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The distribution function correlating the electron and neutrino momenta with the spin orientation of the
parent or daughter nucleus is calculated for forbidden transitions with Coulomb effects included. Attention
is focused on the P-decay interaction law form and behavior under time reversal. The near equivalence of the
UA and STP forms is noted and a generalized substitution law relating the VA, STP, and VASTP forms is
derived. A number of experiments distinguishing between the UA and STP. forms are discussed in detail.
Lastly, experiments testing time-reversal invariance are discussed with special emphasis placed on those
terms in the distribution function which are not due to Fierz-like interferences and are not obscured by
Coulomb effects.

I. INTRODUCTION (2) Observation of other terms can answer the ques-
tion whether P decay is invariant under time reversal
or not, provided the interaction law is mainly VA or
mainly STI' (as is most likely).

~ '0 specify completely a four-body process in which
all four bodies may have nonzero spin, one should

specify the linear momentum and polarization tensor
of each of the four bodies. Because of conservation laws
following from invariance under proper Lorentz trans-
formations, it is actually sufhcient in the center-of-
momentum reference frame to specify any two momenta
and any three polarization tensors. Thus the most
general distribution function describing P decay should
have these five quantities as arguments. In practice,
only experiments involving at most three of these quan-
tities have ever been done. Various such three-argument
distribution functions (independent of any assumptions
about invariance under space inversion, charge conjuga-
tion, or time reversal) have been published in the
recent past. '

The purpose of this paper is to add one more set of
such three-argument distribution functions to the
literature, namely the functions correlating the two
linear momenta with a nuclear polarization tensor. This
has been given by Jackson, Treiman, and Wyld' for
allowed transitions; we consider forbidden (in particular
first forbidden) transitions. Forbidden transitions in-
volve in general many unknown nuclear matrix elements
making the analysis of experiments ambiguous. How-
ever, for some judiciously chosen experimental arrange-
ments the analysis can be considerably simplified. The
interest in this particular distribution function is
twofold:

We note that other three-argument distribution
functions are usually not suitable for testing both
questions (1) and (2). Thus the distribution function
correlating neutrino momentum with the electron's
momentum and polarization is suitable for testing
question (1);however, it cannot test question (2) if the
interaction law is pure VA or pure STP. On the other
hand, a measurement of the beta-gamma angular
correlation for decays from oriented nuclei will test
question (2) but not question (1).'

II. FORMULAS

We take for the p-decay interaction Hamiltonian the
expression given by Lee and Yang. ' The calculations are
done explicitly for the process in which an electron and
an antineutrino are emitted. To obtain the results for
positron emission (or E capture) one should make the
following substitutions in all formulas:

(Cv,Cr,Cs', Cp', Cg')~(Cv, Cr, Cs', Cp', C~')*,

(Cv', Cr', Cs,Cp,Cg) ~—(Cv', Cr', Cs,Cp, C~)*.

For proton emission, in addition Z—+—Z.

V~e choose as the two independent linear momenta
the electron momentum p and the antineutrino momen-

1 Observation of certain terms in this distribution
turn q. These symbols are used throughout this paperfunction can answer the question whether the p™-decay
to denote Nwit vectors in the specified directions. The

interaction law is vA or STJ.-.
nuclear polarization tensor may be chosen to be either

*Work performed under the auspices of the U. S. Atomic that of the initial or of the 6nal nucleus. In the; latter
Energy Commissiori.

' Jackson, Treiman, and Wyld, Nuclear Phy". 4, 206 (1957) case one might in an actual experiment observe instead
M. E. Kbel and G. Feldman, Nuclear Phys. 4, 213 (1957); R. Q th.e circular polarization of a subsequent p quantum.
Curtis and R, R. Lewis, Phys. Rev. 107, 543 and 1381 (1957);
M. Morita and R. S. Morita, phy . Rev. 107, 1316 ('1957)'. For the distribution in electron and antineutrino
Heres«tsky, Ioffe, Rudik, and~Ter-Martirosyan, Nuc]ear Phys momenta for decays from oriented nuclei, we find (the
5, 464 (1958);A. Z. Dolginov, Nuclear Phys. 5, 512 (1958); S. B.
Treiman, Phys. Rev. 110, 448 (1958);Frauenfelder, Jackson, and
Wyld, Phys. Rev. 110, 551 (1958):R. R. Lewis and R. R. Curtis, 2 These statements are exactly valid for allowed, and approxi-
Phys. Rev. 110, 910 (1958); Morita, Morita, and Yamada, Phys. mately valid for first forbidden, transitions.
Rev. 111,237 (1958).The above list is not claimed to be complete. ' T. D. Lee and C. N, Yang, Phys. Rev. 104, 254 (1956).
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TABLE I. The factor ho(Io, Mo) defined by Eg. (A-13).

a~(SO, MO)

Mo
vsx ——

L(lo+1)lo]'

3Moo —lo(lo+1)
(+5)X

{ (2lo+3) (lo+1)lo(2lo —1)$O

MoL53loo —3lo(lo+1)+13
(g7) X

L(lo+2) (2lo+3) (Io+1)lo(2lo 1) (Io——1)3»

SMo $7Mo filo(lo+—1)+5)+3(lo+2)(Io+1)lo(lo 1)
X

L(2lo+5) (Io+2) (2lo+3) (Io+1)lo(2lo —1) (Io 1) (2lo 3)]1

fABLE II. The factor Qo(k„k, ) defined by Eq. (A-15).

0I P,u„)

—VSp q

k (5)'{.3 (p. «)' —11

. 0

(-')~&«Xp i
—(1/~)(3p «y —«) i

—(1/~2)(3«. p «—p) i

(15/2)&iy q PX« j
kL3(y. j)'—13

oL3(q i)'—6- (—'.)'(3P i « i-y «)

(3/v2)iy j qXP j
(3/&2)fq j qXp j

—(3/v'5) {-'y «{:5(p j) 13 y'j q'j}
—(3/V'5) {op «LS(q i)' —1j—y i «j}

(5/14)&{3P j(pXq) (jXq)+3q j(qXp) (jXp)+3p. q(pXj) (qXj) —2g

lp j{:5(y i)' —33

oq iLS(« i)'—33

(3h/7){~o{3(p'j)' 17«+p'j «X(yXj)} j
(3/V'7){'{3(q j)'—1&y+q j pX(qXj)}.j
lo«Xp j{:5(y i)' —17

5«Xp jLS(q. j)o—1j
(3/2)(5/14)'oyX» i(SP i q i —P q)

(4&) '{SP i «j{:7(y i)' —31—3P «LS(P i)' —1j}
(4&) '{Sp i « iL7(» i)'—3j—3p «LS(» i)'—1j}
4(5/14)&{35(y j) (q j) —20p q y j q j—S(y j) —5(q j) +2(p q) +1}
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TAalE III. The parameters by, (0,0; k„k„).These parameters contribute to AJ= 0 transitions.

kv bk (0,0; k.,k„)

—,
' Re {nsgC»+2[-,'qRnsI+nss]1&1 —I+[-,' (qR)'nss+6'qRnss+ns ]E I—I }
-'. (-,') ' Re {nsskI»+2[-.'qRnss+nss]EI-I+ [6 (qR)'nss+ 6qRnss+n22]bI-I —I }

TABLE IV. The parameters bs(0, 1;k„k„) aud bi(1,0; k„k„).These parameters contribute to itJ=O (except 0~0) transitions.

4 (05 & 5 ke, kv) +4 (150 ~ ke, kv)

6 Re {[854+851]i}III+[2851 854]MI 6+[—6qR (P„1+815+845 854)+816+846+856]EI I

+[sqR(2851 —854)+2821—824]E I 2+[6(qR)'(851—854)+sqR(861 —814+856)+826]bI I I}
—

6 «{[854+851]E»+[sqR(38 +815+846)+816+846+856]bII I+6[(qR)'85I+qR(38 I+866)+38567~& I I}
-', (—,')&i Im{[2(nss+nsI)]3f»+[n54 2n»]—3II 6+[', qR(2n-„+2n» —3n,4)+2(n»+n41+n„)]E'I I

+[sqR(n64 2nsI)+ns4 —2nsI]E I—6 6[(qR) n, 4+qR( —2nss+3ns4) —6nss]cV I I}
——', (1/~2) Re {[864—2PsI]E'I 6+[-',qR (854—2851)+864 2861]3I—I—6}

-', (1/v2) Re{[-,'qR(864+2861)]EI I+[-,'(qR)'(864+28»)+-', qR(864+2851)]3I I I}

TABLE V. The parameters bs(0, 2; k„k„) aud bs(2,0; k„k„).These parameters contribute to 67=0 (except 0~0, -sI~s') transitions.

2

2

2

ke kv bk (0,2 6 ke, kv) +bk(2, 06 ke, kv)

10 (6) Re {3nssEI-6+ [qRnss+3nss]3I —I-s }
10 (6) Re {qRnssbII-I+ 6qR[qRnss+3nss]E —I—I }

—(1/12)(6)& Re{ns:[qREI I+33II .]+6[qRn;5+3ns, ][qR3I I I+3E I 6]}—'. (l) '6 Im {l853EI—2+ 6 [qR856+3866]bI-1-2}

10 (6)is Im{qR~P»EI I+6[qRP55+3866]3I I I}

details of this calculation can be found in Appendix A)

w(I,
I y, q) dQ, dQ„= 4F (z,E)dQgQ„

X Q (—)s+ +~'ks(Ip, Mp)Fs(L, L',If,Ip)

XP f, (L,L', k„k„)Q,(k.,k„), (2)

the absolute transition rate being given by

1V(Ip
I y, q,E)dpdQ, dQ„

= (2sr) 5W(Ip
I y, q)P'q'dPdQsdQ„. (3)

Here Io and Iy are the nuclear spins before and after
p decay; F(Z,E) is the Fermi function' with E=the
total energy of the electron. The functions h/„F~, and

Qs are of geometrical nature whereas b, is the char-
acteristic parameter of the p process, independent of
geometry. It is assumed that the initial nucleus is in a
definite substate with magnetic quantum number ufo,
the entire dependence on 3EIO being contained in the
factor hs(Ip, Mp). In general a weighted average over
hi(Ip, Mp) with respect to Mp should be taken. The
entire dependence on the electron's and antineutrino's
angular variables is similarly contained in Qs(k„k„).
The exact definitions of h5(Ip, Mp) and Qs(k„k„) are
given in Appendix A, Eqs. (A-13) and (A-1S), and they

4 See, e.g., J. M. Blatt and V. F. Weisskopf, The, ireficc/ Nuclear
I'hysics (John Wiley and Sons, Inc. , New York, 1952), p. 682.

are tabulated in Tables I and D for values of arguments
of interest for allowed and first forbidden transitions.
Fs(L,L',If,Ip) depends on the multipole orders L, andI' of the p radiation as well as on the initial and final
spin values Io and If. It is symmetric in I. and I.' but
not in If and Io. It has been tabulated' for most values
of the arguments of interest. Its exact definition is
given by Eq. (A-14), Appendix A.

Similarly, the distribution in electron and anti-
neutrino momenta in correlation with circular polariza-
tion of a subsequent 7 quantum is found to be

lff(y„r, I y,q)dQ.dQ„=4F (Z,E) (2I,+1)-dQ, dQ„

X Q ( r~) "bib' Fs()I,)I',Iff—,If)Fs(L,L', Ip,If)
If;)X'I I '

X Q 4(L,L'; k.,k,)Qs(k„k.), (4)
kekv

the absolute transition rate being given again by Eq. (3)
with lf'(Ip ly, q) replaced by if'(y~, rv ly, q). Here Iff is
the nuclear spin after the 7 transition, y~ is a unit
vector in the direction of the y quantum Inomentum
and r0 is +1 for right- and —1 for left-handed circular
polarization. The 7 may be a mixture of multipoles X

and X' with amplitudes bq and b) .The other symbols are
the same as in Eq. (2).

5 Alder, Stech, and Winther, Phys. Rev. 107, 728 {1957)and
references cited therein.
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TAsr.z VI. The parameters bq„.(1,1; k„k„).These parameters contribute to AX=0 (except 0—10) and AJ=1 transitions.

2

2

2

kg bye (1,1;k,k„)

g })
(,', )ti—Im—{—'qR( —'n44 n4I+nI4 2QII)M I 2}

—,
' Re {[n44—2n41+al 4

—2nll]EI 2
—[-',qR (n44 —2n41 —n14+ 2n1 1)—n64+2ns1]M, 2—(-,' Q44 —a„+-n„)R', ,}

2 Re( —',gR{[n44+2n41+n14+2n»]MI I+[(gR) (-,'n44 —n») —n64 —2nsl]E I I}j
—

6 (6)6 Re {[n44+ 2n4 I+a II]MII—[qR (-',n44 —n41+-,'nl 4
—nil) —2n4 6

—2n16]EI I

[sn44 a41+ sa14 all]MI —2 [gR (4a44 sn41+n14 2QII)+ sn64 nsl]X—I 2

6[sa44 n41+nll]M —2-2+[6 (gR) (sn44 sn41+nII) gR(sn46 Q16)+a66]M —I—I}
—2' (1/It2) 6 Im {[844—2841+814—2811]EI 2

—[qR (-',844 —841) —864+2861]M I 2 }
-'2(1 v/2—) 6Im{—',qR{[844+2841+814+2811]xl I—[-,'844 —841+814—28„]x, 2

—[', qR(844+2-84, P14 2P—II) ——864 —286,]M, ,} )
2 (s) Re {[sn44 n41+a1 1]M-2-2 }
-', (6)6 Re {2 (gR)'[sn44+n41+n 11]M-I—I }

—-', (7)' Re{sqR[sn44~n4 n14 2Q—II]M—I 2}

—,
' Re {[n44+2n41+n»]E» 2—[,'qR-(n44 n—41+n14 n—») n—4s —nls]M'I I+[-,'n44 —2n41+2QII]X—2—2

+[6(qR) (sa44+all) sgR(a46 a16)+a66]E-1-1}
r's(s)' «{[n44+2n41+nll]MII 2[qR(n44+n41+a14+all) a46 a16]EI—I

+4[n44 2n4—1+n,4 2nII—]MI 2 2[qR—(lsa44 —n41 —n14+2all)+2n64 —4nsl]E
[sn44 2a41+2nll]M —2—2+[(gR) ( n44+nll) 2gR(n46+n16)+n66]M —1-1}

—
rls (6)& Re{[n44 —2n41+2n14 —4nll]gRM' I 2}

—-', Re {[P44+2841+811]MII 2[sgR (P44 P41+814 Pll) P46 816]EI—I

+[P44 284—1+814 2P»—]MI 2 [-sq—R(844 284—I P14+—2P») P64+—2861]E I 2

+[4844 841—+P11]M-2-2+ La (qR)'(4P44 P41—) sgR
—(P46 816)—+P66]M-I I }

6 «{[P44+2P41+Pll]XII [', qR(8-44+2P41+P14+2PII) 2P46 2P16]MI-I

sgR(P44 P41+P14 Pll)XI-I (4P44 P41+Pll)X-2-2+[4 (qR) P44 qRP46+P66]E I-l}-
—-', (-', ) rs Im {[a44 2n4—1+a14 2n\ —1]MI 2+ sqR(n44+2n41+n14+ 2nll)EI

[ qRs( 4sn4n41 2nI4+4n») —a64+2n61]E—I—2 [6 ('gR) (n44+2n41 n14 2nll) ', gR—(n—,4+2nsl)]M, , }'

—Is(1/v2) Re{[844 2841+814—28II]ICI —2 [qR(2844—841) 864—+—2861]M I 2+[2P44 2841—+2811]E 2 2}
—-', (1/V2) Re{-',qR{ (P44+2P41+P14+2P»)EI I+ (28« P41+P1—4 2PII)E—I 2

[ R(2P44+P41) P64 2P61 M—I—I

III. PARAMETERS bs(L, I,'; k„k„)

The dependence on the physical (as opposed to
geometrical) structure of the P process is contained in
the parameters b2(I.,I.'; k„k„) and the main contribu-
tions of this paper lies in the calculation of these bI,.
They are given for a transition of arbitrary order of
forbiddenness by Eq. (A-16), Appendix A. For first
forbidden transitions they are displayed explicitly in
Tables III—VIII under the assumption that the P-decay
interaction law is UA. If the interaction law is of the
most general UASTP form, the parameters bI, will have
additional terms due to STP as well as due to VA-STP'
interferences. In Appendix 8 a substitution law is
formulated which allows one to obtain the contribu-
tions due to STP and UA-STP interferences once the
UA contributions have been calculated.

The following are the physical quantities that enter
into the makeup of the parameters bs.. the P-decay
coupling constants, the nuclear reduced matrix ele-

ments, the electron's radial functions and Coulomb

phase shifts, and the antineutrino's radial functions.
In the tables the dependence on the coupling constants

and the nuclear reduced matrix elements is given in
terms of the combinations n, „and p, s, the dependence
on the electron's radial functions and Coulomb phase
shifts is given in terms of the functions E„„and M„„',
and the dependence on the antineutrino's radial func-
tions is exhibited explicitly.

The combinations n, 2 adnP, s are defined by

—Q J'f) Cart r r —C r J'{4) cart.

We note that n„,=n, s*, Ps, =P„*;hence n, „and P, s are
real if C,=C, and in addition o,„is non-negative. The
J'8,oa"' are the nuclear reduced matrix elements given
in the familiar Cartesian notation. The operators 8 & "
are exhibited explicitly for first forbidden transitions
in Table IX. This table also gives the relation between
C„C,' and the coupling constants in the notation of
I ee and Yang. ' The presence in the bI, of terms contain-
ing p, s indicates violation of space inversion invariance

' We assume, for simp1icity, Im(J'f) "')=0, which implies
that the nuclear wave functions are eigenfunctions of a Hamil-
tonian invarsant under time reversal.
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TAnrE VII. The parameters bs(1,2; k„k„) and bc(2, 1;k„k„). These parameters contribute to IIIj=1 (except 04-41) transitions.

bk (1,2; ke AV) +bk(2 1 s &es~V~

1

1

2

2

2

2

2

2

3

3

3

3
6t63

g3

Q3

-2-2 }

M' I I}

4 (1o/3)' «{{843+813]MI X-LsqR(P43 813) p63]E-1-2 sL'2843 813]M 2 2-+-2(qR)'P2843+PIX]M

4(10/3)& «{sqR{843+833]MI—I+{2843 813]E 2 2
—-qsR{ -qsR( 824 3 2p—ls) —pss]E I I}

—(1/12) (5)4 Im{ (n43+nls) (Ml 2+-', qREI I)—Ls'qR';,'n43 Cl'31+ sn34) nss]E—I

slqR—(IsqR(n43 3n—ls) —nss]M I I+-,'{n43 —2nls]M
4(15) &Re{(p43+Pls)EI 2

—Ls'qR({9/2)843+6813+83\ sp34) p63]M I 2+Di43 2813]E 2 2}

4(15) & Re(sqR{ (P43+813)EI I (2—843+813+7831 2834)E—I 2 tC sqR—(2843+813) 863]M—1-1}}
(1/20)6 Im {qR (-,'n43+Qls nsl+sn34)M —I 2}

—2(I'6)» «{(a43+n»)EI-2 —LsqR(a43 —nls) —nss]M I 3+ (-,'a43 —n»)E 2 2}

2(—,'6)& Re{-s,qRL(n43+CX13)MI —I (-,'qRn43 nss)E —I I]}
4 Re{(cx43+n13) (Ml —2 sqREI —I) LsqR(sa43 a31+sln34) n63]E I 2

+ (XCI43 sais)M —2—2+sqRL —',qR(2a43 CX13) n63]
'( 5) —i Im{ (p43+p13)EI.—2+LqR(2843+2813+831 2834)+863]M I—2+(2P43 4p13)E 22}—

—
4 (15) is Illl( sqR{ (843+813)EI—I (2843 3813+5831 2834)E I 2—{q—R (P43+Pls) 863]M-1-1}}

—I'6 (3') & Re {(a43 —2nls)M' 2 2}
——,', (36) & Re {,' (qR)-'(n43+2n13)M I I }——
—(21)&(40) ' Re{-',qR{n43+2nls —2n31+cx34)M—I—2}

—,'(—I'6)&Re{(p„—2813)M 2 2}
—-;'(—,', )& Re {-', (qR)'(p43+2p13)R —I—I }

—{7/30)& Re {LP43+813]EI—2 LsqR(2843 813 Psl+sp34) p63]M—I 2 ( p43 spls)E —2—2}
—(7/30)& Re{-',qR{L843+813]EI I —Ls'qR(2'843 —p») —p„]M I I+4'{3843+68»+28»—8 4]3E I 2}}
—(3/40)&i Im{ (n4, —2a„)M . .}

(3/40)&i Im{ 6 (qR)2(n43+2nls)M I I}—I'6(21)4Im{-,'qR(-', n43+CX13 Qsl+sla34)M I 2}

in the p process, the presence of terms containing Re(p, x)
or Im(cx, s) indicates violation of charge conjugation
invariance, and the presence of terms containing Im(cx, s)
or Im(P, X) indicates violation of time reversal invariance.

The functions E,„and M„„are obtained by taking
the upper sign in the defining Eq. (6):

The following properties of the parameters b~ are
useful to note:

hs(L, L' k„k„)= (—)"+24+~ b (xL',L; k„k„), (7)

bg, (L,L'; k„0)= b(k, k)b 2( L, L'),

(&XX &

}
—{gg

' e&i"a& a&" &'&S(—cc)S(—44')

EL„„)
Xf f '&( ) &( —)1—}/jc (Z

(M„„q
(S( xl)g f,ei[cx(x) Q(—)]—3

& ar„„.)
&S( Cc)f g„e' ' "' —"' )/F(Z, E).

(6)

where bx(L,L') are the parameters tabulated in refer-
ence 5 (except for the cases L=2, L'N2, which those
authors omit). Each of Tables III—VIII gives the
parameters b~ for a given pair of values of the multipole
orders L and L'; within each table the parameters are
further classified according to the values of k, k„and k„.
Thus for unique transitions one needs only Table VIII
for which L=L'=2; for 0—x0 (yes) transitions one
needs only Table III for which L=L'=0, etc.

If the P-decay interaction law is UA, the functions
L„,' and /t/„„, defined by the lower signs in Eq. (6),
do not appear. The notation in Eq. (6) is standard:
S(sc) =sign of K, h(x) is the Coulomb phase shift, and
g„and f„are the radial functions of the electron (see
Appendix A). Since g„, f, are real we have E„„=E„„.*,

ticular E„„,L„„M„„,andi'„„are real, as well as M„„
and S„„.The relation of these functions to other com-
binations appearing in the literature, as well as their
values under certain approximations, are given in
Appendix C.

IV. FORM OF INTERACTION LAW

It follows from the substitution law formulated in
Appendix 3 and summarized in Table X that the VA
and STP forms of the c{}-decay interaction law may, in
principle, be distinguished whenever a measurement is
performed which selects from the Tables III—VIII terms
proportional to

(a) n, „M„„and cx,sE„. (except that for e=si it is
sufficient to observe just cx„M„„),or

(b) PCXMsx and Psst„.
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TABrE VIII. The parameters b2(2, 2; k„k„).These parameters contribute to AJ=O (except 0—&0, 22~22),
DJ=1 (except 0~1) and AJ=2 transitions.

0

0
0

1

1

*1

2

2

2

*2

2

2

2

3

3

3

3

4

ke

0

2

0
1

1

2

2

0
2

1

1

2

1

3

2

0
3

1

2

2

1

3

2

bI, (2,2; ke, k~)

—,', Re{o22}E, 2+2(qR)2E, ,)}
(VS/80) Re{o22LM 2 2+(10/3)qRE 2 2+-'2(qR)'M 2 2)}

—(40''5)' ' Re(n22qRM 2 2)

——,', Re{p22L-,'M 2 2+-'2(qR)2M, ,]}
1'6 «{p23LE 2 2+(13) '(qR)'E 2 13}
—,22 (6)41m(n22qRE 2 2)

(3/40) (1/VZ) Re{p33LE—2 2+qRM —2—2)}
—(3/40)(1/W2) Re{p22qR{E 2 2+-2'qRM 2 Q}

(40) '(-,—', )film(o22qRM 2 .)
(21/80) Re(n22E 2 2)

(21/80) ReLn22-, (qR)2E, ,)
(7/40)( —,', ) Re{a22LM 2 2+(5/3)qRE 2 2+-,'(qR)'M 2 2]}
(7/40) (1/&2)i Im(p32qRM 2 2)

—(7/40) (1/V2) i Im (p22qRE 2 2)

(9/80) (-', ) Re(o 22M 2 2)

(80) '(-'„.) ReLn22(qR)'M 2 2g

—(40) '(7/10)& Re(n22qRM 2 2)

—(9/80) Re(p22M .-2)

(80) 'ReLp22(qR)'E. 2 &)

(3/80)(7) Re{p32LE 2 2 2qRM 2 2g}
—(7&/80) Re{822qR[2qRM-2 2

—2E-2- )}
(20) '(7/10)41m(n22qRM 2 2)

—(9/80)V3' Re(a22M . 2)

—(V3/80) ReLn22(qR)2M & 2g

—(3/20) (7/10)& Re(n22qRM 2 2)

Observation of both a term proportional to M and a
term proportional to E is needed to establish the phase
of n,„or P,„. This phase depends on the unknown (in
the absence of a theory of nuclear structure) relative
phases of the nuclear matrix elements and, in the case
of p,„, also on the relative phase of C, and C„'. The
exception noted in (a) follows from the fact that n„ is
always non-negative.

As mentioned in the introduction, forbidden transi-
tions involve in general a multitude of nuclear matrix

TABLE IX. The tensor operators (in spherical and Cartesian
notation) and coup1ing constants in the p-decay interaction
Hamiltonian.

elements. In this section we shall discuss in some detail
those cases for which the analysis can be simplified.
The general case can be obtained from Eq. (A-16) and
from the Tables III—VIII.

1. 0-+0 (yes) Transitions

We briefly consider this well-known case because of
its simplicity although it does not properly belong in
this paper since no nuclear polarization is involved.
We see from Table III that bs(0,0; 0,0) (which meas-
ures the simplest of all properties of p decay, namely,
the spectrum shape) can distinguish between VA an.d
STI'. Speciically,

Cs Cs Ce Q Cart.
b, (0,0; 0,0) =-;( J'sn. r(2

1 iLP'LM

2 SLy57'LM

3 ~L 1g+L L M

gLg@L LM

gL+1g +L L+1M
M

7 $ ')r5g4'L, L
8 ~ +'VSg@'L, L+I

Cy
—Cx
—Cs
—Cg

Cy
Cy
Cv

Cv'
—Cs'

—Cg'
Cv'
Cy'
Cv'

Cs
Cg

—CT
—CT
—CT
—CT
—CT
—CT

Cs'
Cg'

—CT'
—CT'
—CT'
—CT'
—CT'
—CT'

ir/r VS

Y5

iB;;/r (-,*)&

rX 2r/r (-', )&

(1/2)r rr/r 1

y5 g' 1'

X(p(n~A+nrr)+ sett(p'/E+q 3x)n~A-
+(p'/E —q)nz r—3(p/M) (Re np~)))
—

2 I
J'sn rI'((8/&) (Re n»)

+ ($/E) Lx(Re n~r) —(P/M) (Re ng2)]}. (9)

Equation (9) was obtained by evaluating the Coulomb
wave functions in the approximation of Appendix C
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TABLE X. The substitution law relating p(VA), p (STP),
and p(UA —STP).

I'c~„JCIcK
~el g Jscg'

r,r„*~„„.
F,F„*Z„„

.(»P) p(VA —STP)

and keeping only terms of order P and $, where
$= (nZ)/(2R) (E=nuclear radius). The cr~~, etc. ,

differ from the cr» [Eq. (5)], etc., by the reduced
nuclear matrix elements (i.e., o~~ ——C~C~*+C~'C~'"',
etc.). p and q are the magnitudes of the electron and
antineutrino momenta, respectively, and x= (J'Ys)/
(firr". r). (We use units such that h=c=m=1. )

For heavy nuclei P))1 and so the major contribution
to Eq. (9) comes from the P terms which do not dis-
tinguish between VA and STP. One must therefore
look at the $ terms which are, unfortunately, a small

correction. Since for heavy nuclei (P/3f)~1, where
&=nucleon mass, the contribution from interferences
with the pseudoscalar covariant is of order $ and we

have included it.' The second curly bracket in Eq. (9)
contains contributions due to VA-STP interferences

and displays the 1/E dependence characteristic of

Fierz terms. If one assumes the Fierz terms to be
absent, the dominant P terms as well as the T I' inter--
ference will give rise to an allowed spectrum shape and

a measurement of the deviation from allowed can decide

between the A and T covariants. The lighter the nu-
cleus, the more favorable the situation.

The remaining parameter in Table III, bs(0,0; 1,1),
measures the electron-neutrino angular correlation.
Here it is the leading P term that distinguishes between
A and T. This leading term is

bp(0, 0; 1,1)
—=—(sv's) lfs~. rIV(p/E)(n» —a„). (10)

To this order there are no Fierz-like terms, nor are
there any contributions from the fys nuclear matrix
element. If we write the electron-neutrino angular
correlation in the standard form

1+X(v/c) cos8,„, (11)
then X=1 for A and )r= —1 for T (only P terms
included).

2. Unique Transitions

Another case not obscured by the nuclear matrix
elements is that of unique transitions for which the
spin change equals rr+1 where e is the order of for-
biddenness. Since k is equal to the rank of the nuclear
polarization tensor, if no nuclear polarization is meas-
ured only the b& for which k=0 can contribute. For this
case we have in Table VIII three parameters: bs(2, 2; 0,0),
bs(2, 2; 1,1) and bs(2, 2; 2,2). The first of these measures
the spectrum shape; in contrast to the 0—&0 (yes) case
it does not distinguish between VA and STP. The
second and third measure the electron-neutrino angular
correlation and do distinguish between VA and STP.
Specifically,

Q bp(2, 2; k„k,)Qp(k„k„) = (1/240)
I fsB,, I j5 (p +q ) (re g+rr r r) (p/E)—

kekp

X[(p'+10qE+q')rr» —(p' —10qE+q')rr r r ) cos8,„+(p/E) pq(rrzz nr r ) (3 cos'8—,„—1))

+ (1/240) I
f'iB;,

I
'(1/E) (10(p'+q') (Re n~ r) —[20pq(Re or~ r)+nZ (p'+2q') (Im n~ r)] cos8.„

+snZPq(Im

nor�)

(3 cos'8,„—1)), (12)

where the second curly bracket contains the Fierz-like terms, the Coulomb functions have been evaluated in the
approximation of Appendix C and the Qs(k„k„) have been taken from Table II.

When nuclear polarization is measured (either by having the initial nucleus oriented or by observing the circular
polarization of a subsequent gamma') one also has contributions from the bs with k@0. The electron angular
distribution relative to the nuclear polarization is measured by bi(2, 2; 1,0), bs(2, 2; 2,0) and bs(2, 2; 3,0); the corre-
sponding antineutrino angular distribution is measured by bi(2, 2; 0,1), bs(2, 2; 0,2), and bs(2, 2; 0,3). Using Table
VIII we find (in the approximation of Appendix C)

bi(2, 2; 1,0)Qi(1,0) = —(1/48) I fiB;;I'[(sPs+q') (P/E) (P» —Pr r)+ (sP'+2q') (rrZ/E) (Im Pzr)]y j, (13e)

bi(2, 2 o,1)Qi(o,1)= (1/48) I fsB'~ I'(sq'+ p') [8»+p»+ (2/E) (Re p»))q. j (13v)

b (2,2; 20)Qs(20) = (7/240) If'iB;, I'p'[rr»+ r r+(2/E)(Re n r)][—,'(y. j)'—-,'], (14e)

b&(2,2; 0 2)Qs(0, 2) = (7/240)
I J iB;,I'q'[rr»+rr r r + (2/E) (Re rr»)][-,' (q j)'——',], (14v)

bs(2, 2; 3,0)Qs(3,0) = —(1/160)
I fiB;,I'p'[(p/E) (p~~ per)+ (rrZ/E) (Im p~—r)7[5 (y j)'—3y j), (15e)

bs(2, 2 03)Qs(0 3') = (1/160) I fiB'
I
sq [P»+P r r+ (2/E) (Re P~ r)7[5(q j)s—3q j]. (15v)

' See discussion at the end of Appendix B.
'It is, of course, understood that for even k all of our formulas apply equally well if instead directional correlation with the

gamma is measured (or the initial nucleus is aligned and not oriented).
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Here j is a unit (pseudo) vector in the direction of the nuclear polarization axis. Thus the combined information
obtainable from, for example, an experiment of the type performed by Ambler ei al.' [Eqs. (13e)—(15e)]with that
obtainable from an experiment of the type performed by Goldhaber et al."[Eqs. (13m)—(15v)] can decide between
the A and T covariants.

Finally there remain to be discussed in Table VIII the parameters b~ with all three of the arguments k, k„and k„
diferent from zero. It is these bl, that describe a truly three-argument distribution function since they will con-
tribute only if one measures simultaneously the electron momentum, the antineutrino momentum, and a nuclear
polarization tensor. An experiment measuring these bI, is accordingly more difficult to perform than the "simple"
experiments measuring any of the previously discussed bA, s. For p+-emitting (or E-capturing) nuclei several of the
"simple" experiments have been carried out and they indicate that the interaction law is VA.""Although there
is no reason to believe that P emitters behave differently from P+ emitters, as yet no "simple" experiments on P
emit ters giving unambiguous results have been performed. "Accordingly, we complete this section by listing (in the
approximation of Appendix C) the remaining bq(2, 2; k„k„)Qq(k„k„) involved in a first forbidden unique transi-
tion with k=1:

b (2,2;1,1)Qi(1,1)=—'~ J'iB,;~'(q/E)[nZ( 'E'+ ')(n—~~+n-rr) —2p(Im n~r)]yXq j,
bi(2, 2; 2,1)Qi(2,1)= —(1/80)

~

J'iB;;
~
'[(3+q/E)P'Pgg+ (-', q/E)P'—P r r

(16)

+ ', (p'/E)(-Re p»)+ —,'qp(nZ/E)(Im p»)](3y q y. j—q. j), (17)

b, (2,2; 1,2)Q, (1,2) = (1/80)
~

J'iB;,
~

'[(1+', q/E)qPP&~-+ (1 3q/E) qPP—rr

+2(qP/E)(Re P~ r)+-,' q'(nZ/E)(ImP~r)](3q y q j—y j), (18)

bi(2, 2; 2,2)Q&(2,2)=(3/320)
~

J'iB;,
~

qpnZ(nag Qrr)q yqXy''j. (19)

It is clear that the above bI, distinguish between the
A and T covariants. The structure of the remaining
bI,QI, with k) 1, k, /0, k„@0is not essentially different
and we omit them here. It should be noted that al-
though in Table VIII entries for k ~& 4 are listed, in any
particular case not all these k values need appear.
The value of k is limited not only by the order of for-
biddenness e [by the relation k~&2(v+1)] but also
by the nuclear spin I (by the relation k&~2I). Here
I=ID [Eq. (2)] or I=Ir [Eq. (4)].Thus, if one deals
with a nucleus for which I= ~, all the entries in Table
VIII with k) 1 may be ignored. Finally, in the case of
Eq. (4), k is also limited by the multipole order of the
gamma radiation (by the relation ~X—X'~ &~k~&X+X').

In order to apply our results to an experiment of
the type performed by Goldhaber et al. ' (however with
a P-emitting, not E-capturing, nucleus), one must
integrate over the electron and antineutrino variables
subject to the constraint that the recoil momentum be
held fixed. Since g&&p is perpendicular to the recoil
momentum, terms proportional to q&(p j will vanish
and the only remaining dependence of the bI, on nZ will
be in the terms proportional to Im n~r or Im Pgr. We
shall ignore these terms as very small (if not zero) be-
cause (a) they are proportional to nZ, (b) they require

' Ambler, Hayward, Hoppes, Hudson, and Wu, Phys. Rev. 106,
1361 (1957).

"Goldhaber, Grodzins, and Sunyar, Phys. Rev. 109, 1015
(1958).

"Hermannsfeldt, Maxson, Stahelin, and Allen, Phys. Rev. 107,
641 (1957).

"With the exception of the spect."um shape measurement of
PrI~. D. A. Sromley in Proceedings of the Rehovoth Conference on
Nuclear Stricture (North-Holland Publishing Company, Amster-
dam, 1958), p. 457.

time-reversal-invariance violation, and (c) they require
the interaction law to be a mixture of VA and STI'.
Thus all Coulomb effects are contained in the Fermi
function F(Z,E). It is shown in Appendix D that if one
sets F(Z,E) =1 the necessary integrations can be per-
formed analytically, with the curious result that if the
interaction law is T the gamma will be circularly polar-
ized but if the interaction law is A the circular polariza-
tion will be exactly zero (for unique transitions only
T and A are relevant). This result is valid for any
unique transition independent of order of forbiddenness.
In practice, since the Fermi function differs from unity,
the above result is only approximately true; neverthe-
less the observation of a large circular polarization in
light nuclei would necessarily imply that the interac-
tion law is T. In any case the sign of the circular polari-
zation, in light or heavy nuclei, can distinguish between
A and T (see next section).

3. Coulomb Transitions

In this section we consider transitions that are domi-
nated by Coulomb effects. All forbidden transitions
involving heavy nuclei fall into this category except
unique transitions. Let us take as representative a~1 (yes) [or 1~0 (yes)] transition for which only
the entries in Table VI are needed. A glance at this
table shows that even if the interaction law is pure VA
(or STI'), six different products of nuclear matrix
elements appear. Thus an analysis of these transitions
is virtually impossible unless some additional approxi-
mations, beyond those of Appendix C, are made. %e
shall assume that it is sufficient to keep for each nuclear
matrix element only the terms of highest order in $;
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for heavy nuclei the error involved in this approxima-
tion is only a few percent. "Furthermore we shall ignore
entirely contributions due to VA-STP interferences
(Fierz terms).

We define, in analogy to Eq. (5), the following com-
binations of coupling constants and nuclear reduced
matrix elements:

(vA)(vA) r(vA)p(vA) +I (v ) I (vA)

P( V)(VA) P(VA)I (VA) +I (V ) P
(20)

«s T) &s T&
= I'(ST)I'&sT)*+I'(ST)'I"(ST)'*;

p(sT)(sT) r(sT)I (s ) +p(s ) r(s )

where

I (vA) = $(CAf0'X r+Cv fir)+Cvf Vo&
(21)

r(sT) $(CTf~Xr+Csfir)+CTf py, ~,

and I'(vA&', I"(sT)' are obtained by replacing in Eq. (21)
every C by C'. If one takes in Table VI k=0, one ob-
tains the spectrum shape

bo(1,1; 00)= 4 (n(vA) (v A)+~(ST) &ST)), (22)

and the electron-neutrino angular correlation

bo(1,1;1)1)= (i2+-', ) (p/E) (~(vA) (vA) (x(sT) (ST)). (23)

Thus the spectrum shape is insensitive to the form of the
interaction law whereas the electron-neutrino angular
correlation Lwhen expressed in the standard form-
see Eq. (11)j gives)&= —iofor VA, X=+-,'for ST.

For k = 1 and 2 we have

Clearly the k=2 term distinguishes between VA and
STP; it measures the electron-neutrino angular distri-
bution either from aligned nuclei LEq. (2)) or in corre-
lation with the direction of a subsequent gamma
LEq. (4)g. The two parts of the k=1 term measure
separately the antineutrino and electron angular dis-
tributions either from oriented nuclei LEq. (2)j or in
correlation with the circular polarization of a subsequent
gamma LEq. (4)$. To apply our results to an experi-
ment on a P emitter of the type performed by Gold-
haber et a/. ' we again assume that the Fermi function

"Unless an accidental cancellation occurs among these leading
terms, as for example, in RaE; the present analysis does not apply
in such a case.

Q bi(1,1; k„k„)Qi(k„k„)
kskg

= 6Lq' j (P(V» «A)+P(ST) (ST))

—1).j(p/&)(P(VA)(VA) —P(ST)(sT)j, (24)

Q bo(1,1;k„k„)Q,(k„k„)
kskg

=l(31 jq j—1 q)(P/&)

X (&(VA) (VA) &(ST)(ST))~ (23)

may be replaced by unity. Then, as in Appendix D, we
get circular polarization for ST but not for VA. Now
in the present case it is a very poor approximation to
set F(Z,E) =1, and in fact the circular polarization can
be very nearly as large for VA as for ST. However,
because of the preceding argument we can now de-
termine the sign of the circular polarization. For P
emitters the Fermi function emphasizes the q j term
over the p j term in Eq. (24) and if we ignore the p j
term Eq. (24) goes over into the corresponding equa-
tion for E capture except for an over-all minus sign

t see Eq. (1)).Hence, if the interaction law is VA we
should get the opposite sign, and if it is ST the same
sign, as the actual sign observed in the E-captureIO

experiment.
"For P+ emitters the situation is unfavor-

able because the Fermi function emphasizes instead the
p j term over the q j term, with the result that circular
polarization of the same sign is predicted for both VA
and ST.

V. TIME REVERSAL

As stated before, noninvariance under time reversal
manifests itself in the presence of terms containing
Im n,„or Im P,„. There are many such terms in the
Tables III—VIII and various experiments can be
designed to measure them. However, because the
Coulomb functions are complex, an experiment designed
to measure Im n,„or Im P,„will usually also measure
contributions from Ren, „or ReP, „, and unless the latter
can be regarded as small the results of such an experi-
ment will be ambiguous. An examination of the Cou-
lomb functions in the approximation of Appendix C
reveals an important difference between those involved
in pure VA (or pure STP) terms (the functions E„„,
M„„)and those involved in Fierz-like terms (the func-
tions I„,, E„„).For the former the imaginary parts
are at most of order eZ compared with the real parts.
For the latter this is not necessarily the case."Thus,
if the interaction. law is pure UA (or pure STP) one
can make the (unwanted) contributions from Re n, „,
Re P,„to be of order nZ compared with the contributions
from Im n, „, Im P,„, by measuring only the entries
marked in Tables III—VIII with an asterisk. In this
section we consider just those terms (for simplicity we

approximate the Coulomb functions as in Appendix C,
and write out the VA contributions only).

The entries marked with an asterisk are those for
which k+ k,+k„ is an odd integer. The corresponding
Qo(k. ,k,) are the only ones to change sign upon reversal
of direction of all three vectors p, q, and j. Thus the
experimental arrangement that will pick out the
asterisk-marked terms consists in measuring the differ-
ence in counting rates between a given orientation of

'4 We assume here that either C,'= C, and the interaction law is
VA or C,'= —C, and the interaction law is STE.

"This statement remains correct for the contributions from the
I' covariant even though all four functions, A, 1., 3f, and N con-
tribute to SKI' terms as well as to Fierz-like terms.
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p, g, j, and its reverse. We note that the eRect will be
largest if p, q, j are taken mutually perpendicular and it
vanishes if p, q, j are coplanar.

One sees immediately that 0—&0 (yes) transitions, as
well as unique transitions, cannot test time reversal
invariance. In fact, this is true regardless of any assump-
tions about the Coulomb functions and follows from
the observation that Im n, „=Im P,„=O if C,=C„. In
other words, if the interaction law is such that there are
no interferences between the five covariants V, A, 5, T,

and P it is meaningless to ask questions about time
reversal invariance. Since 0—&0 (yes) transitions are
caused by A, T, and P and unique transitions by A and

T, the assumption of pure VA automatically eliminates
all interferences between different covariants.

The other first forbidden transitions, i.e., AJ=O
(except ~0) and AX=1 with parity change, can test
time reversal invariance. We take as representative the
case 0—+1 (yes) or 1—+0 (yes). For this case we need the
asterisk-marked bf, from Table VI only. They are

b&(1,1; 1,1)= —i('pgp) (p/E) (Im n&&) ([$(q 3E) —p' —q']J—'ir (q+—E)f'pp)lJ'eeX r

—'(—,',v'-.') ( Z/E) (-,'[((3P+1)——',q(E'+3)+p'E](J' X )'

+-', (Re nqv) [(3P+1)(fape —$fir)+p'(3q —E)J'ir]feX r

—nrv[(3E'+1) (fyprr+( fir)+2q(P+1) fir+ p'E fir]fir), (26)

br(1,1; 2,2) = —i(pg —,', ) (qp'/E) (Im n~v) fir feX r+i(—,',gr'p)qpnZ[4n~~(f Xer)' —nvv( J'ir)'], (27)

bs(1,1; 2,1)= i( '—g ', )—(p'-/E)(Im p~v)[(3$+E q) J'ir+f—'yprr] J'eXr

+i(sQ-', ) (p/E)nZ( p~~ (pE——,'qE+ sp'](J'e X r)'

+(Re pqv)[E(f ppa gJ'ir)+(—Eq ', p') fir]—f—eXr 2pvv[E(—fype+pf ir)+-', p'fir] f'ir), (28)

bs(1,1; 1,2) = i(pg—', )(qp/-E)(Im p~v)[($+E q)fir f—ape]f—eXr

+i(-,'g-,')(q/E)nZ[~P~~(3+V)( J'eXr)'+(Re Px&)feXr fir ,'PrvP'(f—i—r)'] (29).
If neither the initial nor final spin is zero we have

additional terms from Table VII. Their structure is
similar to Eqs. (26)—(29). They involve interferences
with the nuclear matrix element J'iB,; of unique
transitions and may be ignored whenever fiB,; is ex-

pected to be small. If the transition is d,J=O (yes)
(except 0—&0), we have in addition to Eqs. (26)—(29) a
single contribution from Table IV which can give large
eRects as well as contributions from interferences with

fiB,; (Table V).
It is seen that no detailed quantitative statements

can be made because of the large number of nuclear
matrix elements involved. However, in all cases the
time-reversal testing terms are at least by a factor
(nZ) ' larger than the unwanted terms. Hence observa-

tion„ in light nuclei, of a reasonably large eRect would

imply violation of time reversal invariance.
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APPENDIX A

We write the P-decay interaction Hamiltonian in a
multipole expansion' as follows:

L. C. BIedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953), and reference 5.

II=II(VA)+II(STP),
oo L 8

II(VA)=Z 2 Z ( )'+ (4'*&.—' %-)
L=O M=L &=1

X[y.*~; (C.+C,'v )0.], (A-2)

&(»I')= Z Z 2 ( )(—O'*Pf)' &-)
L=O M L e=l

XB"*PB'"(C.+C'v p)4"] (A-3)

Not all values of e contribute to transitions of given
order of forbiddenness. In fact, in standard P theory
&=7 and 8 are always neglected as small corrections. '~

The operators 8L~ are listed in the second column of
Table IX in the notation of reference 16. The next four
columns of Table IX give the relation between the
coupling constants in our notation and in that of I ee
and Yang. ' In the last two columns the operators 6L~
involved in 6rst forbidden transitions are given in the
Cartesian notation according to the following deinition:

1V f6 '—:(4a')'*(2Ip+1) '(Iyll8 llIp). (A-4)

The spherical wave expansion of the electron wave
function is given by'

lf r) = (4 )'* 2 [(»+1)(2j+1)]'(—)'+'

agan

X V(l-',j;Or r)e 'a&"&Ll—„,(y—) l Irm), (A-5)
"See, however, M. Gell-Mann, Phys. Rev. 111,363 (1958) and

B.C. Carlson and G. B.Benton, Bull. AIn. Phys. Soc. Ser. II, 2,
358 (1957).
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where

( gzXe

(if x „"i

(—)""(2j+1)'
m'+m"=m

X V(l2 j; zzz"zzz' —rn)x;
'
Jrz ",

t
—.yiA)

A(z() =-,'arg~
~

—argF(y„+iAE)
(~„+iAZ) +' D( ) &7
A=—nz/p, p„—=(.2—nszq&

Here /=l(z), r is the spin component along y, and
5),'(p)" describes the rotation from a fixed coordinate
system to one whose s axis is along y; X~

' and I"
&

"are
the usual two-component spinor and a sperical har-

monic; V is the vector addition coeKcient in the nota-
tion of Racah. '2 Finally g„and f„, the electron radial
function, are (up to a phase) the same as defined by
Rose" normalized in a box of unit volume. The wave
function of the antineutrino is similar, with A(z(„) =0.

Any information desired about the P process may be
obtained from the density matrix p..

p= p(VA—)+p(STP)+p(VA STP),-(A-6)
p(VA) =p (IyMfpr i H(UA) i IpMp(Ir„)

X (IqMq'pr'
~
H(VA)

~
IoMo(Ir, )*, (A-7)

and p(STP) is obtained by replacing in Eq. (A-7) both
of the H(VA) by H(STP) whereas the interferences
p(V& STP) are -the sum of the two terms obtained by
replacing first the first H(VA) and then the second
H(VA) by H(STP). Explicitly, p(VA) is given by

(VA) = (4~)' p (—)'+sr+srf —~&'+'+"+o—f'-'(2k+ 1) (2k,+1)(2k„+1)

Xf(2l+1) (2l,+1)(2j+1)(2j,+1)(2l'+1) (2l,'+1)(2j'+1) (2j,'+1))'W(j,k, sing.
';j,'i )

X V(k,l,l,'; 000) V(l2 j; Or —r) V(l'-2,j', Or' r') V (jj—'k„r r's)—
X V(k,kk, i yes fs ) V(L Lki —M M —p' ) U(IyIpL; —MfMp M) V(IyI—pL i Mf Mp M )

ck k k

& c () sp (p) Q Ilpzc ( q)p L («)Q, L'a (s&z( &)ezd (x) zd (g')—
j' I-' j'

where the summation is over I., M, e, a, I(:„k„k„k,

(jii jis
j&2

~j31 j32

j13
j22 ~ =p; (2j+1)W( jiijsijoej22, j»j)
j33&

XW(jl2jp2j2pj21 j22j)
XW( jsp joejisj„;j,sj). (A-11)

The phases of the lepton wave functions have been so

& L(«) =(Irll8 'IIIo)(sl 8 '(C+&.'vp) II "» (A-9)

all reduced matrix elements being defined according to

(J'M'~8 ~~ I"M")
= (—)~'+~'V(J'I"I; M'M"M)—

X(J'~~8
~~
J"). (A-10)

8' is the Racah coefficient" and the 9-j symbol is
given by

chosen that (z(ll 8 LII s ) and (z(II 8 Lypllu ) are real. Simi-
larly, an appropriate choice of phases will make
(If~~8,L~~Ip) real if the nuclear wave functions are
eigenstates of a Hamiltonian invariant under time
reversal.

The distribution function correlating the electron
momentum, the antineutrino momentum and the spin
orientation of the parent nucleus is given by

W(Io
~ y, q) = P S(rr') 3(M,M, ')f

=4p(z, &) 2 (—)
I,l.sa.I,t

Xhs (Ip,Mp) Ps (L,L',If,Ip)

X4(L,L'; k„k.)Qs(k„k„), (A-12)

where the s axis of the coordinate system has been
taken along the orientation axis and

hs (I() Mp) (2Ip+ 1) (2k+ 1)-*, ( ) re+me V(IokIo ,'MoO —Mo)

Fs(L,L', Iy, Io) =L(2Io+1)(2k+1) (2L+1)(2L'+1)$'( )+'W(kL'IoIf—, LII)) U(LL'k; 1—10),
'

(A-13)

(A-14)

Qs(k„k.) = (2k,+1)'(2k„+1)'*P, (—)2'+'U(k, kk„; —sOs) S,ps (p) G,ps~*(—q) (A-15)
zz See, e.g. , A. R. Edmonds, Angular Momenszzm zn Quan&um Mechanics (Princeton University Press, Princeton, New Jersey,

1957), Chap. IV.
"Giulio Racah, Phys. Rev. 62, 438 (1942)."M.E. Rose, Phys. Rev. 51, 484 (1937).For Rnite nuclear size effects see, e.8., M. E. Rose and D, K. Holmes, Phys. Rev. 83, 190

(1951).
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bs(L, L'; k„k„)=4fr'[F(Z, F) (2Io+1)(2I+1)'(2L'+1)*'V(LL'k; 1—10)7 '

X ( )s—+L+'+'"[(2k,+1)(2k.+1) (2j+1)(2j„+1)(2l+ 1)(2l„+1)(2j'+1)
X (2j„'+1)(2l'+1) (2l„'+1)7'V(k,ll'; 000) V(k, l l.'; 000)W(jj'll'; k;,')W(j j,'l l.'; k,—',)

k„k
j L &I] L(KK )Il,L'a(KrK r)sia(r) —ia(r') (A-16)

j.' I-'

When either L or L' equals zero, V(LL'k; 1—10)
vanishes; the bk in Tables III—VIII were computed for
this case as if V(OL'k; 1—10)= U(LOk; 1—10) = (—)"+t.

The same parameters bk are involved when a correla-
tion with the spin orientation of the daughter nucleus is
observed. In practice this means a correlation with a
subsequent gamma ray. Alder, Stech, and Winther'
give for the density matrix p& of the gamma transition

~2k+1 q
-'

p PI I(r)

XU(IfIfkj Mf Mf 0)FR(X))t)Iff)If)46i, p
(A-1'/)

with the z axis of the coordinate system taken along the
direction of propagation of the gamma. Then the dis-
tribution function correlating the electron momentum,
the antineutrino momentum, and the direction and
circular polarization of the gamma ray is given by

W (y„r,I p, tI) = (2Io+1)—' p b (rr') pp,

=4F (Z,F) P (2If+1)—'
LL'V. 'ksk k

X (—r,)"44 Fs()~,) ',Iff,If)

XFs(L,L',Io,If)bs(L,L'; k„k,)

XQs(k.,k.) (A-18)

APPENDIX B

In Appendix A a formula was given for p(VA). It is
clear that p(STP) and p(VA STP) differ from p-(UA)
only in the reduced matrix elements B.L (KK,)8, L'*(K'K,') .
For example, for p(STP) these reduced matrix elements

must be replaced by 8, (KK„)B (K K„'), where

k L(KK,)=&Ifl P&.LIIIo&&—KI!Pt).L(('.+('V ) II'& (H-1)

The nuclear matrix elements are in general un'known,

and the only thing that can be said about them without

resorting to models is that, if P commutes with B,L,

then it is an excellent approximation to ignore it in

&Ifllp8, LIIIo& (this is the case for e= 1, 3, 4, and 5). The
lepton matrix elements, on the other hand, can be
evaluated explicitly. One Ands

& IKIe, IIK,& X;(—...„)g.f.,
+X,L(—K, K„)f—.g.„, (B-2)

&Kll e,Lysll K,)= U, L(K,K„)g.g..
—U, L(—K, K,)f.—f.„, (8-3)

where X,L(K,K„), Y,L(K K ) are independent of the
radial functions f and g. Since g.„and f ., are e—qual

to each other (up to a sign) and the coefficient of
8, (KK,&B, '*(K'K,') expi[h(K) —A(K')7 in the expres-
sion for p(VA) [Eq. (A-8)7 is invariant (up to a sign)
under the substitution (K K„K K„')—+—(K K„K K„'), it
follows that the dependence of p(VA) on the electron
radial functions can be expressed in terms of the four
functions E, L, M, and 1V defined by Eq. (6).

Since Plyr& is the same as lyr& with f„replaced by
—f„[see Eq. (A-5)7, we can formulate a substitution
law relating p(VA), p(STP) and p(UA STP) as fol-lows:

whenever p(VA) contains a combination of coupling
constants, nuclear matrix elements, and electron radial
functions given in column one of Table X, p(STP)
contains the corresponding entry given in column two,
and p(UA STP) contain-s the corresponding entry given
in column three. Furthermore, the same substitution
law holds if either one F or both in column one is re-
placed by F' (with corresponding replacements in
columns two and three). F, and I', ' are de6ned by Eq.
(5); the corresponding definition for I', and I', ' is
given by

F —(r J'pt) cart. ~ F r —P' r J'pO cart (g 4. )

Several special cases of this substitution law have
been given in the literature. ' Thus, if a given experi-
ment involves, for specified values of e and q, only the
entries in the erst row of Table X, or only the entries
in the third row, then it will not distinguish between a
pure VA or pure STP interaction law for P decay. "
This, for example, is the case in experiments involving
allowed P transitions in which the neutrino momentum
(i.e., recoil) is not observed. " This particular result,
as well as some more general ones relating p(UA) and

p(STP), follows much simpler from the observation:

ti R. R. Lewis and R. B. Curtis, Phys. Rev. 110, 910 (1958)
and references cited therein."See Sec. IV for a more rigorous statement.

2' It should perhaps be emphasized that in forbidden transitions
observation of the neutrino momentum is not necessarily required
to distinguish between VA and STP; see, e.g., 0—+0 (yes) transi-
tions, spectrum shape.
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p&p„(tl) =&p„(—q). The advantage of the present formula-
tion consists in permitting one to relate in a simple
manner the interference p(VA STI-') to the pure p(VA)
and p(STI') in addition to relating z&(VA) to p(STP).

The substitution law, as formulated so far, would be
rigorously correct if both O, o"' and P8,o"' could be
treated in the same manner, i.e., as adjustable param-
eters independent of the lepton variables. This is true
to a high degree of accuracy except in first forbidden
transitions with &=2.'4 Although the axial vector con-
tribution J'ys can be treated as an adjustable parameter
independent of the lepton variables, the corresponding
pseudoscalar contribution J'Pys cannot. By application
of the Foldy-Wouthuysen" transformation, J Pps can
be transformed into z(2M) 'J' zz V, whe. re M'=nucleon
mass and the gradient operator acts on the lepton wave
functions only. Thus, in the absence of Coulomb correc-
tions, the contribution of the pseudoscalar to first for-
bidden transitions is of the order of magnitude of third
forbidden transitions. Coulomb eGects change this result
and one finds that in order to obtain from I' contribu-
tions of the same order as those from T or A, it is
necessary that (Cz/Cx)~(M'/() where X=A or T.
In the present work we assume instead that Cg~C~Cg
and consequently the pseudoscalar's contribution is in
general ignorable. In those few cases where the pseudo-
scalar's contribution is of the same order as other terms
considered, it was evaluated separately and not by use
of the substitution law.

APPENDIX C

Since in p decay the assumption pR«1, qR«1
(R= nuclear radius) is well justified, we shall calculate
the radial functions in that approximation. For the
antineutrino we have (omitting the subscript & on ~

and l)

g„= (1/~2 j& (qR)—+ (1/~2 (qR) '/(2l+1) !!, (C-1)

where the notation is the same as explained following
Eq. (A-5).

From Eq. (C-3) the functions E„„,L„„,M„„, E„„
defined by Eq. (6) may be obtained for any values of
the subscripts that may be needed. In many cases it is
sufficient to have these functions in the approximation
(nZ)'«1 Lbut f= (nZ)/(2R) & 1$ and we therefore list
them explicitly in this approximation. Three cases have
to be distinguished: (1) both a and a' are negative
integers, (2) a (or «') is a positive integer and ~' (or a)
is a negative integer, and (3) both a and a' are positive
integers, In the first case we have only terms propor-
tional to the zeroth power of g, in the second case the
first power of P appears, and in the third case the second
power of P also appears.

Let m and e be positive integers. Then

f =-(1/W~S( —~)J&(qR)~
(1/~2S (—a) (qR) '/(2l+ 1) !!, (C-2)

where (21+1)!!=(2)+1)(2/ —1) 3 1 and S(&t) =sign
Of K.

For the electron we take the radial functions as given
by Rose," except that they are multiplied by S(a)
and normalized in a box of unit volume. If one ignores
finite-nuclear-size effects (and in the approximation
pR«1), the combination of radial functions and
Coulomb phase shifts of interest is given by

)f.& p1~E~ -'*r(~„—zAE)

(g„j 0 2E ) r(2q„+2)

Xexp{ (7r/2) [AE+z(/ 1—y„)—j)
X{(1+2'„+zpR) (—a+i')

W (1+2'„—ipR) (y„—iAE) ), (C-3)

„(2PR)& (—~&+& (—&& L4mn+ 2zA (m —n) Ps/E$

L „-+S „(2pR)'t &+'t "&4mn/E,

„~S „(2pR)'t ~&+" ~&I4mnp/E+2iA(m n)pj, —

„~S „(2pR)' &&+'t "&2'(m+n)p/E,

2mn (m —n m np' —2n 1 )
R S (2pR)'t"&+'t "' 2n—+ +zh.

~
$+

E 2m+1 E m 2m+1 E 2m+1 E~

(C-4)

(C-5)

(C-6)

(C-7)

(C-g)

2mn 1 (m+n $ 2nL„„—+S„„(2pR)'t"&+'t—"& zA
(

———+
.2m+1 E 4 m E 2m+1)

2mn p ! 1' 1
M„„-+S„„(2pR)'t"&+'t "& 2n + —+zh(m —n) I

—. ——+ p ~,
p 2m+1 E & m E 2m+1 )

(c-9)

(C-10)

24 M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954)."L.L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950l.
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m —n p
1V „~S„„(2')'(~)+'( ") —2e +iA

pE 2m+1 E

m e y$ mn
(2') l (m)+l(n) +

~
+

~
+

p' (,2m+1 2n+1) E (2m+1) (2e+1)

(C-11)

1 ( 1 1 1 1
+-,'iA. (m —n) P+

~
+ ~$&+ (E'+1) —,(C-12)

mn 4(2m+1)n (2n+1)ml (2m+1)(2n+1) E

me
(2') ) (m)+((n), t + +-', iA. (m —e)

p' (2m+1) (2n+1)

( 1 1 2 1
x

I + &ll+ E —, (C-13)
( (2m+1)n (2e+1)m & (2m+1) (2e+1) E

1 1
(2++ (4+2 p2) p+ p2+

(2m+1) (2e+1) (2m+1) (2e+1)
(C-14)

pE

( m n mn
(2p/) ) (tn)+l (n) $2/

~
p'+-,'iA (m —n)

~2m+1 2n+1I (2m+1) (2e+1)

where

(2p+) 2(m)+l(n)

(2m+ 1)(2e+ 1)

( 1 1) m+e+1 m+e 1
x i

—+- i'd+4 $g+ p', (C-15)
Em n) (2m+1) (2e+1) (2m+1) (2n+1) . pE

(m —1) !(n —1) !
S = {1—iAEL)P~(m) —)P~(n)J),

(2m)!(2e)!
(C-16)

)P) (m) —=F'(m)/I'(m), f) (m+1) =P((m)+1/m. (C-17)

Lk—1 g2—2k~

M =R 2~EpI,

~1, j.=&' "L a I

Q =R '~1.

Certain of the functions discussed in this appendix
can be found in the literature in various notations. The
relation between our notation and, for example, that
of Rose'4 is

spins is readily obtained by the standard trace methods,
For example, for a pure A interaction law one has

p=ipggM((r) XM(e) (q —yp/E)
+~»LM(~) M(~)(y «p/& —1)
—2M((r) q M(e) yp/E
—2M(yg)M((r) (q+yp/E)

—m(~,)u(~,) (y.qp/Zy1) j. (D-1)

and for the additional functions of, for example,
Curtis and Lewis, '

La-i'=&' "~ I I„

Equation (D-1) contributes to all orders of forbidden-
ness, no retardation expansion having been carried out.
The nuclear matrix elements M((r), M (y5) are assumed
real'; they are dered by

I 1 gl—2k Re + kk +I 1 gl—2k Im+
APPENDIX D

M(O)=(t! „*~Oe'P'~)p„),

m(o)—=Q„*lo~' 'lp„),
Consider the P interaction in the approximation

Z=O. The density matrix p summed over the lepton where P is the recoil momentum.

(D-2)
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Only the Pzz term of Eq. (D-1) contributes to a
resonance fluorescence experiment of the type per-
formed by Goldhaber et al. ' More generally, if the inter-
action law is pure VA or pure ST the following terms
can contribute:

where 8' is the total energy available, EI is the total
energy of the recoil, and 8, is the antineutrino angle
measured relative to the recoil. Expressing all quanti-
ties in terms of 0, an.d I', we find"

fe«=fu(p/E)d~
i[ayyM(n) XM(~)+pxaM(o)

XM( )j.(e—1P/E) —(P-+P-)
X[M(7&)M(n)+M(1)M(e) j (q+pp/E), (D-3)

or

=—P(W —E~) 1+
3

2m2

(W Er)' —P'—
-2

—ip»[M(p~) XMy~)+M(p~)
XM(p )) (r1+up/E)+ (psT+pTJ)

x~(~)M(a ) (a—
1 p/E) (D-4)

For application to a P emitter, Eqs. (D-3) and (D-4)
must be integrated over the lepton momenta for a fixed
direction and magnitude of the recoil P, followed by an
integration over P subject to the resonance condition.
For these purposes it is convenient to write the phase
space factor as

(2m)'P'dPd-Q pd(u,
(D-5)

deed= q'(dq/dW—)dQ =q'E(W Ep+P cos—eq) 'dnq,

(W Er)' —P'—(D-6)

Hence, for example, unique transitions will give
vanishing circular polarization for the resonant Auores-
cent gamma if the interaction law is VA, large polariza-
tion if the law is ST. On the other hand, allowed transi-
tions in which the Gamow-Teller-Fermi interference
dominates the Gamow- Teller part would give the
opposite result.

In practice Coulomb effects should be taken into
account and the considerations of this appendix ap-
propriately modified, as discussed at the end of Sec. IV.

2' In th's appendix only, to avoid confusion, we do not set the
electron mass rn equal to unity.


