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The cellular method was used to calculate the cohesive energy of rubidium. The potential was obtained
from a self-consistent field for Rb* supplemented by an exchange potential. Wave functions were obtained to
order %2 in the solid and for the lowest valence electron state in the free atom. A value of 20.7 kcal/mole was
obtained for the cohesive energy, including %* terms in the Fermi energy, but neglecting any polarization
effects. The ratio of |¢2(0)| for an electron on the Fermi surface in the metal to that for an electron in the
free atom was computed and found to be in good agreement with results of the Knight shift measurements.

INTRODUCTION

HE physical ideas underlying the calculation of
the cohesive energies of the alkali metals have
been reviewed by Wigner and Seitz.! Briefly, the co-
hesive energy is principally the difference between the
boundary correction (which measures the difference in
energy between the lowest valence electron state in the
free atom and in the solid) and the Fermi energy of the
electrons in the band. To this must be added a correction
for the Coulomb interactions of the valence electrons.
There are two differing approaches to the evaluation of
the boundary correction and the Fermi energy. One is
the quantum defect method,? in which use of an explicit
potential is avoided and spectroscopic information is
used directly in the determination of the electron wave
functions in the solid. Alternatively, one can integrate
the Schrodinger equation, using a potential obtained
from a self-consistent field. The two methods generally
give comparable results for the cohesive energies of the
alkalis. Although the quantum defect method possesses
greater intrinsic accuracy, its advantages in this respect
are somewhat offset by difficulty in extrapolating the
spectroscopic data to the energies of interest. Nor does
it give the electron wave function throughout the cell.
We have computed the cohesive energy of rubidium
using the cellular method in the spherical approximation
and have determined the solid-state wave function to
second order in the wave vector k. The calculation is
based on a potential obtained from a self-consistent
field, to which we have added an exchange potential.
The wave function of an electron in the 55 state of the
free atom has also been obtained for this potential.

DETERMINATION OF THE POTENTIAL

A self-consistent field without exchange has been
obtained for Rb* by Hartree and Hartree.®> These
authors have also computed the function 2Z ,, such that
27 ,/7 is the potential energy of an electron in the field
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of the Rb+ ion. It can be expected that exchange effects
are quite important in an atom as heavy as rubidium.
For this reason, we have computed an approximate
potential to take account of the exchange interactions of
core and valence electrons in the following way:

A trial wave function was obtained for the lowest
state of a valence electron in the solid by constructing
the orthogonalized plane wave of k=0.! The exchange
potential is defined for a state whose wave function is

as
Vo) =A(r, W) /¥(r), (1

where A4 is the Hartree-Fock exchange operator. The
exchange potential defined by (1) will have infinities
where ¥ () has zeros. These infinities, which contribute
nothing to the energy in an accurate treatment, were
removed by a smoothing process. The resulting exchange
potential roughly resembles a staircase, varying slowly
in a region between nodes of ¥ () and dropping rapidly
to a new level in the vicinity of a node. The final po-
tential adopted is listed in Table I.

CALCULATION OF THE COHESIVE ENERGY

The cohesive energy (E,) is defined as follows:
—E.=Ept+Er+Ers. (2)
Ejg is the boundary correction
Ep=Ey—E,. )

where E, is the energy of the lowest state of a valence
electron in the solid and E, is the energy of the lowest
state in the free atom. We obtain (all energies are given
in Rydbergs) ~

Ey=—0.444, E,=-—0.305.

Er is the Fermi energy. If the energy of a state of wave
vector k is expanded in powers of k, we have

E(k)= Eot+ EJ*+Esk*. 4)

4 For a discussion of the orthogonalized plane wave method, see
T. O. Woodruff, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1957), Vol. 4, p. 367.

5 For a discussion of various methods of defining an average
exchange potential, see Herman, Callaway, and Acton, Phys.
Rev. 95, 3}7)1 (1954).
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COHESIVE ENERGY AND WAVE FUNCTIONS FOR Rb

The Fermi energy is
Ep=221Es/r2+5.81E4/r . (5)

E, and E, are determined from the formula given by
Bardeen® and by Silverman,” respectively. We obtain

E,=1.1814, E,=-—1.28, Er=0.0860.

All calculations are made for r,=35.21 atomic units
which is close to the experimental value 7,=5.22 atomic
units at 7’=0°K.® The quantity E; represenis the
energy of interaction of electrons in the solid. This is
given approximately as

E;=0.284/7,—0.88/ (rs+17.79). (6)

The last term, which is the correlation energy, is
computed according to Wigner’s formula.® The inter-
action energy Er is found to be —0.0132 Rydberg.
From (1), the cohesive energy is obtained.

E,=0.066 ry=20.7 kcal/mole.

The experimental cohesive energy is 18.9 kcal/mole.

It is somewhat surprising that the calculated cohesive
energy exceeds the experimental result since no correc-
tion for core polarization has been included. It is pos-
sible that the magnitude of E4is somewhat too large or
that Wigner’s formula overestimates the magnitude of
the correlation energy.

Using the quantum defect method, Brooks has ob-
tained values for the band parameters Eo and E, as
follows: E¢=—0.462 ry, E;=1.101. These values are
obtained for r,=35.21 atomic units by interpolation in
the published results.® The cohesive energy obtained in
this way, neglecting Ey, is 24.5 kcal/mole.

WAVE FUNCTIONS

Following the procedure of Silverman,” we express the
wave function for a state in the following way:

Y= e Ty, ()

where uy=1uo+1k P+ k*(u2Pos+¢o), in which P; and
P, are the first and second Legendre polynomials and
the functions %o, %1, %3, and ¢, are radial functions. The
function #, is the wave function of the electron whose
wave vector is zero, and whose energy is Ej.

1= [p(r) —tho, ©)

where f,is a p-state solution of the radial wave equation
for E= E,. The boundary condition on %, is

#1(rs)=0. 9

6 J. Bardeen, J. Chem. Phys. 6, 367 (1938).

7R. A. Silverman, Phys. Rev. 85, 227 (1952).

8 G. B. Benedek and T. Kushida, Technical Report No. 268,
Cruft Laboratory, Harvard University, 1957 (unpublished).

9 E. P. Wigner, Phys. Rev. 46, 1002 (1934). An error in this
formula is corrected by D. Pines, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955),
Vol. 1, p. 367.

335

TaBLE I. The solid-state functions Ry, Ri, R, and Q; de-
fined in the text are given as functions of  (in atomic units) for
Eog=—0.0444, ry. The free atom function R, is given and also the
function —7V, where V is the potential used in the calculation.

o= —0.305 ry.

r Ro Ri R: Q2 Ra —rV ()
0.000  0.00000  0.00000  0.000000  0.00000  0.00000 74.000
0.005  0.02488 —0.00589  0.000045  0.03076  0.02055 72.136
0.010  0.04071 —0.02142  0.000341  0.05027  0.03362 70.879
0.015  0.04927 —0.04380  0.001098  0.06070  0.04069 69.404
0.020  0.05207 —0.07075  0.002485  0.06392  0.04300 67.999
0.03 0.04535 ~0.13125  0.007646  0.05477  0.03745 65.385
0.04 0.02850 —0.1919 0.016536  0.03267  0.02353 63.007
0.05  +0.00698 —0.2459 0.02949  4-0.00450 -0.00576 60.740
0.06 —0.01550 —0.2892 0.04656  —0.02500 —0.01281 58.572
0.07 —0.03654 —0.3200 0.06762  —0.05272 —0.03018 56.495
0.08 —0.05469 —0.3378 0.09238  —0.07673 —0.04517 54.550
0.09 —0.06914 —0.3430 0.12048  —0.09591 —0.05711 52.728
0.10 —0.07958 —0.3366 0.15147 —0.10976 —0.06573 51.106
0.12  —0.08850 —0.2937 0.2202  —0.12132 —0.07309 48.094
0.14 —0.08335 —0.2206 0.2946  —0.11345 —0.06882 45.428
0.16 —0.06741 —0.1288 0.3708  —0.09022 —0.05565 42.992
0.18  —0.04421 —0.0281 0.4455  —0.05618 —0.03648 40.768
020 —0.01696 -0.0733 05159  —0.01569 —0.01396 38.685
022  +0.01164  0.1695 0.5798  4-0.02750 -+0.00967 36.743
0.24 0.03952  0.2563 0.6354 0.07036  0.03269 34.877
0.26 0.06514  0.3309 0.6817 0.10696  0.05386 33.112
0.28 0.08750  0.3920 0.7182 0.14642  0.07231 31.455
0.30 0.10596  0.4389 0.7444 0.1769 0.08754 29.920
0.35 0.13371  0.4973 0.7659 0.2258 0.11040 26.671
0.40 0.13646  0.4826 0.7282 0.2354 0.11257 23.975
0.45 0.11900  0.4137 0.6395 0.2107 0.09803 21.719
0.50 0.08729  0.3093 0.5098 0.1594 0.07170 19.730
0.55 0.04697  0.1851 0.3489 0.0895 0.03828 17.992
0.60 +0.00278  0.0534 +0.1662  +0.0086 --0.00167 16.432
0.70  —0.08386 —0.1997 —0.2340  —0.1636 —0.06995 13.863
0.80 —0.1552 —0.4108 —0.6431  —0.3229 —0.12867 11.830
090 —0.2047 —0.5686 —1.0322 —0.4522 —0.1691 10.363
1.00 —0.2318 —0.6748 —1.3847  —05444 —0.1907  9.360
1.10  —0.2383 —0.7360 —1.6905  —0.5980 —0.1950  8.479
120 —0.2276 —0.7608 —1.9455  —0.6152 —0.1848  7.710
14 —0.1688 —0.7357 —2.3067 —0.5579 —0.1333  6.467
1.6 —0.0950 —0.6553 —2.5047 —0.4178 —0.0580  5.511
1.8 —0.0092 —0.5535 —2.5689  —0.2245 -+0.0252  4.649
2.0 400777 —0.4525 —2.5420  —0.0056 0.1064  4.008
2.2 0.1601  —0.3630 —2.4598  +0.2205 0.1807  3.293
2.4 02350  —0.2896 —2.3547 0.4431 0.2464 2906
2.6 0.3044 —0.2322 —2.2445 0.6560 0.3032  2.718
2.8 0.3658 —0.1886 —2.1370 0.8555 03510  2.561
3.0 04202 —0.1560 ~2.0374 1.0394 03902  2.436
32 04685 —0.1318 —1.9491 1.2075 04215  2.337
3.4 05114 —0.1136 —1.8741 1.3601 0.4456  2.258
3.6 05408 —0.0994 —1.8136 11983 04632  2.197
3.8 0.5846 —0.0876 —1.7685 1.6236 04751  2.152
4.0 0.6165 —0.0768 —1.7384 1.7375 04819 2117
42 0.6462 —0.0661 —1.7238 1.8417 0.4844  2.089
4.4 0.6747 —0.0550 —1.7244 1.9387 0.4831  2.068
4.6 0.7024 —0.0427 —1.7396 2.0301
4.8 0.7301  —0.0297 —1.7710 2.1175 04713 2.041
5.0 0.7583  —0.0157 —1.8177 2.2027
52 0.7876  —0.0010 —1.8794 2.2877 0.4503  2.018
5211 0.7893 0.0000 —1.8831 2.2027

7 Ra —rV(r)
5.6 0.4233  2.000
6.0 0.3927  2.000
6.4 0.3604
6.8 0.3276
7.2 0.2953
S Ritdr = 0.67854 7.6 0.2643
8.0 0.2350
J Redr =18.209 8.4 0.2078
S RoOudr = 2.7628 9.2 0.1601
10,0 0.1213
10.8 0.0907
11.6 0.0669
12.4 0.0489
13.2 0.0354
14.8 0.0180
16.4 0.0089
18.0 0.0044
19.6 0.0021
21.2 0.0010
22.8 0.0005
24.4 0.0002
26.0 0.0001
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The other functions are given by
so= 2101+ 370+ caf a, (10)
¢0= %ml—f— '('1;7'2M0+E2 (auo/GE) , (11)

in which fq is a d-state solution of the radial wave
equation of £= E,. These functions satisfy the boundary
conditions

(auz/ai’)rsz (6¢0/37)r3= 0. (12)
The boundary conditions on #; determines cq:
dfa —2E,
6.1(*-—) = . (13)
dr Jrs rsto(rs)
The function due/dE satisfies
—1 d d a’l/t()
[————-(r2—)+V—Eo]—=u0, (14)
72 dr\ dr JE
subject to the condition
6%0
f s =0, (15)
dE

which implies that #, is normalized for all E. The
boundary condition on ¢, determines £, which appears
in Eq. (4) to be

7 r dfyp
E2=~uoz<rs>[——] . (16)
2 fp dr Ts
Now define functions
Ro=ruo, Ri=rui, Ro=rus, Qas=rpo. (17)

These functions are tabulated in Table I. The function
R, which is 7 times the radial part of the free atom wave
function is also given.

THE KNIGHT SHIFT

The shift of the nuclear magnetic resonance line in
metallic rubidium (as composed with nonmetallic ru-
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bidium) has been measured.®® This shift gives a value
for (|¢r(0)]?), where ¢p is the wave function of an
electron on the Fermi surface and { ) symbolizes an
average over the Fermi surface. In order to deduce a
value for {|¢r(0)|2 from the experimental data, it is
necessary to know the spin paramagnetic susceptibility.
The spin susceptibility of rubidium has not been meas-
ured. The value used in interpreting the experiments is
computed from a formula of Pines. At room temperature
and atmospheric pressure Benedek and Kushida find
(|¢r(0)|2)=2.32. A value for |¢4(0)|2, where ¥ is
the wave function of the valence electron in the free
atom, has been obtained from observed hyperfine
splittings: |4 (0)|2=2.337. The ratio £, defined as

E=([¥r )7/ [¥4(0)[%,

is thus found to be 0.993.

The cell radius in rubidium is at room temperature in
5.31 atomic units, about 29, larger than at T=0. From
the measurements of Benedek and Kushida® it is pos-
sible to obtain a value for £ at a cell radius equal to that
used in these calculations (7,=5.21 atomic units). In
doing this, we neglect the explicit temperature depend-
ence of the Knight shift. The value of £ for 7,=5.21
atomic units is then found to be §=1.03.

A theoretical estimate of £ can be made by using the
wave function previously calculated. Assuming the
Fermi surface to be spherical with k2=0.136, we obtain
|¢¥#(0)|2=2.162. The free atom function gives | 4(0) |2
=1.965. The ratio £is then 1.10. The agreement is quite
gratifying considering the crudeness of the assumptions
involved. In particular it is not obvious that an ex-
pansion of ¥ in powers of % should converge readily on
the Fermi surface.

(18)
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