FIELD THEORY OF UNSTABLE PARTICLES

field, and the problem of elementary particle physics
is shifted from the question of the number of ele-
mentary particles to the number of elementary fields.
It would appear that the future task of fundamental
theory would be to look for criteria which specify
elementary fields.
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The components of the so-called canonical energy-stress pseudotensor in general relativity may be thought
of as the generators of infinitesimal coordinate transformations corresponding to a rigid parallel displacement
of the coordinate origin, just as in Lorentz-covariant theories. In this paper it is shown that the canonical
expressions, as well as the expressions proposed by Landau and Lifshitz and the expressions for the angular
momentum density, are all special cases of an infinity of conservation laws whose pseudovectors generate
arbitrary curvilinear coordinate transformations. This approach enables us to construct the transform of
every one of these conservation laws under an arbitrary (finite) coordinate transformation. Finally it is
shown that every one of these conservation laws may be used to obtain a surface integral relationship that
describes the motion of singularities in a general-relativistic theory. It is concluded that there is an infinite
number of parameters that describes a singularity of the field, a fact that had previously been in doubt.

1. INTRODUCTION

HROUGHOUT mechanics and field theories, it is
well known that the fundamental conservation
laws are related to the universal invariance properties
of physical laws, e.g., the conservation of linear mo-
mentum to the invariance with respect to displacement
of the coordinate origin; the conservation of energy
depends likewise on invariance with respect to the
choice of the origin of the time scale (the instant (=0),
and the conservation of angular momentum on the in-
variance with respect to orthogonal transformations in
three-space. The structure of conservation laws in
general relativity and in general-relativistic theories
differs from that in nonrelativistic and in Lorentz-
covariant theories because of the much wider scope of
coordinate transformations in general relativity. It was
discovered a long time ago that the so-called conserva-
tion laws of energy and linear momentum in general
relativity,

tp#vﬁzo) tp#Egaﬂ,y _apug, (1.1)

0gas, »

which hold only insofar as the field equations of the
theory are satisfied, are related to a set of identities,
the so-called “strong” conservation laws,!:?
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1P. G. Bergmann, Phys. Rev. 75, 680 (1949).
2 J. N. Goldberg, Phys. Rev. 89, 263 (1953).
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The quantities T#, equal t?, when the field equations
are satisfied. The “superpotentials” 11fe], which were
first discovered by von Freud,® can also be constructed
in general-relativistic theories that differ in detail from
Einstein’s 1916 theory.*5 The existence of the strong
laws leads to the (partial) determination of the equa-
tions of motions of singularities by the surrounding field.

The canonical energy-stress components do not form
a tensor density, nor even a geometric object. Being
formed of the components of the metric tensor and its
first derivatives, all components can be made to vanish
simultaneously at any one world point, though not in a
whole region. Moreover, the integrals over the energy-
stress expressions that in Lorentz-covariant theories
would be interpreted as the whole energy and as the
whole linear momentum, respectively, transform as the
components of a four-vector only with respect to a very
restricted group of coordinate transformations. This
elusive character of the energy-stress tensor has rendered
the physical interpretation of the corresponding con-
stants of the motion dubious.

This somewhat unsatisfactory situation has been
complicated further by the discovery of another ex-
pression in general relativity which also obeys a set of
equations of continuity, by Landau and Lifshitz.6 Gold-

3P. von Freud, Ann. Math. 40, 417 (1939).

4P. G. Bergmann and R. Schiller, Phys. Rev. 89, 4 (1953).

5 J. N. Goldberg, Phys. Rev. 111, 315 (1958).

6 L. Landau and E. Lifshitz, Thke Classical Theory of Fields

(Addison-Wesley, Publishing Company, Inc., Reading, 1951), p.
316 of the English translation.
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berg has investigated the relationship between the
canonical and the Landau-Lifshitz expressions®; in the
course of this investigation he has discovered a possible
expression for the angular momentum density of the
gravitational field, which is different from one earlier
suggested by Bergmann and Thomson.” He has also
constructed whole classes of additional conservation
laws, which are generalizations of the canonical and of
the Landau-Lifshitz expressions.

In this paper we shall construct a whole gamut of con-
servation laws as the generators of all curvilinear in-
finitesimal coordinate transformations. All the con-
servation laws enumerated above are included in this
general class. Each of these conservation laws can be
exploited to yield a condition on the motion of singulari-
ties. Hence, a singularity cannot be fully characterized
by a finite number of parameters. It is also possible to
construct a transformation theory for the properties of
singular regions.

2. COORDINATE TRANSFORMATIONS AND
THEIR GENERATORS

In this section we shall construct the generators of
infinitesimal coordinate transformations in the general
theory of relativity, but the method used is usable
for any theories whose field equations can be derived
from a least-action principle.

Infinitesimal invariant transformations in a field
theory and their generators are connected by the
relationship*8

LA§y4+C? ,=0. (2.1)

L4 symbolizes the field equations, and 8y represents
the infinitesimal invariant transformation of the field
variables y4 (i.e., a transformation of variables that
leaves the functional dependence of the Lagrangian
density L on its arguments y4,y4,, unchanged). Cr
might be called the generating density, and the volume
integral /C°Px is the generating functional. Given
an infinitesimal transformation 6&y., the generating
density C is determined only up to a completely
arbitrary curl field, so that with C? the field C,

Cr=Cr4Vel ,, (2.2)

with an arbitrary field Vil is also an admissible
generating density.

We shall now turn to Einstein’s (1916) theory of
gravitation. An infinitesimal transformation &g, will

represent an invariant transformation if thete exists a
field C* such that

&#g,,—+Cr ,=0. (2.3)

We shall now consider the transformations of the metric
field induced by infinitesimal coordinate transforma-

7P. G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953).
8 Bergmann, Goldberg, Janis, and Newman, Phys. Rev. 103,
807 (1956).
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tions, transformations that we know are invariant.
The change in the metric field (considered as a set of
functions of the coordinates) is

ggl“: - (E#;v"i_ Ev;p); E,.;=g,‘,,5x". (2.4)

It follows that the generator in Eq. (2.3) is determined
by the requirement

Cp.pE‘Z@wgﬂ:vE2(®“"£n);p52(@"ﬂf#).p- (2~5)

This conversion into a divergence is possible because
of the (contracted) Bianchi identities. Hence one
possible choice of the generating density is

Cr=20rt,= 20 ,5x°. (2.6)

In this sense infinitesimal coordinate transformations
are generated by an expression that vanishes.®
However, in accordance with Eq. (2.2) the choice of
the generator (2.6) is not unique; we can add a curl.
In availing ourselves of this freedom of choice we can
correct one shortcoming of the expression (2.6). The
right-hand side, though zero where the field equations
are satisfied, is of the second differential order in the
field variables. We shall add a curl chosen so that the
resulting expression contains no higher than first deriva-
tives of the metric tensor. In general relativity the
“superpotentials” appearing in Eq. (1.2) satisfy®:

20, =tr,— N, .. 2.7

Hence, if we add to the right-hand side of Eq. (2.6)
the curl

Cr=Cr+ (1071,557),,, (2.8)
we obtain the alternative generating density
Cr=1r 607+ U171 617 .. (2.9)

This new expression is manifestly free of second-order
derivatives of the metric tensor. Regardless of the choice
of the &x°, the divergence C* , vanishes if the field
equations are satisfied. The variety of conservation
laws obtained in this manner is as great as the variety of
conceivable vector fields 6x°(x%) in a four-dimensional
continuum.

3. STRONG CONSERVATION LAWS AND
THEORY OF MOTION

The quantities (2.9) obey a weak conservation law.
The corresponding strong law is

Dr =0, Dr=(Ub71,51), ,=Cr—20¢,82°. (3.1)

That is to say, curl D? equals C? wherever the field
equations are satisfied. The combination of weak and
strong conservation laws permits us to formulate condi-
tions that are satisfied by spatially isolated singular
domains. The following derivation is formed exactly
after earlier derivations of more specialized laws.?

9 Reference 5, Eq. (3.7).
10 J, N. Goldberg, Phys. Rev. 89, 263 (1953).



CONSERVATION LAWS IN GENERAL RELATIVITY

We integrate the divergence (3.1) over a three-
dimensional domain x°={=constant, separating the
time from the spatial derivatives,

f (D*+Ds ,)=0. (3.2)

Because
D= (110071 §x9) ,, n=1,2,3, 3.3

we can convert each of the two terms in the three-
dimensional volume integral (3.2) into a two-dimen-
sional surface integral,

d
(—i—f N1, 6x°dS -+ $ D"dS ,=0. (3.4)
A

Equation (3.4) is an identity. We can convert it into a
dynamical law if we specify that the surface of integra-
tion, though enclosing a singular domain, lies wholly in
a region in which the field equations of the vacuum are
satisfied. Then, in the second term, we may replace D"
by C», obtaining thus a weak law, that is one that
exploits the validity of the field equations on the
closed surface of integration,

d
;i—f N0 ,657dS p+ & (t7,00°+ U787 ) =0.  (3.5)
t

The first integrand is linear in the first derivatives of
the metric, the second integrand quadratic. The explicit
expressions for the U[#*1, are®

Niwl = g"(gfﬂgw— g‘n'gpﬂ)'p' (36)

The first integral represents some conserved property
of the singular region, whose nature depends on the
choice of the four weighting functions §x°. The second
integral represents a corresponding flux across the
bounding surface. In general the value of the first
integral, and its derivative with respect to time, depends
on the choice of bounding surface. For a given metric
one can also construct éx° such that the value of the
integral is independent of the surface.
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4. TRANSFORMATION PROPERTIES OF THE
CONSERVED QUANTITIES. SPECIAL CASES

In the preceding two sections we have related
generating densities whose divergences vanish weakly
to infinitesimal coordinate transformations. Whereas
the transformation laws of the quantities C* are rela-
tively involved, those of the vector field éx° are very
simple. Accordingly we may state that under a (finite)
coordinate transformation that converts the vector
field 6x7 into the new field éx7’, the conservation law
C»,,=0 goes over into the new law C#' ,=0, both C?
and C*' being given by Eq. (2.9). In view of the fact
that through an appropriate choice of coordinate
system every vector field can be given the same standard
form, e.g:, (1,0,0,0), the totality of all conservation
laws C? ,=0 in one coordinate system is equivalent to
one of them, stated in terms of all conceivable coordinate
systems.

The expressions (2.9) assume exactly the canonical
form if we set

duo=Fe, (4.1)

a set of four constants. We obtain the Landau-Lifshitz
expression if we set, instead,

(4.2)

where the k, are again constants. The so-called angular
momentum expressions are obtained if we choose

0x7=Q"Rq,

8xe= (g72xF—g7Px%) J up 4.3)

or some similar expression, where the Ju.g are again
constants.
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