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The cellular method was used to calculate the cohesive energy of rubidium. The potential was obtained
from a self-consistent field for Rb+ supplemented by an exchange potential. Wave functions were obtained to
order k' in the solid and for the lowest valence electron state in the free atom. A value of 20.7 kcal/mole was
obtained for the cohesive energy, including k terms in the Fermi energy, but neglecting any polarization
effects. The ratio of ~|ts(0)

~

for an electron on the Fermi surface in the metal to that for an electron in the
free atom was computed and found to be in good agreement with results of the Knight shift measurements.

INTRODUCTION

HE physical ideas underlying the calculation of
the cohesive energies of the alkali metals have

been reviewed by Wigner and Seitz. ' SrieQy, the co-
hesive energy is principally the diGerence between the
boundary correction (which measures the difference in

energy between the lowest valence electron state in the
free atom and in the solid) and the Fermi energy of the
electrons in the band. To this must be added a correction
for the Coulomb interactions of the valence electrons.
There are two diGering approaches to the evaluation of
the boundary correction and the Fermi energy. One is
the quantum defect method, ' in which use of an explicit
potential is avoided and spectroscopic information is
used directly in the determination of the electron wave
functions in the solid. Alternatively, one can integrate
the Schrodinger equation, using a potential obtained
from a self-consistent field. The two methods generally
give comparable results for the cohesive energies of the
alkalis. Although the quantum defect method possesses
greater intrinsic accuracy, its advantages in this respect
are somewhat oGset by difhculty in extrapolating the
spectroscopic data to the energies of interest. Nor does
it give the electron wave function throughout the cell.

Ke have computed the cohesive energy of rubidium
using the cellular method in the spherical approximation
and have determined the solid-state wave function to
second order in the wave vector k. The calculation is
based on a potential obtained from a self-consistent
field, to which we have added an exchange potential.
The wave function of an electron in the 5S state of the
free atom has also been obtained for this potential.

DETERMINATION OF THE POTENTIAL

CALCULATION OF THE COHESIVE ENERGY

The cohesive energy (E,) is defined as follows:

—E,=Ets+Ez+Er.

Eg is the boundary correction

gp

(2)

where Ep is the energy of the lowest state of a valence
electron in the solid and E is the energy of the lowest
state in the free atom. We obtain (all energies are given
in Rydbergs)

of the Rb+ ion. It can be expected that exchange eGects
are quite important in an atom as heavy as rubidium.
For this reason, we have computed an approximate
potential to take account of the exchange interactions of
core and valence electrons in the following way:

A trial wave function was obtained for the lowest
state of a valence electron in the solid by constructing
the orthogona, lized plane wave of k=0.' The exchange
potential is defined for a state whose wave function is it

as
~ ()=~( ')0(')/0(»

where A is the Hartree-Pock exchange operator. ' The
exchange potential defined by (1) will have inhnities
where lt (r) has zeros. These infinities, which contribute
nothing to the energy in an accurate treatment, were
removed by a smoothing process. The resulting exchange
potential roughly resembles a staircase, varying slowly
in a region between nodes of P(r) and dropping rapidly
to a new level in the vicinity of a node. The final po-
tential adopted is listed in Table I.

E = —0.305.A self-consistent field without exchange has been Ep= —0.444,
obtained for Rb+ by Hartree and Hartree. ' These
authors have also computed the function 2Z„, such that ~~ is the Fermi energy. If the energy of a state of wave

2Z„/r is the potential energy of an electron in the field vector k is expanded in powers of k, we have

*This work was supported by the OfFice of Naval Research. E(k) =Es+Esk'+E4k4. (4)
E. Wigner and F. Seitz, in Solid State Physics, edited by F.

Seitz and D. Turnbull (Academic Press, Inc. , New York, 1955), 4 For a discussion of the orthogonalized plane wave method, see
Vol. 1, p. 97. T. O. Woodruff, in Solid State Physics, edited by F. Seitz and D.

F. S. Ham, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc. , New York, 1957), Vol. 4, p. 367.
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The Fermi energy is

Er——2.21Eo/r s+5.81E4/r, '. (5)

E2 and E4 are determined from the formula given by
Bardeen' and by Silverman, 7 respectively. We obtain

Ro Ry R2

TABLE I. The solid-state functions R0, R~, R2, and Q2 de-
fined in the text are given as functions of r (in atomic units) for
E0= —0.04442 ry. The free atom function R is given and also the
function —r V, where V is the potential used in the calculation.
E = —0.305 ry.

E2= 1.1814, E4= —1.28, Ep =0.0860.

All calculations are made for r, =5.21 atomic units
which is close to the experimental value r, =5.22 atomic
units at T=O'K. ' The quantity EI represents the
energy of interaction of electrons in the solid. This is
given approximately as

Er =0.284/r, —0.88/(r, +7.79).

The last term, which is the correlation energy, is
computed according to Wigner's formula. The inter-
action energy E& is found to be —0.0132 Rydberg.
From (1), the cohesive energy is obtained.

E,=0.066 ry= 20.7 kcal/mole.
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The experimental cohesive energy is 18.9 kcal/mole.
It is somewhat surprising that the calculated cohesive

energy exceeds the experimental result since no correc-
tion for core polarization has been included. It is pos-
sible that the magnitude of E4 is somewhat too large or
that Wigner's formula overestimates the magnitude of
the correlation energy.

Using the quantum defect method, Brooks has ob-
tained values for the band parameters Eo and E2 as
follows: Eo= —0.462 ry, E2——1.101. These values are
obtained for r, =5.21 atomic units by interpolation in
the published results. ' The cohesive energy obtained in
this way, neglecting E4, is 24.5 kcal/mole.

WAVE FUNCTIONS

Following the procedure of Silverman, 7 we express the
wave function for a state in the following way:
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u, (r,) =0. (9)
' J. Bardeen, J. Chem. Phys. 6, 367 (1938).
r R. A. Silverman, Phys. Rev. 85, 227 (1952).
8 G. B. Benedek and T. Kushida, Technical Report No. 268,

Cruft Laboratory, Harvard University, 1957 (unpublished).' E. P. Wigner, Phys. Rev. 46, 1002 (1934). An error in this
formula is corrected by D. Pines, in Solid State Physics, edited by
F. Seita and D. Turnbull (Academic Press, Inc. , New York, 1955),
Vol. 1, p. 367.

where uk=uo+ikPtut+k'(usPs+Po), in which Pt and
I'2 are the erst and second Legendre polynomials and
the functions uo, ux, us, and @o are radial functions. The
function No is the wave function of the electron whose
wave vector is zero, and whose energy is Eo.

ut ——f,(r) —uo,

where f~ is a P-state solution of the radial wave equation
for E=EO. The boundary condition on e& is

fRI2dr = 0.67854

R2~dr =18.209

JRo02dr = 2.7628
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The other functions are given by

Ns= prier+ sf' Np+cgfd,

Po= srQr+ pf Np+Es(BQp/BE),

(10)

(BN2/Br). ,= (Brtp/Br) r, 0——
The boundary conditions on N2 determines c&

..

—2E2

0 dr ) r, r,ep(r, )
(13)

The function Bup/BE satisfies

—1d( d$—
I

r'—I+U—Ep
r' dr & dr)

Blp

BE
=Qp,

subject to the condition

Blp
Np dv-=0,

BE
(15)

which implies that up is normalized for all E. The
boundary condition on gp determines Es which appears
in Eq. (4) to be

rP rdf, '

Es———&cps(r,)—
2 .f„dr r,

(16)

Now define functions

in which fq is a d-state solution of the radial wave
equation of E=Ep. These functions satisfy the boundary
conditions

(12)

bidium) has been measured. ' "This shift gives a value
for (Ifs(0) I'), where its is the wave function of an
electron on the Fermi surface and ( ) symbolizes an
average over the Fermi surface. In order to deduce a
value for (Igp(0) I') from the experimental data, it is
necessary to know the spin paramagnetic susceptibility.
The spin susceptibility of rubidium has not been meas-
ured. The value used in interpreting the experiments is
computed from a formula of Pines. At room temperature
and atmospheric pressure Benedek and Kushida find
(Ifp(0) I')=2.32. A value for IP~(0) I', where P~ is
the wave function of the valence electron in the free
atom, has been obtained from observed hyperfine
splittings: If~(0) I'=2.337. The ratio P, defined as

(=
& I

0~(0) I')/14~(0) I',

is thus found to be 0.993.
The cell radius in rubidium is at room temperature in

5.31 atomic units, about 2% larger than at T= 0. From
the measurements of Benedek and Kushida" it is pos-
sible to obtain a value for $ at a cell radius equal to that
used in these calculations (r,=5.21 atomic units). In
doing this, we neglect the explicit temperature depend-
ence of the Knight shift. The value of ( for r,=5.21
atomic units is then found to be $= 1.03.

A theoretical estimate of $ can be made by using the
wave function previously calculated. Assuming the
Fermi surface to be spherical with kf'= 0.136, we obtain

I
lt s (0)

I

'= 2.162. The free atom function gives
I p~ (0) I

'
= 1.965. The ratio P is then 1.10.The agreement is quite
gratifying considering the crudeness of the assumptions
involved. In particular it is not obvious that an ex-
pansion of P& in powers of k should converge readily on
the Fermi surface.

Ro= rep, Rr= rlr, Rs fss Qs —rPp. (17)

These functions are tabulated in Table I. The function
E, which is r times the radial part of the free atom wave
function is also given.

THE KNIGHT SHIFT

The shift of the nuclear magnetic resonance line in
metallic rubidium (as composed with nonmetallic ru-
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