Cohesive Energy and Wave Functions for Rubidium*

JOSEPH CALLAWAY AND DANIEL F. MORGAN, JR. Department of Physics, University of Miami, Coral Gables, Florida (Received June 18, 1958)

The cellular method was used to calculate the cohesive energy of rubidium. The potential was obtained from a self-consistent field for Rb⁺ supplemented by an exchange potential. Wave functions were obtained to order k^2 in the solid and for the lowest valence electron state in the free atom. A value of 20.7 kcal/mole was obtained for the cohesive energy, including k^4 terms in the Fermi energy, but neglecting any polarization effects. The ratio of $|\psi^2(0)|$ for an electron on the Fermi surface in the metal to that for an electron in the free atom was computed and found to be in good agreement with results of the Knight shift measurements.

INTRODUCTION

HE physical ideas underlying the calculation of the cohesive energies of the alkali metals have been reviewed by Wigner and Seitz.¹ Briefly, the cohesive energy is principally the difference between the boundary correction (which measures the difference in energy between the lowest valence electron state in the free atom and in the solid) and the Fermi energy of the electrons in the band. To this must be added a correction for the Coulomb interactions of the valence electrons. There are two differing approaches to the evaluation of the boundary correction and the Fermi energy. One is the quantum defect method,² in which use of an explicit potential is avoided and spectroscopic information is used directly in the determination of the electron wave functions in the solid. Alternatively, one can integrate the Schrödinger equation, using a potential obtained from a self-consistent field. The two methods generally give comparable results for the cohesive energies of the alkalis. Although the quantum defect method possesses greater intrinsic accuracy, its advantages in this respect are somewhat offset by difficulty in extrapolating the spectroscopic data to the energies of interest. Nor does it give the electron wave function throughout the cell.

We have computed the cohesive energy of rubidium using the cellular method in the spherical approximation and have determined the solid-state wave function to second order in the wave vector **k**. The calculation is based on a potential obtained from a self-consistent field, to which we have added an exchange potential. The wave function of an electron in the 5S state of the free atom has also been obtained for this potential.

DETERMINATION OF THE POTENTIAL

A self-consistent field without exchange has been obtained for Rb⁺ by Hartree and Hartree.³ These authors have also computed the function $2Z_p$, such that $2Z_{p}/r$ is the potential energy of an electron in the field of the Rb⁺ ion. It can be expected that exchange effects are quite important in an atom as heavy as rubidium. For this reason, we have computed an approximate potential to take account of the exchange interactions of core and valence electrons in the following way:

A trial wave function was obtained for the lowest state of a valence electron in the solid by constructing the orthogonalized plane wave of $\mathbf{k}=0.4$ The exchange potential is defined for a state whose wave function is ψ as

$$V_{e}(\mathbf{r}) = A(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}')/\psi(\mathbf{r}), \qquad (1)$$

where A is the Hartree-Fock exchange operator.⁵ The exchange potential defined by (1) will have infinities where $\psi(r)$ has zeros. These infinities, which contribute nothing to the energy in an accurate treatment, were removed by a smoothing process. The resulting exchange potential roughly resembles a staircase, varying slowly in a region between nodes of $\psi(r)$ and dropping rapidly to a new level in the vicinity of a node. The final potential adopted is listed in Table I.

CALCULATION OF THE COHESIVE ENERGY

The cohesive energy (E_c) is defined as follows:

$$-E_c = E_B + E_F + E_I. \tag{2}$$

 E_B is the boundary correction

$$E_B = E_0 - E_a. \tag{3}$$

where E_0 is the energy of the lowest state of a valence electron in the solid and E_a is the energy of the lowest state in the free atom. We obtain (all energies are given in Rydbergs)

$$E_0 = -0.444, \quad E_a = -0.305.$$

 E_F is the Fermi energy. If the energy of a state of wave vector \mathbf{k} is expanded in powers of k, we have

$$E(k) = E_0 + E_2 k^2 + E_4 k^4.$$
(4)

^{*} This work was supported by the Office of Naval Research. ¹ E. Wigner and F. Seitz, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955),

Seitz and D. Turnbull (Academic Press, Inc., New York, 1933),
 Vol. 1, p. 97.
 * F. S. Ham, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1, p. 127.
 * D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A151, 96 (1935).

⁴ For a discussion of the orthogonalized plane wave method, see T. O. Woodruff, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1957), Vol. 4, p. 367. ⁵ For a discussion of various methods of defining an average exchange potential, see Herman, Callaway, and Acton, Phys. Rev. 95, 371 (1954).

$$E_F = 2.21 E_2 / r_s^2 + 5.81 E_4 / r_s^4. \tag{5}$$

 E_2 and E_4 are determined from the formula given by Bardeen⁶ and by Silverman,⁷ respectively. We obtain

$$E_2 = 1.1814, \quad E_4 = -1.28, \quad E_F = 0.0860.$$

All calculations are made for $r_s = 5.21$ atomic units which is close to the experimental value $r_s = 5.22$ atomic units at $T=0^{\circ}$ K.⁸ The quantity E_I represents the energy of interaction of electrons in the solid. This is given approximately as

$$E_I = 0.284/r_s - 0.88/(r_s + 7.79). \tag{6}$$

The last term, which is the correlation energy, is computed according to Wigner's formula.9 The interaction energy E_I is found to be -0.0132 Rydberg. From (1), the cohesive energy is obtained.

$$E_c = 0.066 \text{ ry} = 20.7 \text{ kcal/mole.}$$

The experimental cohesive energy is 18.9 kcal/mole.

It is somewhat surprising that the calculated cohesive energy exceeds the experimental result since no correction for core polarization has been included. It is possible that the magnitude of E_4 is somewhat too large or that Wigner's formula overestimates the magnitude of the correlation energy.

Using the quantum defect method, Brooks has obtained values for the band parameters E_0 and E_2 as follows: $E_0 = -0.462$ ry, $E_2 = 1.101$. These values are obtained for $r_s = 5.21$ atomic units by interpolation in the published results.³ The cohesive energy obtained in this way, neglecting E_4 , is 24.5 kcal/mole.

WAVE FUNCTIONS

Following the procedure of Silverman,⁷ we express the wave function for a state in the following way:

$$\psi_{\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}},\tag{7}$$

where $u_k = u_0 + ikP_1u_1 + k^2(u_2P_2 + \phi_0)$, in which P_1 and P_2 are the first and second Legendre polynomials and the functions u_0 , u_1 , u_2 , and ϕ_0 are radial functions. The function u_0 is the wave function of the electron whose wave vector is zero, and whose energy is E_0 .

$$u_1 = f_p(r) - u_0, (8)$$

where f_p is a *p*-state solution of the radial wave equation for $E = E_0$. The boundary condition on u_1 is

$$u_1(r_s) = 0. \tag{9}$$

⁶ J. Bardeen, J. Chem. Phys. 6, 367 (1938).
⁷ R. A. Silverman, Phys. Rev. 85, 227 (1952).
⁸ G. B. Benedek and T. Kushida, Technical Report No. 268,

TABLE I. The solid-state functions R_0 , R_1 , R_2 , and Q_2 defined in the text are given as functions of r (in atomic units) for $E_0 = -0.0444_2$ ry. The free atom function R_a is given and also the function -rV, where V is the potential used in the calculation. $E_a = -0.305$ ry.

r	R_0	R_1	R_2	Q_2	Ra	-rV(r)
).000).005).010).015).020	0.00000 0.02488 0.04071 0.04927 0.05207	$\begin{array}{c} 0.00000 \\ -0.00589 \\ -0.02142 \\ -0.04380 \\ -0.07075 \end{array}$	$\begin{array}{c} 0.000000\\ 0.000045\\ 0.000341\\ 0.001098\\ 0.002485\end{array}$	0.00000 0.03076 0.05027 0.06070 0.06392	0.00000 0.02055 0.03362 0.04069 0.04300	74.000 72.136 70.879 69.404 67.999
).03).04).05).06).07).08).09).10	$\begin{array}{c} 0.04535\\ 0.02850\\ +0.00698\\ -0.01550\\ -0.03654\\ -0.05469\\ -0.06914\\ -0.07958\end{array}$	-0.13125 -0.1919 -0.2459 -0.2892 -0.3200 -0.3378 -0.3430 -0.3366	$\begin{array}{c} 0.007646\\ 0.016536\\ 0.02949\\ 0.04656\\ 0.06762\\ 0.09238\\ 0.12048\\ 0.15147\end{array}$	$\begin{array}{c} 0.05477\\ 0.03267\\ +0.00450\\ -0.02500\\ -0.05272\\ -0.07673\\ -0.09591\\ -0.10976\end{array}$	$\begin{array}{c} 0.03745\\ 0.02353\\ +0.00576\\ -0.01281\\ -0.03018\\ -0.04517\\ -0.05711\\ -0.06573\end{array}$	65.385 63.007 60.740 58.572 56.495 54.550 52.728 51.106
).12).14).16).18).20).22).24).26).28).30	$\begin{array}{c} -0.08850\\ -0.08335\\ -0.06741\\ -0.04421\\ -0.01606\\ +0.01164\\ 0.03952\\ 0.06514\\ 0.08750\\ 0.10596\end{array}$	$\begin{array}{c} -0.2937 \\ -0.2206 \\ -0.1288 \\ -0.0281 \\ +0.0733 \\ 0.1695 \\ 0.2563 \\ 0.3309 \\ 0.3920 \\ 0.4389 \end{array}$	$\begin{array}{c} 0.2202\\ 0.2946\\ 0.3708\\ 0.4455\\ 0.5159\\ 0.5798\\ 0.6354\\ 0.6817\\ 0.7182\\ 0.7444 \end{array}$	$\begin{array}{c} -0.12132\\ -0.11345\\ -0.09022\\ -0.05618\\ -0.01569\\ +0.02750\\ 0.07036\\ 0.10696\\ 0.14642\\ 0.1769\end{array}$	$\begin{array}{c} -0.07309 \\ -0.06882 \\ -0.05565 \\ -0.03648 \\ -0.01396 \\ +0.00967 \\ 0.03269 \\ 0.05386 \\ 0.07231 \\ 0.08754 \end{array}$	48.094 45.428 42.992 40.768 38.685 36.743 34.877 33.112 31.455 29.920
).35).40).45).50).55).60	$\begin{array}{c} 0.13371 \\ 0.13646 \\ 0.11900 \\ 0.08729 \\ 0.04697 \\ +0.00278 \end{array}$	0.4973 0.4826 0.4137 0.3093 0.1851 0.0534	$\begin{array}{c} 0.7659 \\ 0.7282 \\ 0.6395 \\ 0.5098 \\ 0.3489 \\ +0.1662 \end{array}$	$\begin{array}{c} 0.2258 \\ 0.2354 \\ 0.2107 \\ 0.1594 \\ 0.0895 \\ +0.0086 \end{array}$	0.11040 0.11257 0.09803 0.07170 0.03828 +0.00167	26.671 23.975 21.719 19.730 17.992 16.482
).70).80).90 .00 .10 .20	-0.08386 -0.1552 -0.2047 -0.2318 -0.2383 -0.2276	$\begin{array}{r} -0.1997 \\ -0.4108 \\ -0.5686 \\ -0.6748 \\ -0.7360 \\ -0.7608 \end{array}$	$\begin{array}{r} -0.2340 \\ -0.6431 \\ -1.0322 \\ -1.3847 \\ -1.6905 \\ -1.9455 \end{array}$	$\begin{array}{r} -0.1636 \\ -0.3229 \\ -0.4522 \\ -0.5444 \\ -0.5980 \\ -0.6152 \end{array}$	-0.06995 -0.12867 -0.1691 -0.1907 -0.1950 -0.1848	13.863 11.830 10.363 9.360 8.479 7.710
.4 .6 .8 .0 .2 .4 .6 .8 .0 .2 .4 .6 .8 .0 .2 .4 .6 .8 .0 .2 .4 .6 .8 .0 .2 .2 .4 .6 .8 .0 .2 .2 .4 .6 .8 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .0 .2 .4 .6 .8 .0 .2 .2 .4 .6 .0 .2 .2 .4 .6 .8 6 	$\begin{array}{c} -0.1688\\ -0.0950\\ -0.0092\\ +0.0777\\ 0.1601\\ 0.2359\\ 0.3044\\ 0.3658\\ 0.4202\\ 0.4685\\ 0.5114\\ 0.5498\\ 0.5846\\ 0.6165\\ 0.6462\\ 0.6747\\ 0.7024\\ 0.7301\\ 0.7583\\ 0.7893\end{array}$	$\begin{array}{c} -0.7357\\ -0.6553\\ -0.4525\\ -0.3630\\ -0.2392\\ -0.1886\\ -0.1318\\ -0.1136\\ -0.1318\\ -0.1136\\ -0.0994\\ -0.0876\\ -0.0768\\ -0.0768\\ -0.0661\\ -0.0427\\ -0.0297\\ -0.0157\\ -0.0157\\ -0.0101\\ 0.0000\end{array}$	$\begin{array}{r} -2.3067\\ -2.5047\\ -2.5689\\ -2.5420\\ -2.4598\\ -2.3547\\ -2.2445\\ -2.1370\\ -2.0374\\ -1.9491\\ -1.8741\\ -1.8136\\ -1.7685\\ -1.7685\\ -1.7384\\ -1.7238\\ -1.7244\\ -1.7396\\ -1.7710\\ -1.8177\\ -1.8177\\ -1.8794\\ -1.8831\end{array}$	$\begin{array}{r} -0.5579\\ -0.4178\\ -0.2245\\ -0.0056\\ +0.2205\\ 0.4431\\ 0.6560\\ 0.8555\\ 1.0394\\ 1.2075\\ 1.3601\\ 1.4983\\ 1.6236\\ 1.7375\\ 1.9387\\ 2.0301\\ 2.1175\\ 2.2027\\ 2.2877\\ 2.2927\end{array}$	$\begin{array}{c} -0.1333\\ -0.0580\\ +0.0252\\ 0.1064\\ 0.1807\\ 0.2464\\ 0.3032\\ 0.3510\\ 0.3902\\ 0.4215\\ 0.4456\\ 0.4632\\ 0.4751\\ 0.4819\\ 0.4831\\ 0.4713\\ 0.4503\end{array}$	6.467 5.511 4.649 4.008 3.293 2.906 2.718 2.561 2.436 2.337 2.152 2.1152 2.152 2.068 2.068 2.041 2.018
				r	Ra	-rV(r)
$\int R_1^2 dr = 0.67854$ $\int R_2^2 dr = 18.209$ $\int R_0 Q_2 dr = 2.7628$				5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4	0.4233 0.3927 0.3604 0.3276 0.2953 0.2643 0.2350 0.2078	2.000 2.000
				9.2 10.0 10.8 11.6 12.4 13.2	0.1601 0.1213 0.0907 0.0669 0.0489 0.0354	
				14.8 16.4 18.0 19.6 21.2 22.8 24.4 26.0	0.0180 0.0089 0.0044 0.0021 0.0010 0.0005 0.0002 0.0001	

Cruft Laboratory, Harvard University, 1957 (unpublished). ⁹ E. P. Wigner, Phys. Rev. 46, 1002 (1934). An error in this formula is corrected by D. Pines, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1, p. 367.

The other functions are given by

$$u_2 = \frac{2}{3}ru_1 + \frac{1}{3}r^2u_0 + c_d f_d, \tag{10}$$

$$\phi_0 = \frac{1}{3} r u_1 + \frac{1}{6} r^2 u_0 + E_2(\partial u_0 / \partial E), \qquad (11)$$

in which f_d is a *d*-state solution of the radial wave equation of $E = E_0$. These functions satisfy the boundary conditions

$$(\partial u_2/\partial r)r_s = (\partial \phi_0/\partial r)r_s = 0.$$
 (12)

The boundary conditions on u_2 determines c_d :

$$c_d \left(\frac{df_d}{dr}\right)_{r_s} = \frac{-2E_2}{r_s u_0(r_s)}.$$
 (13)

The function $\partial u_0 / \partial E$ satisfies

$$\left[\frac{-1}{r^2}\frac{d}{dr}\left(r^2\frac{d}{dr}\right) + V - E_0\right]\frac{\partial u_0}{\partial E} = u_0, \qquad (14)$$

subject to the condition

$$\int u_0 \frac{\partial u_0}{\partial E} d\tau = 0, \tag{15}$$

which implies that u_0 is normalized for all E. The boundary condition on ϕ_0 determines E_2 which appears in Eq. (4) to be

$$E_2 = \frac{r_s^3}{2} u_0^2(r_s) \left[\frac{r}{f_p} \frac{df_p}{dr} \right]_{r_s}.$$
 (16)

Now define functions

$$R_0 = ru_0, \quad R_1 = ru_1, \quad R_2 = ru_2, \quad Q_2 = r\phi_0.$$
 (17)

These functions are tabulated in Table I. The function R_a which is r times the radial part of the free atom wave function is also given.

THE KNIGHT SHIFT

The shift of the nuclear magnetic resonance line in metallic rubidium (as composed with nonmetallic rubidium) has been measured.^{8,10} This shift gives a value for $\langle |\psi_F(0)|^2 \rangle$, where ψ_F is the wave function of an electron on the Fermi surface and $\langle \rangle$ symbolizes an average over the Fermi surface. In order to deduce a value for $\langle |\psi_F(0)|^2 \rangle$ from the experimental data, it is necessary to know the spin paramagnetic susceptibility. The spin susceptibility of rubidium has not been measured. The value used in interpreting the experiments is computed from a formula of Pines. At room temperature and atmospheric pressure Benedek and Kushida find $\langle |\psi_F(0)|^2 \rangle = 2.32$. A value for $|\psi_A(0)|^2$, where ψ_A is the wave function of the valence electron in the free atom, has been obtained from observed hyperfine splittings: $|\psi_A(0)|^2 = 2.337$. The ratio ξ , defined as

$$\boldsymbol{\xi} = \langle |\boldsymbol{\psi}_F(0)|^2 \rangle / |\boldsymbol{\psi}_A(0)|^2, \tag{18}$$

is thus found to be 0.993.

The cell radius in rubidium is at room temperature in 5.31 atomic units, about 2% larger than at T=0. From the measurements of Benedek and Kushida¹⁰ it is possible to obtain a value for ξ at a cell radius equal to that used in these calculations ($r_s=5.21$ atomic units). In doing this, we neglect the explicit temperature dependence of the Knight shift. The value of ξ for $r_s=5.21$ atomic units is then found to be $\xi=1.03$.

A theoretical estimate of ξ can be made by using the wave function previously calculated. Assuming the Fermi surface to be spherical with $k_f^2 = 0.136$, we obtain $|\psi_F(0)|^2 = 2.162$. The free atom function gives $|\psi_A(0)|^2 = 1.965$. The ratio ξ is then 1.10. The agreement is quite gratifying considering the crudeness of the assumptions involved. In particular it is not obvious that an expansion of ψ_k in powers of k should converge readily on the Fermi surface.

ACKNOWLEDGMENTS

This work was begun while one author, (J.C.) was a consultant at the Ford Motor Company, Dearborn, Michigan. He expresses his thanks to Dr. J. Goldman, manager of the Physics Department, for his hospitality during the summer of 1957.

¹⁰ W. D. Knight, in *Solid State Physics*, edited by F. Seitz, and D. Turnbull (Academic Press, Inc., New York, 1956), Vol. 2, p. 93.