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Linear Antiferromagnetic Chain with Anisotropic Coupling*
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The exact solution is given for a linear chain of X atoms of spin —, coupled together by the anisotropic
Hamiltonian

3C=2~ & L5'*5''+~*+(1—o) (5'*S'+~ +~'"5''+r")j.
The energy of the antiferromagnetic ground state is computed and comparison is made with a variational
method. The parameter n is allowed to vary between 0 and 1, regulating the relative amount of Ising anisot-
ropy. The short-range order, Z;S S;+&', is calculated exactly from the variation of the ground-state energy
with a. It is shown that a kink in the short-range order curve calculated using the variational method is
fictitious, and the associated discontinuity in BsE/Bos is nonexistent. A discussion is given of long-range
order and criticisms are presented regarding the predictions of the variational method.

I. INTRODUCTION

HE problem of a linear chain of E spin- —,
' atoms

coupled together with the Heisenberg exchange
interaction is one of the few many-body problems in
magnetics which has been solved exactly. The solution
has led to fruitful concepts which have been generalized
to higher dimensional systems. One such concept was
the spin wave originally put forward by Bloch' as a
solution of the secular equation of Slater. ' Bloch's
solution was only approximate for more than one re-
versed spin. Bethe' calculated the exact interaction
between spin waves on a chain for an arbitrary number
of reversed spins. Hulthen, 4 using Bethe's solutions,
calculated the exact ground-state energy of the anti-
ferromagnetic linear chain (J)0). There followed a
number of papers by different authors who attempted
to generalize the treatment to two and three dimensions. '

Hulthen4 also proposed a variational technique which
he applied to the linear chain in order to calculate the
short-range order and energy. This procedure was im-

proved upon by Kasteleijn, ' who solved the problem
of the linear chain with both the Heisenberg isotropic
interaction and the anisotropic Ising interaction present.
Marshall7 extended the isotropic calculation to two
and three dimensions by use of the Bethe-Peierls ap-
proximation in addition to the variational technique,
and Taketa and Nakamura' calculated the ground-state
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energy of the anisotropic coupled lattice in two and
three dimensions.

Kasteleijn' found that by increasing the relative
amount of Ising interaction, the long-range order re-
mained zero until a critical value. As the anisotropy
increased beyond this point, the long-range order rose
rapidly to a maximum of perfect order at the Ising
limit. Figure 5 shows the variational approach used by
Kasteleijn and Marshall gives rise to a discontinuity
in the second derivative of the energy E with respect
to the parameter n, n being a measure of the amount
of Ising interaction present. The discontinuity in
r)'E/r)n' implies a kink in the short-range order at the
critical value of n. In our exact treatment, r)'E/r)n' is
continuous and no such eGect is found.

The purpose of this investigation is to calculate
exactly the solution of the linear chain of N atoms of
spin —,

' coupled together with a combination of the
Heisenberg and Ising interactions; and then, by means
of the Feynman' theorem, to compute the short-range
order exactly. The importance of such a calculation
lies in the repeated use of the variational technique in
problems of this sort. Our calculation allows corn-

parison of the predictions derived from the variational
approach for both the ground-state energy and the
short-range order with their exact solution counter-
parts. From this comparison, a discussion of long-range
order is given as well as a criticism of the variational
scheme for the computation of such a function.

II. DERIVATION OF THE SECULAR EQUATION

We take the Hamiltonian for N atoms of spin 2 on a
ring to be

3C=2JQ;$S S, ,'+(1—)(S;*S; *+S;"S;,)$, (1)

where i goes from 1 to X, S~+1 being defined as S1. For
n=0, we have the isotropic Heisenberg interaction;
for n= 1, we have the pure Ising interaction. It should be
noted that S*=g;S;* commutes with 3C and is a good

s R. Feynman, Phys. Rev. 56, 340 (1939).
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quantum number, but S' = (P;S,)'=P;S t+P, , ; S,"S,
commutes with BC only if o.=0. For a finite Ising anisot-
ropy, S2 is no longer a good quantum number. We are
able to label our states by the number of up and down
spins because there are no matrix elements between
states of different values of S'.

We call the state with S'= —ES the state with no
spins reversed. Denoting the first reversed spin by e&,
the second reversed spin by e2, etc. , our wave function
is taken as

ani n„Cni.
ny. ~ .nr

where there are r reversed spins on the chain, and the

sum goes over all distributions of r reversed spinsr
among Ã spins on the chain. Because the reversed
spins are identical with one another, their interchange
does not aGect the problem. Hence, the following order
will be taken:

e1(e2& ~ e, 1&@,.

C'ny ~ ~ .n is the product wave function

pip2 pni —1anipni+1 ' pnr 1etnrpnr+1 ' ' —p~,

where n, and P; are the eigenvectors of S corresponding
to the eigenvalues +-,'and ——'„respectively. We act
on 4 with K and set BC+=8%'. We have

2J(1j4)(1l1'par 1Vantipar)ant n„

a= 1—(1—n) cosk. (10)

The periodicity condition (7) gives

k=2irX/1l), X=O, 1, 2, , 7—1.

The case of two reversed spins is considerably more
complicated. If we assume the two reversed spins are
not neighboring, the secular equation (6) becomes

2eanin& =4anzn„" (1 rx) ani+in2 (1, Q—)ani 1,n2—
—(1—tx) ant, n2+1 (1—cx)ant, n2 —l. (12)

anin~ —etc~(»»+)tana)+ e2ei(&2nl+&ln2)
7

and demand (12) for all ei and e2, we have

(13)

III. SOLUTIONS OF THE SECULAR EQUATION
FOR ONE AND TWO REVERSED SPINS

In this section we shall examine in detail the case of
one and two reversed spins. Our method of approach
will generally follow that of Bethe' for the isotropic
(n=O) Hamiltonian. We examine first the solution for
one reversed spin. The secular equation (6) becomes

2ea„=2a.—(1—e)an i —(1 n—)an~i

This equation is satisfied by

—~iknn

giving for e the value

+ (1—n)J P any' ~ ~ nr' =Eani ~ n„, (.3)
e= 1 (1 Q) coski+1 (1 tt) cosk2. (14)

n1 ~ ~ ~ nrI

Dining

then

E—-'JE
26)J

gn1 ~ ~ nr (4)

2eani n, = P [ant n, , (1 a)ani' nr'—]. —
nl . nr

(6)

If n= 0, we have the secular equation treated by Bloch. '
We impose the condition upon the solutions that the

chain be a ring of Ã atoms such that SN+.~=51, which
is equivalent to demanding periodic boundary condi-
tions. It must also make no difference which reversed
spin we start with in our counting process. For these
reasons,

where the sum goes over all the E,„t,~„arrangements
~ e„' di6ering from e& . e„by the interchange

of two neighboring antiparallel spins. Ã~ is the number
of neighboring parallel spin pairs and E,„t,~„ the
number of neighboring antiparallel spin pairs in the
function C. We rewrite (3) as

L(1—n)ant "n, ani" n,$—
n] ~ ~ ~ nr

c =e'«'1 C =e—'&1'
2 (17)

and insert (13) into (16), we get

e~«[ge~"~ (1 —n) —(1—cz) ei&»+)t»)—

+e '«'[2ef» (1—n) —(1 n)e'&»+—"')j—=0, (18)

We ask for the solution if n2=e&+1. Our secular equa-
tion would have the form:

2eani, n+i =2anini+i —(1—
, a)ant —l,ni+i

—(1—a) anini2.+,
In order that our first secular equation (12) be valid

for all distributions, it is clear that if we set

0= 2ani, ni+i —(1—a) ani, ni —(1 et) ani+i—ni+i, (1, 6)

and add this to our original equation, (12), we shall
generate the proper secular equation (15) if the two
reversed spins are neighboring. Hence, we may look on
(12) as valid for all distributions of spins subject to
the subsidiary condition (16). As S=-„ it is clear that
Cn1, n] and any+1, n1+1 make nO SenSe PhySiCally. If We

continue our definition (13) for anin2 to these cases,
we may consider them as defined. We shall see it is
condition (16) which correctly treats the interaction
between spin waves. "

If we set

+n1 'nr Cn2 ' ~ .nrn&+N. (7) ' This concept was presented by Bethe, reference 3.
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or

cot(q/2)

If +=0, we have Bethe's result:

uniquely from (19), (23a, b). The energy and wave
function are determined from (13), (14), and (17). We

sin[(ki —k2)/2 j denote the energy eigenvalue of Category I by e&.

Category II.—Following Bethe, we set X,+) &
——X and

(1—n) cos[(kz+k2)/27 —cos[(kz —ke)/2] hold X even. The only allowable values for ) & and X&

(not already included in Category I) are Xz
——X&

——X/2.
Equations (23a) and (23b) become

2 cot(y/2) = cot(ki/2) —cot(k2/2). (20)

It should be noted that q is still an odd function of k~

and k2 for n/0, as in the case which Bethe treated.
However, an important difference between this treat-
ment and Bethe's is that for k~ ——0 and k2=0,
cot(zo/2) =0 for nNO whereas cot(q/2) is indeterminate
fol e=O.

We now require that y be single-valued:

%kg—y= mA,

Xk2+ y = zr)~.

We look for solutions of the form

ki ——ez jim;

k2= Q—Z'0;

y= /+i'.

(26a)

(26b)

(27a)

(27b)

(27c)

The periodicity condition (7) is

We find, upon subtraction of (26b) from (26a) and use21

of (27a, b, c), P= 0; y =Xv. Then,

C)t y~2= Cn2, ~y+N. (22)

We insert (13) and (17) into (22) and give rise to the
set of equations:

Ekg —p= 2mhz

Xkg+ q =2zr)~2
Xgh2=0 i 2 . S—i.

(23a)

(23b)

Because X& and X2 may be interchanged without affecting
our solutions, we make the restriction X~&X2. Our solu-
tions are now completely determined for given X& and
X2 by the set of Eqs. (19), (23a), and (23b).

We consider the dependence of the wave numbers k?

and k2 on X~ and X~. There exist three categories of
solutions to our problem. We define each category as
follows:

(P+ix't (iEv't
cot(q/2) =cot( [ =cot(

o Ne+ 1—
=i =—i(1+2e ~') (28)

e—Ne

cot(p/2) =
(1—n) cosa —cosh'

(29)

For a first approximation, we set (28) equal to i. —
Using (28), (29), and solving for z, we find

e—'= (1—n) cosee. (30)

where we have neglected terzns of order (e ~')' and
higher. From (19) and (27a, b), we have

i sinhv

Category I X2—X&~ 2,

Category II X2+4=X, Xi=f2 (X even),

Category III Xi+4=X, Xz
——X2—1 (X odd).

From (14), (27), and (30), we obtain

ezz= 1—(1—n) cos Q. (31)

Corresponding to Category I we shall find solutions
with real wave numbers only. In Category II there
exist solely complex solutions for k, and k2, and in
Category III there exist complex solutions for k& and
k2 for Re k2= Rekz) k;„(u) and real wave numbers for
k2,k, (k; (n). We investigate each category separately.

Category I.—Here we have X2—) ~~2. Given the
value ) ~, ) i may take on the values: ei '~=2 —2(1—n) cos(k/2). (32)

Adding (26a) and (26b) yields N=zrh/E. We define

k=kz+k~ ——2ee in order to compare ez with ezz for the
same value of k. We look for the maximum of ezz/ez.

Minimizing e? by setting

Bez/Bkz= (1—n) sinki+ (1—u) sm(k —ki) =0,

we find the solution k/2= ki and k/2 =ke. Then

Ay=0) 1) 2) . . Xg—2. (24) Setting I=k/2 in ezz, we find

(ItI 1)—
) (25)

The total number of solutions in Category I are
6?? 6?

1—(1—n)' cos'(k/2)

2[1—(1—n) cos(k/2) j
=-', [1+(1—n) cos(k/2) j+1. (33)

as in Bethe's solution. All the wave vectors are real, We see that E?z(E? "for kAO and n=O, and 6?z(6z
and given 'A~ and )2, kj, k2, and p are determined for all k if o./0. This result is similar to Bethe s except



R. ORBACH

Nki —
q = m-(X —1),

Nks+ p= s (X+1),

(34a)

(34b)

where we have set Xi= P —1)/2 and Xs= (X+1)/2. A
soiutjon of this set which satisfies (19) is ki=ks and
p=m. This solution destroys the wave function 0 for,
if we set ki ——ks ——k/2 and pp=~, then

s ( k/2) /(nr+ssi ( siw 2/+ s ia 2)@/&
—

&
—0

We look for other types of solutions. We try the com-
plex solutions of Category II.Using (27a, b) and (34a, b)
we find lt = s. and y= Nt/. Then,

cot(p/2) =cot(s/2+iNt//2)
tan(iN—V /2) =—i(1—2e ") (35)

to the same approximation as before. Demanding (19),
in the first approximation we have the same relation
between I and s as in Category II, si». , (30). To
examine the situation more closely, we set t/=ep+b
where (1—n) cosu=e "' exactly, and solve for 8 using

"A calculation by E. Ledinegg and P. Urban, Acta Phys.
Austriaca 8, 167 (1953), of the susceptibility of a ferromagnetic
chain at absolute zero uses solely the solutions of Category I.
Although it is true that there are far fewer solutions of the type
of Category II than of Category I, in a susceptibility calculation
near saturation (8*=—NS) it is the statistical distribution of
states which is important and not solely the total number. As the
states of Group II lie lower than those which they considered,
one may question their results.

that the equivalence of ei '" and f]g at k=0 is no longer
true for nWO Fr. om (5), E=JN/2 —2Je. If J&0 (ferro-
magnetic case), the lowest lying states are in Category
II. If J)0 (antiferromagnetic case), the lowest lying
states are in Category I. It is precisely this division
which makes possible the calculation of the antiferro-
magnetic ground state. "

It is now convenient to examine the form of the
wave function in Categories I and II. In Category I,
k& and k2 are real and related only by the three condi-
tions (19), (23a), and (23b). The form of the wave
function is given by (13) and (17). These eigenstates
can be classified as unbound in the same sense as two
interacting particles scattering from one another.

In Category II, however, we have ki ——I+iv and
ks ——si—is where I and t/ are related by (30). From (13),
(17), and (27), we obtain

antns= 2e'"'"'+"" coshLtt(-,'N —(ns —ei))].
If we normalize these states we see that the two
reversed spins tend to be localized to nearest neighbor
positions. That is, ~a~its~ is a maximum for r/s ei+1-—
and dies off exponentially as e2 leaves this value. v is a
measure of the width of the complex, and m is a measure
of the velocity of motion of the center of gravity of the
complex around the chain. The solutions of Category II
represent the bound states of the problem.

Category III. In this cat—egory, Eqs. (23a) and (23b)
become

(19) and (35). It turns out that 8 is very small (on the
order of 1/N) for both Category II and Category III,
and )0 for Category II but (0 for Category III. This
difference would normally be unimportant because of
the relative size of vo. But vo gets smaller as I becomes
smaller, as can be seen from (30), and there may exist a
point at which B=vo, in which case, for Category III,
v(0. Such a situation destroys the entire procedure as
our calculation diverges, and no complex solutions exist
for k in such a region.

We find the value of k such that v is negative and
then state the solutions for such a region. As Bethe has
shown, such a region may be found by examining the
slope of Ek~—p=—F as a function of k~. For small k~,
F can decrease with increasing k~. Such a region is where
the solutions of Category III of the complex type fail.
We set kt+ks ——k and hold k fixed. Then,

Bkg

8=E— 2 arc cot
Bkg

sin[(2kr —k)/2 j
X

(1—n) cos (k/2) —cosL(2k, —k)/2]

1—(1—n) cos(k/2)
(36)

where we have set ki ——ks=k/2 for convenience. De-
manding BP/8kt &0 results in

cos(k/2) ~ (1—2/N).
(1—n)

(37)

We see that the complex solutions of Category III are
always valid for n) 2/N but are not allowed for n & 2/N
and k such that (37) holds. We expand the cosine term
in (37) and find

k' (2/N) —n

8 1—o.
(38)

as the condition on k such that the complex solutions
are no longer valid. If k satisfies (38) we find, with
Bethe, the solutions are of the type

ki=kp 2f/N;—
ks= kp+2f/N.

(39)

From (19), noting kp and f/N are small, we obtain

tan f 4

f NL2n+ (1—n) kp')
(40)

2
cot(pp/2) =-

N n+ (1—n) kp'/2

We find 2 @=2' 4f upon subtracti—on of (34b) from
(34a) so that cot (pp/2) = tan f. Then
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Noting ks= s.X/X, we see we have determined ki and ks
as a function of ).

We now examine the significance of this division of
states. We see that the complex solutions of the type
of Category II are found in Category III also" and part
of the states in Category III thereby represent the
bound states of the problem. The states given by the
condition (38) and the wave vectors (39) arise from the
fact that the chain is 6nite. It must be possible in a
6nite chain to construct running waves of nearly equal
wave numbers so that after a complete revolution of
the chain the states are still approximately in phase
with each other without necessitating complex wave
numbers. This is possible only for a finite chain and
such a condition is found in (38), because no nonzero
value of k exists which will satisfy (38) in the limit of
in6nite S. The dependence of these states on the
anisotropy n arises from the relative size of the diagonal
matrix elements of 3'. with respect to the o6 diagonal
terms. For a=0 we may build such states. However,
as e increases, the relative size of the o8 diagonal terms
decrease and such states are no longer possible to con-
struct for e&)2/X Indee. d, in the opposite limit for
which 0.&0, these states become much more numerous
corresponding to the magnitude of the off diagonal
elements increasing relative to the diagonal terms. "
The number of these states decreases with increasing
&x as is seen directly in (38).

We count the number of states in Categories II and
III and find, exactly as in Bethe's work, that there are

Ã—1E—1 such solutions. If these are added to the
1

solutions of Category I, we arrive at
2

solutions in

solutions in all which is exactly the correct number.

n1- nr
Gccl ' ' 'sy'I let' ' 'tLv (2)

as before. We assume s-wave numbers different from
zero and look for a solution of the form

8

a~& ~„PQ exp(iLP——kp, n&&+sZ &ppjpl])l (41)
Pp, P j=l j(l

where pP means the addition of all the s! different
permutations of the 6gures k~ - . k, among themselves.
P; is the number which, after the permutation P,
follows in place of i. The sam X „goes over ( )

&' Except that un&ms= 2e'"&"l+"» sinh{sLsX —(pcs —pp&) j}because
i/i= +.

"This interesting case was communicated to me by Dr. W.
Marshall.

IV. GENERALIZATION TO r REVERSED SPINS

Our previous results go over to the case of r reversed
spins in exactly the same manner as in Bethe' and
Hulthen. ' Our wave function is

combinations of s 6gures among the r values j., 2, r.
We set e»&e»« e&, as an interchange of any
two reversed spins leaves our solution invariant. We
insert (41) into the secular equation (6) and find

e= P,L1—(1—u) cosk;], (42)

The periodicity condition (7) leads to

Sk, =2xX;+ Q &p;il 7&;=0, 1, 2, , 7 1. (45)—
s(zing')

All of these results follow in the same manner as in
Bethe's' calculation.

We may now determine the lowest eigenvalue E.
We assume for simplicity that X is even and set r =N'/2

for minimum S' (i.e., iV/2 spins reversed). We
see that no wave numbers k; and k; can be equal
as p;, = ~+ in such a case and we may factor an
(e'w&'+e '"&') out of Eq (41).. This occurs for &t/0
even if k;= k;=0 so that we must neglect solutions for
which k;= k; for all values of k;. For J&0, as in Sec. III,
the lowest lying state corresponds to the real wave
number solutions of Category I.'4 Thus, we hold
A.;+~—A.;&2. Noting interchange of the A, s does not
acct the solution we require A&&X2&X3«. X, and,
from (23), O~X;~lV —1. Because (X/2)X s exist, as
we have X/2 reversed spins, we must occupy the points
0, 1, 2, ~, X—1 with X/2 objects X, such that at every
point there is at most one object and every two of the
objects are separated by at least one unoccupied point.
Noting the equivalence of X=O and X=&V, we may do
this in 2 ways, vis:

1, 3, 5, 7 9 ~ S—1 Distribution A,

0, 2, 4, 6, 8, . S—2 Distribution 8,

where we have labelled the distributions as shown. We
rewrite P; as

X;=2j—1,

X.=2j—2,

j=1,2, E/2

Distribution A, (46)

Distribution B. (47)

~4 The generalization to the case of r reversed spins follows easily
from the form of ~z and czz.

as each term in (41) satisfies (6) and so must their sum.
We insure our secular equation be valid for neighboring
reversed spins by setting

0=2ont ~ ~ na, na+i, ~ ~ nv (1——n)&in& ~ no.. nw ~.~ ~ cc„

—(1 &x)—ant ~ n +wi, nw +i ~ ~ nv (.43)

Inserting (41) in (43), we get

cot(q;&/2)
sin[(k, —k &)/2]

(44)
(1—

&t) cosL(k;+k&)/2j —cosL(k;—ki)/27



R. ORBACH

0.2

A(l )

We pass to the limit (for large cV) and introduce for
the discrete variable j, the continuous variable x,
defined by j=Ex/2. We similarly set /=Ãy/2 and let
k; be written as k(x). q;i is written as p)k(x), k(y)).
We rewrite (45) as

O. I

1

k(x) =2s-x+-', ~~ qLk(x), k(y)fdy,
0

(48)

ignoring terms in 1/X. Equation (42) becomes

0
&l2 37/2

e= (1V/2) L1—(1—n) cosk(x) $dx, (49)

Fio. 1.A (k) as a function of k for representative values of n

The significance of these distributions arise from
the displacement properties of the chain. We displace
the chain by one and find our wave function (2) is
multiplied by exp(iP; k, ). This equals, from (45),

/2x 1
exp i

(
—P; X;+ Pq i ~—

&1V X»~ )
But p&z; Io;&——0 as Io;& is odd uponiinterchange of j
and /. Equation (2) is then multiplied by

~
~

=(-1)"
exp] i

) ~ =(—1) " ' distribution 8,

using (46) and (47). That the lowest lying wave func-
tions should have this property was first proven by
Marshall. '

From (45) and (42), the larger the X s, the lower
the energy, so that we shall calculate the energy of
Distribution A.' This distribution is the one Hulthen
considered.

-0.90,

- 0.85

-0.80

-0.75
E

-0.70

and (44) is written

I Lk(x),k(y)3
cot

sin(Lk(x) —k(y)g/2)

(1—n) cos((k(x)+k(y) j/2) —cos($k(x) —k(y) j/2}

(50)
where —x~ q ~m. .

We see that a discontinuity exists in prk(x), k(y))
at x=y as p jumps between —rr and +s.. Taking note
of thisw, e differentiate (48) with respect to k(x). After
combining terms,

dx
i=s—+-',

i
dk'

dk

L1—(1—n) cosk'j(dy/dk) g,=s

1+(1—n)' cos'L(k+k')/2$ —(1—n) (cosk+cosk')

where we have changed variables in our integrand from

y to k(y)=k'. Now dx/dk has a simple meaning. " If
(E/2)A(k)dk is the number of those wave numbers
which lie between k and k+dk, and (iV/2)dx is the
number of indices between (1V/2)x and (X/2) (x+dx),
then because a wave number exists for every index the
two expressions may be set equal: A (k) =dx/dk. Equa-
tion (49) goes into

"0,65

-0.60

0.55

-0.50
0

E X ACT SOLU T ION

VAR I ATION A L
SOI UTION

O. l 0.2 0.& 0.4 0.5 0.6 0.7 0.8 0/9 I.O

and (51) into

A (k) = 1/m- —(1/2s-)
' dk'

(52)

FIG. 2. The reduced energy of the linear antiferromagnetic
chain, E/J/V, as a function of n for the exact solution and the
variational solution.

L1—(1—n) cosk'$A (k')
X

1+(1—n)' cos'f (k+ k')/2$ —(1—n) (cosk+ cosk')

' Though the choice is purely academic. By ignoring terms in
1/X in our subsequent integral equation, we are ignoring equiva-
lently the diGerence between Distribution 8 and Distribution A. 'll This argument was given by Hulthen, reference 4.

(53)
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We must solve the integral equation (53) for A (k), and
then insert A (k) into (52) to compute the ground-state
energy.

V. SOLUTION OF THE INTEGRAL EQUATION

It should be noted that Zq. (53) is of the simple
inhomogeneous type

u(x) =f(x)+~t K(x,y)u(y)dy,
a

-0.50

-0.4 5

+
41M

lA -0.40
th

c4Iz-0.35

EXACT SOLUTION~

VARI AT IONAL

-0.30 SOLU T ION

where f(x) and K (x,y) are known and u (x) is to be
found. The equation was solved by the author on the
IBM 701 by the process of iteration. A first approxima-
tion for A (k) was obtained by breaking up the integra-
tion into a Qnite sum of 40 parts, and then rewriting
(53) as a series of 40 linear equations and solving the
set of equations numerically. "This gave the function
A (k) at 40 points in the interval 0 to 2n. . A first approxi-
mation to A (k) was found by connecting the points
with straight lines. The approximation was inserted into
the integrand of (53), and the process of iteration begun.

TABLE I. Ground-state energy of the linear
antif erromagnetic chain.

n —B/JN

0.00 0.88629
0.05 0.85688
0.10 0.82774
0.15 0.79894
0.20 0.77056
0.25 0.74272
0.30 0.7 1556

a —E/ JN

0.35 0.68924
0.40 0.66396
0.45 0.63989
0.50 0.61722
0.55 0.59614
0.60 0.57681
0.65 0.55938

e —B/JN

0.70 0.54399
0.75 0.53076
0.80 0.51980
0.85 0.5 1119
0.90 0.50499
0.95 0.50125
1.00 0.50000

Convergence was reached on the average after the fourth
iteration to an accuracy of eight decimal places. The
solutions for A (k) were computed for 19values of n (resp.
0.05, 0.10, 0.15, 0.95, 1.00) and representative forms
are shown below in Fig. 1."It should benoted thatA (k)
seems to be a very smoothly varying function of ot. The
energy was calculated at the 19 points and is plotted in
Fig. 2. The exact values of the energy are given in Table
I at each of the 19points (and at n= 0)."

-0.2 5
0 0.I 0.2 0.3 0.4 O. 5 0.6 0.7 0.8 0.9 1.0

Fzo. 3. The short-range order, Z; S S;+1', as a function of n for
the exact solution and the variational solution.

which, from the Feynman' theorem, has the expectation
value BE/ Bn We 6nd. , using (5),

Q;S,*S,+t' N/4 ——e —(1—n) B—e/Bn

This function and

Q, LS,'S„+i'—-', (S;*S,~i*+SpS,+i&)],

(55)

the short-range s directional preference, are plotted
versus n in Figs. 3 and 4, respectively.

VII. COMPARISON WITH THE VARIATIONAL
TECHNIQUE

We may now compare our solutions with a variational
calculation performed by Kasteleij n' for the same
Hamiltonian. As indicated in the introduction and
shown in Fig. 5, Kasteleijn s approximate wave function
implies a discontinuity in B'E/Bn' as a function of n
which results in a sharp corner in the erst derivative
BE/Bn, neither of which is found in the exact solution.
The energy of Kasteleijn's solution is compared with
the exact energy computed in Sec. V in Fig. 2. The
variational short-range order is compared with the
exact short-range order in Fig. 3 ~ It should be noted
that there is no kink in the exact short-range order
curve. The mesh in the exact calculation was 0.05 on
the z scale, so it is improbable that such a sharp bend

NC/Bn = —2JQ; (S; S +i +S;"S,+is), (54)

'7 On a suggestion by Dr. W. Marshall."For n =0, we have plotted Hulthen's solution for A (k) for
comparison. It should be noted that A (0)=0 for n= 0, but, as
soon as n increases from zero, A (0) likewise increases from zero.

Here we have used Hulthen's result for n =O.

VI. CALCULATION OF THE SHORT-RANGE ORDER

We are able to calculate the expectation value of the
short-range order

Q,S S;+i',

if we know e as a function of a, because of the form of
the Hamiltonian. This fol lows because

—-0.50

-0.40
+go&

(h

-0.30
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FxG. 4. The short-range s-directional preference, Z;LS S;+I'——',

(S Sj~l +SpS,+p)j as a function of n for the exact solution.
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FIG. 5. O'E/Dn' as a function of a for the exact
solution and the variational solution.

VIII. CONCLUSIONS

According to the variational method, the long-range
order sets in as shown in Fig. 6 where a, is at the same
point as the kink in the variational short-range ordering
curve. The energy expression of Kasteleijn at that point
is quite smooth (as is the exact energy). One can say
that the energy of the system is relatively insensitive to
the long-range order, or, conversely, that the long-range
order is a very sensitive function of the energy. If the
ground state of a system has a given long-range order,
a state lying very close to the ground state may have a
very different long-range order. As shown in Fig. 2, the
variational calculation results in an incorrect value for
the energy of the ground state for all values of n(1. For
these reasons, the conclusions reached from the varia-
tional treatment with regard to long-range order may
be put in some doubt in the region of 0, &1.The calcula-
tion of Kasteleijn implies a sharp kink in the short-
range order curve as a function of 0, and it should be
noted that a similar kink exists in the long-range order
curve of Fig. 6. The latter kink may also be fictitious,
but unfortunately the long-range order cannot be calcu-
lated by the exact method utilized in this paper. One
certainly cannot say that because the exact short-range

could have been hidden by the coarseness of the mesh.
It appears that the variational scheme usedg by
Kasteleijn gives the approximate form of the short-
range order except for the kink which is not present
in the exact solution.
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FIG. 6. The long-range order, 0*,as a function of 0. for the varia-
tional calculation. o*= (2/E) I

mr —ms I, where mr and ms are the
number of plus spins in even and odd places, respectively, on
the chain.

order is a smoothly varying function of n, the long-range
order should be a smoothly varying function too, but
neither can one say the contrary —that there is any
sudden discontinuity in the long-range order.

The problem of determining the ground-state long-
range order of the linear chain with or without anisotropy
(cr (1)is an unanswered one in this field. The references
in the literature regarding the existence or nonexistence
of long-range order have either been "educated guesses"
or rely on approximate calculations. The author believes
that this paper has shown some of the dangers of such
conclusions. Until an exact method is found, as far as
the author can see, there is no dependable method as
yet to determine the long-range order of the linear
antiferromagnetic chain.
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