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Electron Energy Bands in Sodium
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The potential energy of a valence electron in sodium is represented by the function U(r) = 2/r+—Ae ~"/r
The second term, which is repulsive in character, represents the effect of the core electrons. Values for A
and P are determined from spectroscopic data. Energy levels of predominantly s and p symmetry are deter-
mined at four points of the Brillouin zone.

INTRODUCTION
' 'N the alkali metals, one valence electron moves
& ~ mostly outside of a compact core of electrons in
closed shells. Beyond the core, the potential energy of
the electron is —2/r, the Coulomb potential of the posi-
tive ion. Inside the core, the potential energy decreases,
becoming —2Z/r at the center (Z is the atomic num-
ber). The net effect of the core on the valence electron is
nevertheless repulsive: this is manifest in that the
energy of the lowest state of a valence electron in the
free sodium atom is only —0.3777 Rydberg. The energy
of the lowest state in a —2/r potential is —1 Rydberg.
The repulsive effect is due to the requirement that the
valence electron wave functions be orthogonal to the
wave functions of the core electrons. The orthogonality
gives rise to a substantial kinetic energy of the valence
electron when it is in the core.

This observation suggests that one might try to
introduce a potential energy for the valence electron
which would be 2/r f—or large r, but contain a repulsive
part at small r. This pseudopotential would include the
effects of orthogonality of the valence electron to the
core electrons, so that the lowest valence electron state
is also the lowest bound state in this potential. This idea
was introduced by Hellmann and Kassatotschkin, ' who
called it the combined approximation. These authors
applied the method to the determination of the cohesive
energies of the alkali metals. It has also been applied to
the study of molecules. "

In this paper the pseudopotential idea is applied to
the computation of energy bands in sodium. The po-
tential energy of the valence electron is expressed as

V(r) = —2/r+Ae t'"/r. (1)

The constants A and P are determined from spectro-
scopic data for the free atom. A plane wave method is
adopted for the computation of energy levels of s and p
symmetry at four points of the Brillouin zone.

QUALITATIVE JUSTIFICATION OF THE
PSEUD OPOTENTIAL

The development of the quantum defect method
(QDM) indicates that it is not necessary to have de-

tailed information concerning the form of the potential
inside the ion in order to compute the energy levels of
the valence electron in the solid, provided that the
potential is Coulombic near the cell boundary. ' In the
region where the potential is Coulombic, the wave
function is a linear combination of the regular and
irregular solutions of the Coulomb wave equation. The
ratio of the coe%cients in this combination is a function
of energy which can be determined for energies corre-
sponding to eigenvalues of the free atom, and extrapo-
lated to other energies. Once the ratio is known, the
wave function on the cell boundary is determined except
for a multiplicative constant, and consequently the
energies at which the various states Ps satisfy the ap-
propriate boundary conditions can be determined.

The justihcation of the pseudopotential approach is
that, for energies corresponding to certain eigenvalues
of the free atom, the wave function is given correctly in
the Coulomb region. For other energies, it gives a means
of performing the extrapolation of the ratio of coeK-
cients in the wave function in an unambiguous manner.
The method can not be in principle as accurate as the
QDM since, for instance, exchange effects cannot be
completely represented by a potential. The principal
advantage is that it permits the application of varia-
tional methods to the determination of energy levels in
the solid.

It must be realized that the pseudopotential approach
can be applied only to those levels of the valence elec-
tron for which there are core electron states of the same
symmetry. It is only for these states that the ortho-
gonality to the core functions gives rise to an eGective
repulsion. For instance, the method cannot be applied
to g, d state in sodium.

DETERMINATION OF THE PSEUDOPOTENTIAL
PARAMETERS

The problem is to determine the pseudopotential
parameters A and P from spectroscopic data. It must be
expected that different values for the parameters will be
obtained depending on the states used to determine
them. The eGect of exchange can be considered to a good
approximation as giving rise to a different potential for

' H. Hellmann and W. Kassatotschkin, J. Chem. Phys. 4, 324
(1936);Acta Physicochim. U.R.S.S. 5, 23 (1936).

s H. Preuss, Z. Naturforsch. I02, 365 (1955).
F. S. Ham, in Solid State I'hysics, edited by F. Seitz and D.

Turnbull (Academic Press, Inc. , New York, 1955), Vol. 1, p. 127.
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The expansion is

the states of diGerent angular momentum. 4 Conse-
quently, it would be desirable to determine a pseudo-
potential for each angular momentum. The difference of
the effective exchange potential between the diferent
angular momentum states is likely to produce only a
small effect in sodium as is evidenced by the success of
Prokofjew in accounting for all the spectral levels on the
basis of a single potential. ' It was believed to be

sufficiently accurate in this case to determine a single
potential based upon the lowest valence s and p states.

An obvious way to determine the pseudopoten-
tial parameters is to apply the variational principle.
This is the procedure employed by Hellmann and
Kassatotschkin. » The expectation value of the one-
electron Hamiltonian can be calculated analytically
with the pseudopotential if a simple trial function is
employed. It is possible to determine the parameters by
requiring that the minimum of the expectation value of
the energy occur at the observed eigenvalues of two
states, subject to the requirement of orthogonality.
This procedure was applied to sodium. Trial functions
of the form re ""for the s state and r'e ""for the p state
were used and yielded values of 2=5.378, P=1.448.
These values differ significantly from those quoted by
Preuss2 Unfortunately, the simple trial functions are
rather poor approximations to the actual wave functions
for this sort of potential, and it appears that the
variationally determined parameters overestimate the
range and underestimate the strength of the repulsive
potential quite seriously.

In order to determine the parameters more carefully,
the following procedure was adopted. The wave equa-
tion was integrated numerically with a trial repulsive
potential out to a radius in the region where the po-
tential is Coulombic. The logarithmic derivative of the
wave function was computed and compared with that
required by the Coulomb wave equation for the given
eigenvalue. The latter exact logarithmic derivative can
be computed according to the procedure of Harn, ' but
the following approach was found to be simpler and less
subject to computational error.

It is possible to give a semiconvergent expansion in
decreasing powers of r for the wave function in the
Coulomb region, based on the fact that if the energy is
an eigenvalue, the wave function must decrease ex-
ponentially at large r. The radial equation is

For the special case of V=8=0, we have

d'8t l(1+1)
E') ——0,

of which the solution is P&= r'+'. We multiply (5) by I' t

and (6) by R&, subtract, integrate with respect to r, and
finally divide by the product R&I'&. We obtain

1 dR) 1 dI'i 1

Rt dr I't dr Rt(r)Pt(r)

X) $V(r') —&]Rt(r')E&(r')«'.
0

Thus for a given potential V», the logarithmic derivative
1s

1 dRt 1+1 1
L'1 +

Rl

[Vr(r') —E/Rt(r') (r')'+'dr' (7).
If we compare the logarithmic derivatives of functions
found for two potentials at the same r, we 6nd

L»—L2=
1 f

LVt (r') —E)Rt (r') (r') '+'dr'
Rtr'+' ~ s

1
L Vs (r') —E/Rt'(r') (r') '+'dr'

R)'r'+» "0

If the change in potential hV= V= V» —U2 is suK-
ciently small, we may set R&=R&', and we have

The 6rst three terms of this expansion are usually
sufhcient to obtain a good value for the logarithmic
derivative.

Given the difference between the logarithmic deriva-
tive of the wave function in the Coulomb region as
computed from a set of pseudopotential parameters, and
that obtained using the expansion above, it is possible to
correct the parameters to bring the derivatives into
reasonable coincidence. The method for doing this is
closely related to a procedure given by Kambe. ' The
radial wave equation for an energy E and potential V is

d'Rt ( l(1+1))
+~ Z—V— (R,=O.

dr' rs

R~——exp( —W'*r)r' P„a„r ",

where W= —R, s= PV) ', and

(3) L»—L2=
1 f'"

6V(r')R((r') (r') '+'dr'.
Rrt+ ~,

(8)

a = fl(l+1) —(s+1 rs) (s—e) ja„—t/(2e+8'). (4)

' Herman, Callaway, and Acton, Phys. Rev. 95, 371 (1954).' W. Prokofjew, Z. Physilc 58, 255 (1929).

If we know the difference in the logarithmic deriva-
tives, we can use (8) to determine information about

' K. Kambe, Phys. Rev. 99, 419 (1958).
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5V. Through the use of simple analytic 6ts to the
functions R~, it was found possible to adjust the poten-
tial using the diGerences between the computed and
actual logarithmic derivatives for the s and p state
simultaneously. After a few iterations of this procedure,
the Anal pseudopotential parameters were chosen to be
A =24.578, P= 2.1008.

This potential leads to an energy for the 4S free-atom
state of —0.1428 ry in comparison with the experimental
—0.1432 ry.

BAND STRUCTURE CALCULATION

An estimate of the accuracy of the pseudopotential
approach in band theory would be afforded by a com-
parison of energy levels calculated with the pseudo-
potential and those obtained using the quantum defect
method. The only substance for which QDM treatment
of levels away from 0=0 has been reported is sodium. '
This is the reason for the choice of sodium as the erst
substance to be studied by this method.

In order to avoid the difhculties of satisfying bound-
ary conditions on the surface of the atomic polyhedron,
the orthogonalized plane wave (O.P.W.) method was
chosen in preference to the cellular method for the band
structure calculation. Application of the O.P.W. method
is greatly simplified in this case by the fact that the
eGect of the core states is contained in the pseudo-
potential so that the orthogonalization procedure is
unnecessary. Another advantage is that the simple
analytic form of the potential makes possible analytic
computation of the Fourier coeS.cients of the potential.
A disadvantage is that the strong and rapidly varying
repulsive potential near a nucleus gives rise to large
Fourier coefficients for k/0 and thus retards the con-
vergence of the plane wave expansions for the states of
predominantly s symmetry.

The wave function is expanded as a linear combina-
tion of symmetrized groups of plane waves chosen so as
to belong to a particular representation of the group of

where
(k+h i

H
i
k+h') = (k+h)'bhh. +V(h —h'), (11)

V(h —h') =Os ' ~ exp[ —i(h —h'). r]V(r)d'r. (12)

TABLE L Energy levels for sodium (in Rydbergs). The order of
the energy matrix diagonalized and the number of plane waves
used in the expansion of the wave number are given along with
the energy of each state. For comparison, the energies obtained
by Ham using QDM, by Howarth and Jones, and by Von der
I.age and Bethe' are given.

Order of Number
State matrix of waves E(QDM) E(LB,HJ)b &

I'I 8 135
EI 16 84
I'I 7 80
HI 6 92

EI'
I4
HIG
F3
E4'
FIG

40
44
92
44
42
86

—0.597—0.263—0.041
+0.193

—0.316—0.162—0.015
0.301
0.310
0.632

—0.610—0.287

+0.136

—0.292

—0.018

—0.608—0.315—0.11—0.100

—0.268

—0.014

+0.563

a See reference 3.
b See reference 9.

See reference 8.

The Fourier coefficients V(h —h') of the potential (1)
were computed in the approximation that the atomic
polyhedron can be replaced by the sphere of equal
volume. Calculations were based on a sphere radius'
r,=3.94 atomic units, believed appropriate for T= 0 K.

The determination of the Fourier coe%cients of the
potential is discussed at greater length in Appendix I.

The energies of the states of predominantly s and p
symmetry were determined at four symmetry points of
the Brillouin zone: I', H, I', and Ã. The Brillouin zone
is shown in Fig. 1.States of predominantly d (or higher
l) symmetry were not considered since the pseudo-
potential approach cannot be applied to states for which
there is no core function of like symmetry.

The energies of the states calculated are given in
Table I where they are compared with the results of
Ham as mentioned previously, and with those of
Howarth and Jones and Von der Lage and Bethe who

the wave vector. If fa' is the wave function for the ith
irreducible representation of wave vector k, one has

P~'=&o '* Ph a~+h' expLi(k+h) rj.
The sum over h runs over all reciprocal lattice vectors.
Qe is the volume of the unit cell. Substitution of (8) into
the Schrodinger equation and standard manipulations
lead to the determinantal equation:

det[(k+h
~
H ~.k+h') —Ebhh j=0.

H the Hamiltonian is written as H= —Vs+ V(r), one
obtains

FIG. 1. Brillouin zone for the body-centered cubic lattice. Points
and lines of symmetry are indicated.

~ G. B. Benedek and T. Kushida, Technical Report No. 268,
Cruft Laboratory, Harvard University, 1957 (unpublished).
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used the cellular method and the Prokofjew potential. '
The agreement is quite good although not perfect.

In comparing results we believe that the energies of
the levels reported here are convergent to within 0.01
Rydberg for all states. The numerical accuracy of the
cellular method calculations is difficult to assess since it
is well known that point fitting of boundary condition
may lead to a spread of the energy values for a given
level. The calculations of Ham and Howarth and
Jones were made for slightly different lattice parameters
than that used here, corresponding to r,=3.96 and
r, =4.01 atomic units, respectively. Also the previous
cellular method and QDM calculations assume the
potential is coulombic on the surface of the atomic cell.
The potential used here has been modified so as to have
zero gradient for r=r„as is discussed in the appendix.
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APPENDIX. FOURIER COEFFICIENTS OF
THE POTENTIAL

In a cubic crystal, the potential must belong to the I'~

representation of the cubic point group. This means that
the potential, if it is a function of radius only, must have
zero normal derivative on the surface of the atomic
sphere. Failure to satisfy this condition is equivalent to
assuming the presence of a surface charge layer on the
cell boundary. The potential (1) does not satisfy. this
condition, as has also been the case in many band calcu-
lations. It is desirable then to modify the potential so
that the Fourier coeKcients of the potential used in the
calculation correspond to a potential with zero normal
derivative on the boundary.

Consider a simple Coulomb potential in one cell:

V(r) = —2/r. (A-1)

If we carry out the Fourier analysis of this potential
according to Eq. (11) and replace the polyhedral cell by
the sphere of equal volume (radius r,), we have

Sx
V(k) =Qp ' e '~'V(r)d'r= (coskr, 1). (A-2)—

~ no &'~o

The potential of Eq. (A-1) may be regarded as an
approximation to that produced by a periodic array of
unit point charges. To keep the average crystal potential
finite, these point charges must be neutralized, for
instance, by a uniform distribution of negative charge
with density 1/Qp. The Fourier coeflzcients of the po-
tential of this distribution are given without approxima-
tion by the formula"

TAnLE II. Comparison of different potentials. The energies (in
Rydbergs) of the states are given: Ez as determined from the
potential whose Fourier coeflicients are given by (A-5); Fzz, from
the potential with Fourier coeifzcients (A-6).

State

Il
1V1
Pl
Hl

El'
P4
Hl5
E3'
E4'
I'15

Er

—0.597—0.263—0.041
+0.193

—0.316—0.162—0.015
+0.301
+0.310
+0.632

Err

—0.601

—0.090
+0.168

—0.298—0.145—0.060
+0.229
+0.364
+0.592

where o (r) is the charge in each cell. For k/0, we may
neglect the uniform charge distribution, and if we set
o(r)=5(r) we have

V, (k) =-
Qpk'

(A-4)

It will be observed that the coeflzcients given by (A-4)
are significantly different from those given by (A-2)
because of the presence of the coskr, term in (A-2). The
coskr, term must be considered as spurious, arising from
the failure of the potential (A-1) to possess the ap-
propriate symmetry.

For this reason, in the computation of the Fourier
coefficients of the potential (1) to be used in the band
structure calculation, we have dropped the coskr, term
and used the result (for k&0)

Ak'
V(k) =— 2—

Q k~ pp+ksg
(A-5)

In order to make possible comparison of the results of
this calculation with the cellular method results, the
average crystal potential Lwhich is V(0)$ was computed
directly from Eqs. (1) and (11) without modifications.
Alteration of V(0) merely displaces all levels by the
same amount.

Since many of the potentials which have been em-
ployed in other band calculations are incorrect in this
respect, it is of some interest to note the eRect the
inclusion of the spurious coskr, term. In Table II, the
eigenvalues of the representations are given (I) for the
case of the potential where Fourier coeKcients are given

by (A-5), and (II) for the potential for which the
coeScients are given by

V, (k) = — o.(r)e'"'d'r,
Qpk' ~ zzp

(A-3)
4n- Ak'

Vs (k) = — 2 (1—coskr, )— . (A-6)
Qpk' Ps+ k2

P F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612 (1947).' D. J. Howarth and H. Jones, Proc. Phys. Soc. (London) A65,
355 (1952).

zP J. Callaway and M. L. Glasser, Phys. Rev. 112, 73 (1958).

It seems that the F& level is not altered appreciably but
that higher states are significantly aRected.


