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Magnetic Susceptibility of an Electron Gas at High Density
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The magnetic susceptibility of an electron gas at high density is determined using the exact theory of
Gell-Mann and Brueckner.

HE magnetic susceptibility of the electron gas has
been given by Pines' on the basis of the approxi-

mate theory of Bohm and'Pines. In this note we shall
determine the susceptibility using the exact high-
density theory of Gell-Mann and Brueckner (to be
referred to in the following as I). This theory has been
previously applied to the determination of the correla-
tion energy, ' specific heat, ' and collective properties of
the electron gas.

The susceptibility of the electron gas is determined by
the change in energy of the system as its spins are
polarized. We denote the number of electrons with spin
up and down by E+ and S, and introduce a parameter

p defining the polarization by the equations

X,= ',X(1+p),-Jtf = ,'X(1 P),-—
where E .is the total number of electrons. The Fermi
momentum in the polarized system, measured in units
of the Fermi momentum in the unpolarized system,
then is

where

Q,+(u)+Q,—(u) (nr, ) " '
(5)

2 &wtJ')

Q,+(u) = d'p
J It+&I &a+, @ &p~

momentum transfers. To avoid this di@.culty, we must
as in I include all orders of perturbation theory in the
class of "ring diagrams" or, equivalently, the terms
which remain after the random phase approximation has
been applied. This approximation, as shown in I, is
exact in the 'high-density limit.

To determine the nonexchange contribution, we re-
write Eq. (19) of I for the correlation energy per particle
in Rydbergs as

t."dg p" " (—1)"
e'(p) = — — du P

4srs Js q 0 ~ n s=

P+= (1+P)' P =(1—P)'- (2) XexIi{—I
l

I I
—,'q'+t1 pjldt. (6)

The change in kinetic and exchange energy per particle,
measured in Rydbergs, to lowest order in p, is

~F(P)+&-(P) &r (0) &-(0)—= ep'(n—r+n-), (3)

where

As in I we evaluate the integral over q by taking the
small q limit in all terms in the sum except the second-
order term which must be treated more carefully. This
allows us to rewrite Eq. (5) as

nr ——(20/9) EF——4.91/r s,

n, = (8/9)E. = 0 814/—r, .

To determine the change in the correlation energy
upon spin polarization, we first note that the exchange
correlation energy per particle' (neglecting terms of
order r, and higher), where

3 'dq t" ~ (—1)"
du P

4~'~0 q ~ „
Qs+(u)+Qs (u) "(nr, q

"—'
x I I +5(p), (7)

2 l wq')

E,„(correlation) =0.046 Rydberg,

does not depend on the electron density and hence is
unaltered by spin polarization, at least to this order.
Consequently the entire correlation contributed to the
susceptibility comes from the nonexchange terms. This
contribution cannot be evaluated from the second-order
nonexchange energy alone, since this diverges for small
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Qo'( )+Q.-( ) '
5(p) = — du

Sx'~0 q & „2
td'q " Q+()+Q ()'

du
327r q ~ 2

(8)

sI Qs" (u)+Qo (u)3=4wL~(u)+P'g(u)7
where

Jt.'(u) = 1—u tan-'(1/u)

g(u) = —(1/9) (1+u') '.
328

(9)

(10)

To evaluate the first term in Eq. (7), we expand
—',LQs+(u)+Qs (u) $ in powers of the polarization parame-
ter p, which gives
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Inserting this result into Eq. (7) and carrying out the
sum over e and integral over q, we find in the limit of
small r,

APPENDIX. EVALUATION OF S(P)

We rewrite 5(p) as defined in Eq. (8) as

~(p) =4Lf(+ +)+f(—,—)+2f(+ —)j (A1)

~'(p) —~'(0)

6p' 4er,R(n)
dl R(e)g(e) ln +&(p) —8(0)

p' 4nr,
ln +(lnR}A~ +8(p) —&(0),62

where

f(*y)=—
~ p~&&
lu2+al »

—11II1— d pi
V'+a (I I+II2)

i@I+el »
where

(lnR}„,= de R(m)g(N) lnR(N)
X ~dp,

~ Ps&y
lu~+q. l »

1 (A2)
q'+q (FI+p)1

dg R(N)g(N). (12)
To carry out the integration of this expression, we first
expand in powers of (p+—1) and (p —1).The result is

The evaluation of the correction 6(p) —8(0) is straight-
forward but lengthy; the details are given in the
Appendix. The result is

~(p) —~(0)= (p'/3 ')(»2+ l}. (13)

Collecting these results, we find for the correlation
contribution to the spin polarization energy

"(P)—"(o)= 4P'~. ,

where

~'f(x y)
(A3)

+xi~k(p+ 1)'+(p— 1)'+2(p+—1)(P —1)$

2 t or,
1—ln —(lnR}av .

Bf(x,i) 8'f(x, 1)
~(p) —~(0) = 9P' —2 +

g'

37r2

(A4)
Numerical integration gives for (lnR}A„ the value of
—0.534. Inserting this value together with the other
numerical factors into Eq. (14) gives for the final result This can be brought into a form more easily integrated

if we use the fact that f(x,x) is proportional to x', which
leads to the identity0.,=0.225 —0.0676 lnr„

Now using the expansions of p+ and p in powers of p,
(14) we find

which is exact to terms of order r, .
The appearance of the logarithmic term in Eq. (15)

shows that the long-range screening effects associated
with the collective properties of the electron gas are
altered by spin polarization, a not unexpected re-
sult. The previous estimate by Pines' gave o.,=0.162
—0.043r, '—0.0032r„ the discrepancy between his and
our results appears to be the consequence of the ap-
proximate nature of his theory and also of his assumption
that the change in screening can be neglected.

=0. (AS)

Using this result and Eq. (A4), we have

(A6)

In this form the integral is now easily evaluated; the
result is given in Eq. (13).


