

&

r(n*—L)

y(n) = —AZ& sinn. i (n)

r (n+ —L)no'(oL+&i r (n —L)noLi. &

X (4.16)
r (n*+L+1) r (n+I+ 1)

where we have replaced 5„ in (2.29) by i (n), which is to
be obtained from the experimental spectrum by inter-
polation. Finally, upon combining (4.16), (2.4), (2.7),
and (4.4), we obtain for the ratio of the amplitudes of
UL(r) at points r, and r, in the inner and outer Coulomb

regions, respectively,

UL(r.) OU L, n+(r Z)

UL(r ) r(n+ —L)n'o&oL+i& r(n+I+1) - 4 i
Z& cos7ri (n)

I'(n*+L+1) n'L+'r(n —L) & .
X, oU L,~(r )

n' +'r (n- L) tans v(n)
——1

'U L "(r,) (4 17)
r (n+I.+1)
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In the interesting case of an s function (L=O), the
expression (2.30) is identically equal to unity, and we
obtain from (4.17) the ratio of the amplitude of the
wave function fs(r)=r 'U'(r) at the nucleus to its
value at r„

2Z'r.A(0)

fs(r,) cossv(e)r sU, s "(r,)—tans. v(e) 'U, ' "(r,)]
(4.18)

"E.Fermi and E. Segre, Z. Physik 82, 729 (1933).
34K. Fermi and K. Segre, Mem. reale accad. Italia Classe sci.

fis. mat enat. 4, 131 .(1933).
'~ W. Kohn, Phys. Rev. 96, 590 (j.954),"T.Kjeldaas and W. Kohn, Phys. Rev, 101, 66 (1956).

This is the principal result of the derivation of this
section. It is noteworthy that e* has vanished from this
equation, so that the result is formally independent of
the inner potential Vs and depends on V(r) only through
the quantum defect v(n) and the nuclear charge Z.
Hence the ratio (4.18) can be determined uniquely for
L=O from spectroscopic data.

The derivation of (4.18) depends essentially upon the
use of the WKB approximation to connect the asyrnp-
totic expansions of Uz(r) in the inner and outer Cou-
lomb regions. Moreover, whereas only the phases of the
WEB functions need be joined in approximating the
eigenvalues, the derivation of (4.18) requires matching
the amplitude as well. It is known that WKB ampli-
tudes are rather less accurate than are the phases. "
Hence even though we have used comparison methods
between the WKB and exact solutions to improve the
accuracy of our connection formulas and have replaced
the WEB 3 by v(e) as derived from experiment, we
cannot claim that (4.18) is based solely upon experi-
mental data and therefore very much more accurate
than the WEB approximation used to establish it.
We do make this claim for (2.7) and (2.31). However,
because of our use of the experimental v(e) and of
comparison methods to correct the WKB formulas in
the region near the nucleus where the potential varies
most rapidly, we can expect that (4.18) is somewhat
more accurate than a straight-forward WKB result.
In Appendix A we shall show for an eigenfunction of
the free atom that (4.18) is equivalent to a formula
derived by Fermi and Segre."'4 This leads to calcu-
lated values for the atomic hyperfine splitting of the
ground state of the alkali metals which are about five
to ten percent too large, once relativistic corrections are
introduced, in conformity with our view that (4.18) is
only approximate but nevertheless reasonably accurate.
In particular, the results for sodium and lithium differ
from the experimental values by about the same amount
(though in the opposite direction) as do those obtained
from wave functions calculated by numerical integra-
tion of the Prokofjew or Seitz potentials. ""As dis-
cussed in Appendix A, the calculated ratio of the ampli-
tude of an s-function at the nucleus at the Fermi level

in the solid to that in the free atom should be more
accurate than either amplitude alone.

The validity of (4.17) and (4.18) depends further
upon the assumption that the radial differential equa-
tion is strictly Coulombic both inside the inner turning
point and outside the outer turning point. For any
energies that occur in practice for either solid state or
free atom calculations for the alkali metals, this condi-
tion appears to be satisfactorily fulfilled only for L=O.
To show this for the inner turning point, we note that
the deviation from constancy of the inner potential
arises almost entirely from the innermost E electrons.
The total potential is then approximately

V (r) = 2Z/r+ Vp
—', Z'r'. —-(4.19)

It i.s readily shown that an approximate expression for
the relative shift in the inner turning point resulting
from the last term is

"or/r= (Z/12) (I+-')'= (Z/768) (4.20)

for L=0. This relative shift is small only for L=0, and
is relatively larger for the heavy elements. This cri-
terion for the validity of (4.18) is probably well enough
fulfilled for all the alkali metals.

Further error in using (4.18) to obtain results for
comparison with experimental data on hyperfine split-
ting and Knight shift of course arises from our assump-
tion that the valence-core interaction can be represented
by a simple one-electron potential and that relativistic
effects can be neglected. We have not been able to
generalize (4.18) to a more complicated interaction
while retaining the framework of the quantum defect
method. However, in deriving (4.18) we need not re-
quire that the one-electron core potential be the same
for different L,, so that to this extent we can argue that
the result includes exchange effects if not correlation
interactions. In view of the evident inaccuracy due to
the WEB connection through the core, it does not
seem worthwhile to attempt to justify (4.18) more
carefully in the presence of more complicated inter-
actions. Relativistic corrections to the hyper6ne inter-
action, especially important for Rb and Cs, may be
made using the procedure of Breit and Racah (Appen-
dix A). We should remark that since we have assumed
the existence of an outer Coulomb region, in which r,
and the outer turning point are to lie, in the presence of
core polarization one should use the quantum defect
appropriate to the modified potential V'(r) of Sec. 3
which is exactly Coulombic beyond an appropriate ro.
This modification is unnecessary in calculating atomic
hyper6ne splitting using the Fermi-Segre formula
(Appendix A).

5. EXCHANGE AND CORRELATION IN THE
ELECTRON-ION INTERACTION

We have assumed heretofore that the interaction be-
tween a valence electron and the ion could be repre-
sented by a potential. This assumption is satisfactory
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for lithium and sodium, as Prokofjew" and Seitz" have
shown, but not for the heavy elements. Gorin" was able
to construct a potential which reproduced the s terms
of potassium within several percent and a second poten-
tial that reproduced the p terms, but he could not find
a single potential that gave both. This difficulty arises
because exchange, correlation, and relativistic effects
are of greater importance for the heavy elements, and
it is impossible to represent these effects accurately
with a one electron potential valid for states of different
angular momenta. " Callaway" 4' has recently calcu-
lated the band structure of solid potassium using differ-
ent potentials for s, p, d, and f states which take
approximate account of exchange. His result for the
cohesive energy is much closer to the experimental
value than was Gorin's. We shall now give a derivation
indicating that QDM takes account of such complica-
tions. The method should be particularly useful, there-
fore, in band calculations for the heavier elements.

Our procedure will be to generalize the Hartree-Fock
approximation to include strong mutual correlations
between core electrons and weak correlations between
the core and valence electrons as well as exchange. "
We shall then show that the part of the wave function
describing a valence electron satisfies an equation which
is identical outside the ion core with the Schrodinger
equation for an electron in the potential field of a
polarizable ion. This part of the wave function can
therefore be expressed in terms of Coulomb functions
outside the core if account is taken of polarization as in
Sec. 3. Moreover, we can show in the spirit of the
Wigner-Seitz approximation that this equation is the
same near an ion in the solid as in the corresponding
free atom. It should therefore be possible to obtain
the proper combination of Coulomb functions outside
the core for any I and arbitrary energy from spectro-
scopic data for the free atom. In particular, we should
expect to find that the parameter q varies slowly from
one experimental eigenvalue to the next. If this indeed
is found to be true from the data, we assume we can
interpolate g as with a simple potential and thus con-
struct the combination of Coulomb functions which

appear in the solutions of the equation in the solid.
These can then be combined for different I to satisfy
the proper periodic boundary conditions and to de-
termine the energy levels of the solid. The complicated
effects of exchange and correlation between the valence
electrons and the core will then be found to be contained
in g as it is obtained from the experimental data.

Our detailed arguments below cannot be entirely
rigorous because of the complicated nature of the

"E.Gorin, Physik Z. Sowjetnnion 9, 328 (1936).
es Herman, Callaway, and Acton, Phys. Rev. 95, 371 (1954)."J.Callaway, Phys. Rev. 103, 1219 (1956).
~ Berman, Callaway, and Woods, Phys. Rev. 101, 1467 (1956).
4' See reference 9 for a discussion of the justification of QDM

from the more restricted point of view of the Hartree-Fock
equations.

problem of constructing a many-electron wave func-
tion for a solid. They are intended to be consistent with
the spirit of the Wigner-Seitz approximation and are

. therefore particularly appropriate to a monovalent
solid. However, these generalizations in no way improve
upon the rather crude treatment of correlation and
exchange between dsgeretst ~alerrce electrons in the
Wigner-Seitz approach, so that a calculation using
QDM must be corrected for these important effects.
We shall defer mention of relativistic effects until
Sec. 6.

Instead of assuming a many-electron wave function
n the Slater determinant form, 4' we approximate the
wave function of an atom with p valence electrons and

q core electrons by

+=CZ (—) ~l((r)" 4.(")
&4'(ro+» ' ' ' ru+o' ri' ' ' ro) (5.1)

Here P;(r) is a one-electron function representing a
valence electron, and p(r~t, r+, , ri r„) repre-
sents the core, being an antisymmetrical function of
the q coordinates r„~r, . r~, (which include spin)
which depends parametrically4' on r&, r„. The oper-
ator P& (—)~P antisymmetrizes the entire function
by permuting the p+q coordinates and multiplying
resulting terms by +1 or —1 according as to whether
the permutation is even or odd, and C is a constant
which normalizes the entire function to unity under
integration over all coordinates. Such a function per-
mits us to take account of correlations among the core
electrons, since d (ro+r, r~„rr, ro) can be any
function of z„+~, r~, . Through the parametric de-
pendence of p on r&, r„, we can include approximately
correlations between the core and valence electrons.
This comes about only through the dependence of the
core function on the instantaneous valence coordinates
since we use one-electron functions P, (r) for the valence
states. As we shall see, that part of the apparent poten-
tial determining P;(r) which arises from the core elec-
trons is produced by the average charge distribution
of the core, polarized by the instantaneous valence
electron positions. We are assuming, thus, that the core
electron orbits are influenced by the instantaneous
valence electron positions but that the reverse effect is
negligible. This is reasonable in view of the higher fre-
quencies of the core electrons. 44 With such a wave
function we cannot, of course, include correlations be-
tween valence electrons.

~ F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , New York, 1940), p. 237.

~ By a parametric dependence we mean that p depends on r&,
say, sufficiently slightly so that we can neglect terms like V'12&

or V1$.
44A simple classical calculation of the motions of two weakly

coupled harmonic oscillators of very diferent frequencies shows
that the oscillator of higher frequency is polarized by the instan-
taneous position of the second oscillator approximately as if the
latter were axed, whereas the oscillator of lower frequency is very
much less polarized than if the other were Axed. It is also out of
phase with the faster oscillator. The frequency shift of the oscil-
lator of lower frequency is the greater.
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We now restrict attention to a monovalent atom, for which (5.1) can be written as

q+I
+=C[$(ri)g(rs, . r,+i, ri) —P f(r;)g(rq, r; i, ri, r;+i . rq+i r;)7. (5.2)

We then form

(5.3)

in which 3'. is the nonrelativistic Hamiltonian of the system

q+1

ij pairs
(5.4)

with Vq(r;) the potential of the ith electron in the field of the nucleus and Vi(~ r;—r,
~ ) the interaction potential

between electrons. Minimizing (5.3) with respect to arbitrary variations in P (r), we find that the optimal f for a
fixed p should satisfy the following equation:

t
—~*'+Vo(x)]4'(x)+4'(x)

q+1
4*(rq 1'q+i', x){X+K Vi(~ r;—x~)}p(rs r,+i, x)d~s d~q+i

j=2

(r2 rqyl& x)p(r2' ' 'rq+i& x)d's2 'd'qq+I

q+l

JI P*(rs rq+li x)K P P(r,)P(rq r; i,x, ri+1' ' 'rq+1j r')d'e2' ' 'deq+1
4=2

—&P(x)—

q+1

(r2 r +1 X) Q f(r )$(r2 r' 1 X 1''+i ' ' 1' +1' r')de2 ' d% +1
4=2

3=0. (5.5)

Here K is the Hamiltonian of the singly ionized atom, in terms of r2 . rq+&. We have de6ned E to be the minimum
of (5.3) and thus our approximation to the total energy of the system once Q has been chosen optimally. We have
also neglected all derivatives of p with respect to its parametric dependence.

Now if p(rs r,+i, x) differs only slightly from the wave function of the singly ionized atom, then Er, the
energy of the latter, is given approximately by

EI $(r2 ' ' ' r +i' x)X—$(r2 r +i' x)d%2 ' 'de +i J $ (r2 r +i ' x)$(r2 ' 'r +1' x)A2 d'e +i (5.6)

since this expression is a minimum for the exact P of the ionized atom. With this assumption that the core function
in the neutral atom is not greatly different from that of the ion,"we can therefore replace the expectation value of
R in (5.5) by Zr with an error of only the second order in the change in p. We furthermore examine (5.5) when x
lies outside the core (the core radius r. being defined such that if any

~
r; t )r., p(ri . .r,+i, x) has negligible ampli-

tude). The exchange terms containing p(rs .r; i,x,r;+i rq~i, r;). are then negligible, and (5.5) reduces to the

"This assumption should be very satisfactory for the alkalies. D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A193, 299
(1948), Proc. Cambridge Phil. Soc. 34, 550 (1938).
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form of a simple one-electron Schrodinger equation for an electron in the field of a polarized core:

q+1

jl qP(r2' ' 'rqgi x) p Vi(l r;—xl)g(r2 r,+i, x)d~2 d~,+2
7-2

[—~*'+Vo( )]4'( )+4'( )

(r2 r +i x)$(r2' ' 'r +i x)d+2' d+ +i

= (E—Er)g(x) =qk(x). (5.7)

Inside the core, however, f(x) must satisfy a more complicated integro-differential equation because of the ex-
change terms. We note that we have nowhere assumed that f(x) and P are normalized or orthogonal.

To complete the analysis of the atom, we now minimize (5.3) with respect to arbitrary variations of
p*(r2. . r,+i, ri). Eliminating [—V'+ Vq(r)]p(r) from the resulting equation by substituting from (5.5) [with
(5.6)], we obtain a complicated equation for p which simplifies when one r, (=x) is outside the core to [assuming
still that g(r2, x, r,+i, r~) 0 if lxl)r, ]
X'P(r2' ' 'Iq+i x)+g(r2 i'2+i,' X)

(r2' ' 'rq+i, x)V(lr;—xl)0(r2' ' 'rq+i x)~&2' ' '~&q+i
v+1 q+1 J

x Z«l; —I)-Z '=Erg(rq. r,+i, x). (5.8)
]=2

lp(r2 ~ ~ ~ rq+ll x)$(r2 ~ ~ ~

rqql & x)d%2 ~ ~ ~ d& +12

We see that for such a value of x (5.8) is just the
Schrodinger equation for the ionized atom with two
additional perturbing terms. One is the polarizing
potential of a fixed electron charge at x [we note that
this potential is independent of P(x)], and the other
is a constant term (depending only on x) which cancels
the expectation value of the first term when (5.8) is
multiplied by g (r2 r,+i, x) and integrated over
r2 r,+i, so that (5.6) re-emerges. Thus we seem to be
justified, at least when x is outside the core, in regard-
ing p as a polarized core function. When x is inside the
core the analysis is complicated by exchange, but the
general character of p should be the same.

We have shown so far that, in the approximation of
(5.2) for the isolated atom, the form of P(r) outside the
core is determined by the simple Schrodinger-type
equation (5.7) in which the potential is that of the
polarized core. At the free atom eigenvalues, then, we
can obtain explicit expressions for P(r) outside the core
by integrating this equation in from inanity, where the
boundary condition limf(r) =0 as

l
rl~~ applies. We

need know only the ion core potential, which equals the
usual Coulomb term plus a polarization potential
which we know approximately and which is small but
by no means negligible. Hence, despite the complicated
Eq. (5.5) satisfied by f(r) within the core, we can ob-
tain P(r) explicitly outside the core at the eigenvalues,
and this has the same form as found for a simple
potential as in Secs. 2 and 3.

We shall show below that in the spirit of the Wigner-
Seitz approximation esseritially the same Eq. (5.5)
is satisfied by a valence Bloch function f(r) within
the atomic cell of the solid and that (5.7) holds
in the cell outside the core. With the assumption

that p(r2, r,+i, ri) is approximately independent of
the form of iP(ri) (which we have shown to be true for
the atom at least for

l ril)r, and which we shall as-
sume in general henceforth), (5.5) is linear in P. Hence
a Bloch function can be separated into terms each
satisfying (5.5) and reducing outside the core to the
product of a spherical harmonic and associated radial
function satisfying (5.7). From our work in Secs. 2
and 3, we then expect that despite the more compli-
cated interactions indicated by (5.5), the radial func-
tions outside the core will depend upon the core inter-
action only through a slowly varying quantum defect
(or the corresponding q). We do indeed find that the
experimental atomic spectrum gives us such a param-
eter. Hence we believe that we may obtain radial func-
tions outside the core by the QDM interpolation pro-
cedures using the experimental eigenvalues (or more
properly those of the modified potential of Sec. 3,
which we can obtain approximately by perturbation
methods), and that these functions, when used in
constructing Bloch functions, take approximate ac-
count of complicated interactions with the core.

To show that (5.5) also is true for a monovalent solid,
we approximate the wave function of the solid by

~=CP (—) ]'gP, (r)

Xg QR, (ri;, r2;, r„;{r;)) (5.9)

in analogy to (5.1). Here pR; represents the core func-
tion at the lattice site R, , and it depends parametrically
on all valence coordinates r1 ~ r~. It will be shown that
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the.V valence functions';(r;) may be assumed to have but orthogonality between the valence and core func-
the Bloch form. We substitute this into (5.3), where tions is more troublesome. We shall assume that
now BC is the Hamiltonian of the entire crystal:

NZ

~=K L
—~''+Vo(r~)1+ Z V~(lr*—rjl)

i1 pairs

f;*(r&)&Rj(ri,rs, r„)d~~—0, (5.12)

6 (r)4;(r)«=~';,
J

(5.11)

2Z'
+ Z, (51o)

r'jp«»
l Ri—R, l

where Vo(r) = —P~P(2Z/l r—R, l), and the last term
arises from the nuclear interaction, which we introduce
to make (5.3) represent the energy of the crystal as a
whole.

The resulting expression is a complicated one in-
volving integrals over products of the P's and g's with
all possible permutations of the coordinates. Terms
containing factors of the form pR;(ri, rQ ' ' la)
X&R, (r&, r„+&, r2„ i) vanish if iW j since we assume
that the p's are localized and nonoverlapping, but
many other terms do not. Hence, whereas in deriving
(5.5) we did not assume orthonormality of the wave
functions, it appears here that we must.

We can readily require

Lrecalling that p is antisymmetric so that (5.12) holds
regardless of the order of (ri, rs, r„)], and we shall
not treat the parameters in &Rj as variables in using

(5.12). This approximation permits the simplification
of (5.3). It is hard to estimate the extent of the asso-
ciated error except to observe that we needed no
orthonormality restrictions in deriving (5.5) and that
one consequently suspects that the error here is small.
We further require

&R,*(ri r„)pR;(ri r„)d~i d~ —1, (5.13)

with no regard for difhculties concerning the parameters.
We now minimize (5.3) for variations in one of the

P*'s, say P&*(r), which are arbitrary except for the
restrictions (5.11) and (5.12), to be introduced by
Lagrange multipliers. We obtain an equation for fi, (x):

2Z2
0= —V,'+Vp(x)+ P — P~(x)

~j pairs i j
N

+A(x) 2 0'*(r)Vi(l r—xl)4'(r)« —2 0'(x) A*(r) Vi(l*—xl)A(r)«
j=l

+pi(x) p p rtR;*(r&, r; x)V&(l r; xl)&R—;(r& r„;x)d~i

N n

&R,*(ri r„;x)x" (ri, r„,x) p it&(rj)gR;(r i r, &,x. ,rj+i, r„; r;)d~~ .d~„

n—X f (x) —P' jr, f;(x)—P I W (r, r„)$R;(x,r, , r„)d . .d „, (5.14)
i

where ) &, jr;~, and W'i, (rs, r„) are Lagrange multipliers arising from (5.11) and (5.12), and K"+'{r~, r„,x) is
the Hamiltonian for n+1 electrons in the potential Vs. If all the P; are assumed to have the Bloch form, and if
W&(rs+Rj, . . .r„+R,) =exp(ik R,)W&(rs, r„), an assumption that is consistent with the rest of the analysis,
all terms in (5.14) represent periodic linear operators on P& if all the p;& are set equal to zero. Hence these assump-
tions are consistent with is;&

——0 and insure the validity of (5.11) for states of parallel spin (assuming a single band);
for opposite spin (5.11) and ii;&=0 are automatically consistent since we have not included spin-dependent terms
in K. Also, since W&(r&, r ) arises from (5.12) and would appear similarly if we required (5.12) in the atomic
case, for an atom at R;, we shall identify each such term in (5.14) with the second term in the bracket multiplied
by E in (5.5) for the corresponding gR;, with f(r,) replaced by p&(r;). This identification cannot be rigorously
correct, but it seems reasonable in conjunction with the Wigner-Seitz assumptions introduced below.

Finally, to identify Xz we use (5.14) to evaluate (5.3), the approximate total energy of the crystal, in terms of
) & and other quantities. Using (5.10), (5.6) and the assumption of nonoverlapping cores, we obtain

2
~r.s=& &I'+ P + P A'(r)A '(r') V~(l r r'IN i(r')0'i (r)d&d—~'

jj pairs
l R;—Rjl k, i'r'pair ~

2Z
i

"&s*(r)A *(r')V(l r—r'l)A(r)A (r')«d~'+&
l

~s—2 l (5»)
kk' pairs ~ ij pairs

l Rr —Rj l
)
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Hence (Xs—p;~»l»L2Z/~R; —R;~]}=es is the one-
electron energy parameter which equals (as in Koop-
man's theorem)" the energy necessary to remove the
kth electron from the crystal (neglecting correlation
between valence electrons, of course).

To compare (5.14) with (5.5) we now take x to Iie
within the cell at R;. In (5.14) all exchange terms be-
tween fs and PR, are zero except for the one with
R;= R;, which is identical with the exchange term in
(5.5). We now make use of the Wigner-Seitz assump-
tion" "that we can neglect terms in (5.14) arising from
Coulomb interactions with charge distributions outside
the cell at R;, because each cell is neutral and approxi-
mately spherical in shape. We also introduce their
further assumption that within the cell at R; we may
eliminate from (5.14) the direct Coulomb and exchange
terms arising from the interaction between the valence
electrons, on the understanding that the expression
(5.15) for the total energy must now be modified to
improve upon this over-simplified treatment of correla-
tion and exchange. With O'A, and p;k identified as above
and all terms except —$2Z/)x —R;( j cancelled from
Vs(x) the equation resulting from (5.14) is identical
with (5.5) and simplifies to (5.7) outside the core.

We therefore 6nd that with the approximations men-
tioned, the lt s(r) may be chosen to have the Bloch form
(and therefore must satisfy the usual periodicity bound-
ary conditions on the surface of the cell), and that they
satisfy the same equation within the cell as that ap-
propriate to the valence electron in the free atom. We
can therefore use the experimental spectrum (modified
if necessary as in Sec. 3) to obtain by QDM radial
functions at arbitrary energies which can be used in the
construction of Bloch functions, and we see that we
can expect such a procedure to take approximate ac-
count of correlation and exchange eGects with the
ion core.

simple to reformulate the band calculations such that
relativistic contributions can be included from the start.
We shall not do this in detail here, but we shall make a
few observations to support our contention that the
corrections suggested by Callaway are already included
in QDM and that relativistic splittings of degenerate
levels in solids can be obtained with QDM from the
appropriate spectroscopic data. Callaway, Woods, and
Sirounian have recently come to essentially the same
conclusion. 4s However, our use of QDM to obtain the
amplitude of the wave function at the origin does not
include relativistic effects because we have assumed
V= —2Z/r+ Vs near the nucleus. The appropriate
relativistic corrections to hyperfine interaction are
discussed in Appendix A. It appears that these are very
important for the interpretation of the Knight shift
in the heavier metals.

In our conventional band calculations we expand a
nonrelativistic wave function in spherical harmonics
about an ion and determine the corresponding radial
wave function for each value of orbital angular mo-
mentum I. within the region in which the potential is
spherically symmetric. In a relativistic theory, using an
independent-electron approximation, we should have to
introduce 4-component wave functions and make a
corresponding expansion in eigenfunctions of the total
angular momentum J and of the operator E.""How-
ever, as Condon and Shortley" show, the small com-
ponents it+ of positive-energy functions can be evalu-
ated from the large components by means of the relation

(6.1)

where p is the momentum operation and e a vector
whose components are the Pauli spin matrices. The
large components satisfy an equation

6. RELATIVISTIC EFFECTS) INCLUDING
SPIN-ORBIT COUPLING

There has been recent interest in relativistic correc™
tions to electronic wave functions in solids and to their
energy band structure. This has arisen primarily be-
cause such corrections lift certain degeneracies at
symmetry points and thereby significantly alter the
qualitative shapes of the bands. This eGect is now
known to be important for the valence bands of semi-
conductors such as Ge, Si, and InSb. Moreover, Calla-
way4' has suggested that relativistic contributions to
the band shapes and cohesive energies of the heavier
alkali metals might be appreciable.

Most estimates of relativistic effects have used per-
turbation theory with nonrelativistic wave functions
calculated from approximate atomic potentials ordi-
narily corrected for exchange. However, it is quite

"Reference 42, p. 313.
4' J. Callaway, Phys. Rev. 102, 919 (1956).

where
E V(r)—

V(~)= 1+
28$C

(6.3)

4s Callaway, Woods, and Sironnian, Phys. Rev. 107, 934 (1957).
4~ We use the notation of Condon and Shortley (reference 50,

Chap. 5, Sec. 5) where a review of the relativistic theory can be
found.

'OE. V. Condon and G. H. Shortley, The Theory of Atomic
SPectro (Cambridge University Press, Cambridge, 1953).

is appreciably different from zero only near the nucleus.
Outside the core, therefore, (6.2) reduces to a simple
Schrodinger equation for each component of f . In a
spherically symmetric potential V(r), both components
of lt for an eigenfunction of E and J are eigerdunctions
of the orbital angular momentum L, with the same
eigenvalue L=J&—',. Hence if V(r) is Coulombic out-
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side the core, the radial parts of both components of f
satisfy the Coulomb radial equation for L=J+—,'.
From spectroscopic data we can obtain the quantum
defect for atomic eigenstates of E and J. The radial
function of P outside the core can then be obtained for
the same eigenvalues of E and J and intermediate
energies by interpolating the quantum defect and using
standard Coulomb functions for the corresponding
value of L=J&~. We can thus obtain explicit expres-
sions on the atomic cell for all terms in the expansion
of each component of a f appropriate to a periodic
V(r). The coefficients of these terms and the energy
eigenvalue can be determined from the usual periodicity
boundary conditions imposed on P, since the Dirac
equation has the periodicity of V(v). Then P+ can be
evaluated from (6.1).

We see, thus, that if we expand our relativistic Bloch
functions in eigenfunctions of E and J, we can deter-
mine the corresponding radial functions outside the
core from the atomic spectroscopic data. As before,
we do not need an explicit expression for the Dirac
equation within the core. Hence once again the experi-
mental data give us the correct linear combination of
Coulomb functions outside the core which connect cor-
rectly to functions within the core which are compli-
cated by relativistic eGects. It is for this reason that
we assert that QDM includes the relativistic effects
emphasized by Callaway and makes possible calcula-
tions of relativistic splittings once band theory is
carried through in terms of expansions in eigenfunc-
tions of E and J. In most of our work, heretofore, we
have not done this, and our quantum defects for the
alkali metals have been determined from weighted
averages of the energies of spectral doublets. However,
one of us has used the more accurate theory in calcu-
lating the g factors for the alkalies, and we shall ex-

amine the corrections introduced by this theory in our
continuing calculations on the alkali band structures.
The extensions of the usual theory are quite simple;
for example, Callaway, Woods, -and Sirounian" have
shown that Bardeen's formula for the reciprocal eGec™
tive mass becomes (in the notation of Brooks' )

2 r, dU(' 1 r, dU)'
Q=P + 1

3 Ug1 df 3 Ug dt'
(6.4)

where II and V are the radial functions (times r)
at the ground state energy and equivalent sphere radius
for J= ~, 2 and L=1, and p has its usual significance.
Callaway et al." have found very little difference in
the effective mass for Cs between the result from (6.4)
and the "nonrelativistic" (weighted average of doublet)
value,

4j(j+l) (j+1)
P.(i,Z) = (A.2)

with p= L(j+-',)'—rr'Z']&, is an approximate relativistic
correction due to Racah and Breit for a point nu-
cleus. ""Z is the nuclear charge in units of the charge
of the electron, n is the fine structure constant e /Asc,

and j is the total angular momentum quantum number
of the valence electron (j=-,' for a 'S; state). The
Breit-Crawford-Schawlow correction (1—8) arises from
the change in the Dirac wave function due to the finite
dimension of the nucleus. '4" Finally, the distribution
of magnetic dipole-moment over the nucleus leads to
the further correction (1—e)."These corrections are
tabulated in Table I for the alkalies, together with the
values of Av obtained from atomj. c beam experiments.
The "experimental" values for I'~ listed in Table I
were calculated from (A.1) using these values for Av

and known values of pq and I, which are also listed.
To obtain a theoretical value for ~lt(0) ~' for the

valence electron in an isolated atom, we make use of
our expression for P(0)/P(r, ) in (4.18). Setting P(r)
= dr 'U'(r), with U'(r) given by (B.3) in the Coulomb
region outside the core (rf = v for I.=O), we obtain from
(4.18) and (B.3)

i' (0) i'=4ZA'/costs v. (A.3)

Normalizing P(r) to unity in cgs units, and using (B.7)
and (B.9) for I.=O and the fact that at an eigenvalue
sec'ere= sec'xv, we find

(PA)phppr= (Z/prap ) (ts 2dv/de ) . — (A.4)

Here e'= 1/es' is the negative of the energy of the val-
ence electron, and ap is the Bohr radius h'/erie'.

This theoretical expression for I'~ turns out to be
identical with one given long ago by Fermi and Segre, "'4
namely

(Pg) th, = (Z/27r) (apsRhc) '(dE/ders), (A.S)

e' H. Kopfermann, ff:erlmomewfe (Akademische Verlagsgesell-
schaft, I"rankfurt-am-Main, 1956), second edition, p. 111."G. Breit, Phys. Rev. 35, 1447 (1930).

ee G. Racah, Z. Physik 76, 431 (1931).
e4 J. Rosenthal and G. Breit, Phys. Rev. 41, 4S9 (1932).
e' M. Crawford and A. Schawlow, Phys. Rev. 76 1310 (1949).
"A, Bohr and V. Weisskopf, Phys. Rev. 77, 94 1930).

APPENDIX A. ATOMIC HYPERFINE SPLITTING-
THE FERMI-SEGRE FORMULA

The hyperfine splitting of a S~ term in an alkali-like
atom with one valence electron is, in cm ' ";
A v =h 'c'(-87r/-3) fj rp sf(2I+1)/I]

XP~F.(j,Z) (1 &) (1——«). (A.1)

Here h is Planck's constant, c the velocity of light, p,z

the nuclear magnetic moment, p~ the Bohr magneton,
I the nuclear spin quantum number, and Pg =

~ P(0) ~

s

the squared amplitude at the nucleus of the nonrela-
tivistic approximation to the valence wave function.
The factor
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TABLE I. Atomic hyperhne interaction for alkali metals.

Atom

Ll
Li
Na
K
K
Rb
Rb
Cs

3
3

11
19
19
37
37
55

6
7

23
39
41
85
87

133

1.0009
1.0119

1.0363

1.1504
1.3904

0.01
0.03

~0.004
0.01

hv (cm ~)

0.007613h
0.026805h
0.059103'
0.015403"
0.008474h
0.10127'
0.22797~
0.30663'

+Id
(eA /2M pc)

0.82189
3.2559
2.2171
0.391
0.215
1.353
2.750
2.577

3
2
3
2
3
2
3
2
5
2
3
2
'7

2

{PA)ezpte
(ao 3)

0.2314
0.2314
0.7411
1.074
1.075
2.062
2.056
2.925

(PA)theorf
{ao-&)

0.2420
0.2420
0.8402
1.162
1.162
2.178
2.178
2.970

(PA) theor~
(ao 3)

0.223
0.223
0.685

Reference 51, Table 8, p. 431.
b Reference 51, p. 117.
e Reference 51, p. 118, and reference 56.
d J. E. Mack, Revs. Modern Phys. 22, 64 (1950):MP is the proton mass.
e Obtained from Eq. (A.1).
& Obtained from the Fermi-Segre formula (A.4) or (A.5).
& Obtained by integrating the Seitz (Li) and Prokofjew (Na) potentials: references 35 and 36.
h Millman, Kusch, and Rabi, Phys. Rev. 57, 765 (1940).
1 S. Millman and P. Kusch, Phys. Rev. 60, 91 (1941).

& S. Millman and P. Kusch, Phys. Rev. 58, 438 (1940).

where
E= —Ehc/(m —v)' (A.6)

and E is the Rydberg constant. To show this, we differ-
entiate (A.6) with respect to m, which we treat as a
continuous variable:

dE 2Ehc ( dv dEi

dm (m —v)' ( dE dm&
(A.7)

Solving for dE/dm, and setting E= —Rhcp'= —Ehc/e',
we obtain (A.4) upon substitution in (A:5). Hence our
expression (4.18) for tt(0)/P(r, ) is a generalization of
the Fermi-Segre formula, the latter being valid only
for atomic states. However, whereas our derivation of
(4.18) required that the outer WKB turning point lie
in the outer Coulomb region, no such requirement is
needed in Fermi and Segre's derivation" (which is also
a nonrelativistic WKB-based procedure). Hence (A.4)
[but not necessarily (4.18)] is more general than the
assumptions used in deriving it, and in particular we
can use in (A.4) the interpolated expression for v as
obtained directly from the spectroscopic data without
having to worry about polarization corrections and the
like. Such corrections should, of course, be used in
applying (4.18) to solid state problems.

We have tabulated (P~)~h~, for the alkali metals in
Table I. The agreement with (P~),„„is within about
10% and only slightly worse for Li and Na than theo-
retical values obtained by Kohn35 and Kohn and
Kjeldaas' by integrating the Seitz and Prokof jew
potentials. These two values, which are also listed, are
too small, whereas our values are too large.

The accuracy of (4.18) for calculations of the Knight
shift is presumably similar to that of (A.4). However,
particularly since the Fermi energy in the alkali metals
is not very different from the energy of the normal state
of the atom, the accuracy of the ratio ~$, (0) ~'/Pz,
where f, (0) is the amplitude at the nucleus of a non-
relativistic s function evaluated at the Fermi energy
and normalized in the atomic cell, should be consider-

ably better if P, (0) and Pz are calculated from (4.18)
[using (8.5) for normalization] and (A.4), respectively.
The further evaluation of Pv= ~P(0) ~' for an electron
at the Fermi surface then requires that we determine
the radio of s, p, d, functions that make up the wave
function. Calculations of this sort have been carried
out by one of us (HB).

Q

[Uz(r)]'dr = Uz, Uz
0 de

(8.1)

where we use the notation

dW(r) d V(r)
[V,W]= V(r) W(r)—

dr dr
(8 2)

Assuming that a is in the Coulomb region, a& ro, we can
substitute into the right-hand side of (8.1) from a
renormalized form of (2.4), using (2.31),

U (r) ='U, "(r)—tannery 'U, "(r) for r& rp. (8.3)

We obtain, with use of the Wronskian relation

[pU z„n 2U z„n]
the result

(8 4)

~ a dn
[U (r)]'dr = —2 sec'pry

+ PU' I .n (PU L,n)
- r=a

—2 tan~g PU, ~" ('U, ~ ~)
de

d
+tan2~~ 2U' L,m (2U L, n)

(8.5)

APPENDIX B. NORMALIZATION INTEGRALS

Differentiating (2.2) with respect to the parameter
«'= 1/n' and integrating with respect to r, we obtain
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This relation enables us to evaluate normalization
integrals over the core region in terms of known func-
tions at r= u if q is known as a function of e' for the
potential under consideration.

In a similar manner, we may integrate the square of
the Whittaker function" which vanishes at infinity,

W , L+, (2y/n)

=I'(n+L+1)n—~' cos[7r(n —L—1)]
)({PU L ~ (y)+It L(n) s U L +(y) ) (8 6)

where

Na:

Rb:

Cs:

L=O,
L=1,
L=O,
L=i,
L=O,
L=1,
L=O,
L=1,
L=O,
L=1,

(0.399501)+(0.029405)o'+ (0.00238)p"
(0.047366)+(0.02092)p' + (0.02886)p"
(1.347970)+ (0.0619'7)p' + (0.01071)s"
(0.855151)—(0.01791)e' + (0 04443)g"
(2.180059)+
(1.711928)+
(3.13119) +
(2.646250)+
(4.04808) +
(3.5696) +

(0.13915)p' + (0.0502) p's

(0.07617)p' + (0.0801)o"
(0.18164)o' +(0.08790)p"
(0.163965)o'+ (0.06192)o"
(0.2586) p' +(0.1054)p"
(0.3019)p' + (0.0479)o's

TABLE II. Interpolation expressions' for experimental p for a1kali
metals for L=O, 1.

I (n —L,)n'~'
EL(n) =

I' (n+L+1)

and n=+(e') i. We obtain

tan[a-(n —L—1)j, (8.7)
a These expressions reproduce experimental values of y obtained from the

three lowest valence eigenvalues for each L. (See Table II of reference 9.)
For L =i, spin-orbit splitting has been neglected, and the eigenvalue taken
as the center of gravity of the doublet. Eigenvalues were converted from
wave number (cm ') to Rydberg units using a finite mass Rydberg con-
stant appropriate to each element.

b Here e' =1/n2 is the negative of the energy in Rydberg units.

[W„,~;(2y/n) $'dy

= —[I'(n+L+1)n L ' COSor(n —L—1)]'

oU L, m (0U L,n)
de

+2&'(n) 'U '" ('U '") +ÃL(n)]'
u6 - 7=C

2
)( 2U L,n (2U L,n) + ~ (n) 1 (8,)

At an eigenvalue we have 1/n'= 1/(yn —5)', where ns is
an integer, and from this we may show that tanxp
= —EL(n), as is also evident from (8.6) and (8.3).
Hence at an eigenvalue we can combine (8.5) and
(8.8) to give us

00 2
[UL(y) j'dy = —2 secsmg —— EL(n), (8.9)

Jp d6 7l dc

which may be slbtracted from the corresponding formu-
las of Table II in order to obtain approximate expres-
sions for g appropriate to the fictitious potential V'(y)
of Sec. 3 which is exactly equal to —2/y for y) yp. The
free ion potential has been assumed to di6er from this
for y) yp by a polarization term of the form (3.1).That
we can neglect contributions to V(y) from the small
probability of finding a core electron at values of rp of
interest is evident from Table IV. Values of 0.' for use
in (3.1) are listed in Table IV and have been taken
from work of Pauling. "These may not be too accurate
and indeed di6er appreciably from those computed
recently by Tessman, Kahn, and Shockley. "The latter
values give quantum defects for I=3 which are larger
than those observed experimentally, so that we have
preferred Pauling's smaller values. This polarization
correction is not accurate to better than perhaps 30%%u~.

The coefficients in Table III were obtained by evalu-
ating by perturbation methods the change in p, at the
three lowest valence eigenvalues for each I, due to re-
placing the ion potential (—2/y —2cs'/y') by the Coulomb
potential (—2/y) for y)yp One ca.n show from the

where we normalize U according to (8.3).

APPENX)IK C. QUANTUM DEFECT DATA
FOR THE ALKALI METALS Metal

TABLE III. Polarization corrections ~ to g for
alkali metals for L=O, 1.

In Table II we list formulas quadratic in e'=1/n'
(the negative of the energy in Rydberg units) which
reproduce the values of g obtained from the expeyiynentat
term values of the alkali metals for I=0, I. These
expressions fit exactly the values of p for the lowest
three valence eigenvalues and are very little in error
for the higher eigenvalues. "

In Table III we list coeKcients for expressions of the
form

Ll

Na

Rb

Cs

0 +0.0217 —0.00426
1 +0.0463 —0.0130
0 —0.0628 +0.0332
1 +0.4044 —0.0890
0 —0.620 +0.212
1 +1.870 —0.324
0 —1.698 +0.486
1 +3.316 —0.523
0 —3.114 +0.826
1 +5.447 —0.757

+0.0805
+0.0918
+1.172—0.176
+8.317—0.529

+17.02—2.620
+33.40—3.855

—0.0118
+0.0335—0.261
+0.369—1.595
+1.204—3.195
+2.123—5.844
+3.127

(~x &sl (bx 4 )
A~= ]

—+—I+] —+—f.',
Kyp' yp') &yp' yp')

'7 Reference 26, p. 339.' See reference 9, Sec. X.

a See Eq. (C.i). Note that the value of bg obtained from (C.i) and this
table is to be subtracted from the experimental y of Table II. The values of

( r0 appropriate to (C.i) are in units of the Bohr radius of hydrogen.
b Calculated from (C.2).

"See reference 32, Chap. 8.
Po Tessman, Kahn, and Shockley, Phys. Rev. 92, 890 (1953).
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TABLE IV. Deviations from Coulomb potential for alkali ions. '

Element Z(0.7') 2 LZ& (0.7r&) —1j Z(fi) 2 PZ& (r~) —1j 2 LZp(ri) —1$/r~

Li
Na
K

Rb
Cs

3.19b
3.92b
4.84b

5.17b
5 51b

2 -81b

3.45b
4.26b

4.55b
4.85b

0 22c,d

0 12e,f

0.36c g

0.57' d

0 055'
0.025' '
0.094c,g
0.15' d

P P18c,d
p pp5e, f

0 03c,g
0.05c,d

0.003'd
(0.001e,

0.006' g

0 008c,d

0.0007'
&0.0002'

0.0013'
0 0016c

0.099
0.611
2.83

4.77
8.22

0.017

0.022
0.027

a ra ——equilibrium equivalent sphere radius at 4.2 K in atomic units /Bohr radius =1 atomic unit of length =0.529 A; ionization energy of hydrogen
(infinite nuclear mass) =1 unit of energy =1 Rydberg =13.60 eve; r~ =equilibrium inscribed sphere radius at 4.2 K in atomic units; Z(r) =total charge
situated beyond radius r in the singly ionized atom, in units of charge of the electron; Z&(r): potential = —2Z&(r)/r in the singly ionized atom (neglecting
polarization); a". polarization correction to potential for the valence electron in the neutral atom is -2e /r4.

b C. A. Swenson, Phys. Rev. 99, 423 (1955).
& Calculated without exchange.
d D. R. Hartree, Proc. Roy. Soc. (London) A143, 506 (1934).
e Calculated with exchange.
f D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A166, 450 (1938).
I D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935).

differential equation (2.2) that, to 6rst order in n',

4g=
~

n' ' Lr «(Uz)'5dr
(

sec'vr«t, (C.2)
)

where U~ and q are evaluated at the eigenvalue of
V'(r) (and U~ is therefore a multiple of the Whittalmr
function which approaches zero at infinity). U~ is
normalized as in (B.3). In practice these integrals were
evaluated numerically for two values of ro (near r; and
r, of Table IV) at the experimental eigenvalues using
the asymptotic expansion of the Whittaker function. "
These computed values of Ap for a given ro vary less
smoothly as functions of energy than the original experi-
mental q We attrib. ute this to the fact that —2/r —V (r)
approaches zero asymptotically for the true ion poten-
tial, whereas —2/r V'(r) —drops abruptly to zero at a
finite r. We have chosen to approximate these computed

TABLE V. Polarization corrections' " to q for the
alkali metals for L=2.

values of Ag by an expression linear in e' and have found
that their variation with ro is fairly well given by (C.1).
The expressions obtained from Table III agree with all
of our computed values within 10%.

Values of hp obtained from (C.2) differ significantly
from those obtained" from the WEB approximation.
We attribute this to the inaccuracy of the WEB method
in calculating the difference in g for two potentials
diGering by a rapidly varying discontinuous function
(2n.'/r«, r) ro).

For L=2 the experimental values of p vary less
smoothly with energy than do those for L=O, 1, and
the valence eigenvalues span a smaller range of energy.
Consequently extrapolation of p to energies perhaps
half a Rydberg unit below the lowest valence eigen-
value is much less reliable than for L=O, 1. Further-
more, values of the polarization correction Ag are
larger than for L=O, 1. We have evaluated Aq at three
eigenvalues using (C.2), and we list in Table V the
experimental value of q and coefficients for the evalua-
tion of hq from the formula

Metal L

Ll

1/n2

0.1112205
0.0625524
0.0400282

'QQX p

0.00300
0.00239
0.00218

—0.0649—0.0357—0.0270

+0.0400
+0.0250
+0.0202

(Gi 82 $

E. rp' r02)
(c.3)

Na

Rb 2

0.1118769
0.0628869
0.0402139

0.1227898
0.0693696
0.0439638

0.1306385
0.0727987
0.0455865

0.02095
0.01756
0.01654

0.26634
0.26568
0.26857

1.36247
1.35303
1.35044

—0.4044—0.0990—0.0395

+1.649
+2.631
+2.646

+3.570
+3.941
+3.485

+0.2551
+0.1216
+0.0904

+0.2292—0.2553—0.3358

—0.1352—0.4931—0.4756

Cs
0.153516
0.080100
0.048698

2.4828
2.4791
2.4758

+3.795 —0.4216
+1.629 —0.1064
+0.400 +0.1275

6' Reference 26, p. 343.

See Eq. (C.3). Note that the value of Ay obtained from (C.3) and this
table is to be subtracted from y,xp at the eigenvalues. The values of rp ap-
propriate to (C.3) are in units of the Bohr radius of hydrogen.

b Calculated from (C.2).
o Table II of reference 9.

both for each experimental eigenvalue. In Table VI we

list for K, Rb, and Cs an expression for what we con-
sider the most reasonable extrapolation of (q,„~—Ari) (for
a single value of ro, as given in the table) in the energy
range of principal interest. We list in addition two ex-
pressions labeled "upper bound" and "lower bound"
which represent approximate bounds on possible alter-
native extrapolations. Curves appreciably above the
"upper bound" lead with (B.5) to a negative value in
some range of energy for the normalization integral

Jq t U~(r)5'dr with u between r; and r, of Table IV,
an obviously absurd result. Curves below the "lower
bound" do not seem consistent with smooth extrapo-
lation from the values of («t, ~

—hg) at the eigenvalues.
The general shape of the curve was checked by com-

"Table III of reference 9.



TABLE VI. Values of p for alkali metals, ' L=2, with polarization correction.

Metal

Li
Na
K

Cs

2.880
3.511
4.351
4.351
4.351
4.351
4.651
4.651
4.651
4.651
4.961
4.961
4.961
4.961

+0.00086
+0.01041
+0.2674
+0.2672
+0.2568
+0.2643
+1.3390
+1-3371
+1.3425
+1.3336
+2.4592
+2.4642
+2.461.1
+2.454

+0.00032—0.0072—0.3177—0.2969—0.1825—0.2750—0.0168
+0.0385-0.0700
+0.1435
+0.2151
+0.1687
+0.1622
+0.3000

0
0

+0.3863
+0.2289
+0.1438
+0.0167—0.2094—0.5256—0.0500—1.1214—0.9923—0.9023—0.7289—1.3750

Range

all
all

1/Np &0.14
1/e') 0.14
1/e' &0.14
1/I'&0 14
1/~' &0.15
1/e' &0.15
1/I'&0. 15
1/I'&0. 15
1/e' &0.17
1/nP &0 17.
1/I') 0.17
1/e'&0. 17

Comments

Reasonable
Upper bound
Lower bound

Reasonable
Upper bound
Lower bound

Reasonable
Upper bound
Lower bound

a The coef6cients given are appropriate to an expression of the form g =A +B(1/n~) +C(1/n~)2 for the range of 1jn~ indicated and for the listed value of
r . See text following Eq. (C.3) for significance of the notations "reasonable, " "upper bound, " and "lower bound. "

b Polarization corrections were evaluated at the eigenvalues from the data of Table V for the value of ro listed above.

puting p exactly for a potential which is constant in the
core region and equal to —2/r outside the core, the
value of the constant potential being such as to give the
same value of g at E=O as found for the alkali atom.
For another choice of rp, one may evaluate (p,„~—hg) at
the eigenvalues from Table V and (C.3) and determine
the most reasonable extrapolation, using approximately
the same "upper bound" curve used here. There is
evidently a large discrepancy between the "lower
bound" and "upper bound" curves at an energy of
e'=0.5 and consequently a large uncertainty in the
extrapolated value of g. Results of calculations on the
band structure of the alkalis undertaken to date have
not been very sensitive to this uncertainty, so that they

appear reliable despite this difhculty. Any result that
is sensitive to this uncertainty of course is not reliable.

For L=2 for Li and Na, (q,„~—hr7) is so small that we
have chosen to approximate it by an expression linear
in p over the range for which (q,„~—Dg) is positive. Ex-
pressions for appropriate values of ro are given in
Table VI.

As a general criterion of the reliability of any extra-
polation formula, we suggest comparing the value ob-
tained from the formula at some energy of interest with
that obtained by extrapolating (g, p

—hg) graphically
from the values at the valence eigenvalues. Reliable
theoretical results of band calculations must not depend
sensitively on such differences.


