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Vector Interaction in Beta Decay*
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Further experimental consequences of a beta-decay interaction generated by a conserved vector current,
as proposed by Feynman and Gell-Mann, are studied. Utilizing the strong analogy between the conserved
beta-decay current, and the conserved charge current, higher multipole corrections to the usual results for
allowed transitions are computed, and are related to the corresponding electromagnetic transitions, as was
first done. by Gell-Mann. The effects calculated include corrections to spectra shapes, beta-gamma direc-
tional correlations, and beta-alpha directional correlations. A multipole expansion of the V-2 interaction is
carried out, including all those terms normally classed as allowed and second forbidden. Applications to
several interesting transitions are discussed.

I. INTRODUCTION concept of a conserved vector current has speciic
experimental consequences for beta decay itself. We
can paraphrase his discussion as follows: designating
the initial and final nuclear states by Ii) and

I f), the
conventional vector beta-decay interaction leads to the
matrix element (fIP y„r~iJr„Ii) while the Feynman-
Gell-Mann scheme would lead to the matrix element

I 'HE concept of a universal V-A coupling has had
many successes in the description of weak inter-

actions. ' In particular, if the vector coupling constant
determined' from the decay of O' L (1.41+0.01)&& 10~'
erg/cmsj is used to predict the lifetime of the muon, one
obtains a lifetime of (2.26&0.04)&&10 ' sec, as com-
pared with the experimental value of (2.22&0.22) &&10 '
sec.' This agreement is surprising in view of the fact
that beta decay involves nucleons, which participate in
strong interactions, while the muon decay involves
particles with no strong interactions; one would there-
fore expect large renormalization eRects in beta decay
and essentially no such effects in muon decay. To explain
this agreement, Feynman and Gell-Mann' have noted
that the equality would hold rigorously, except for
electromagnetic eRects, if the vector beta-decay coup-
ling were generated by the interaction of a conserved
current with itself. Part of this current,

This latter matrix element is the same as that occurring
in the isotopic vector part of the electromagnetic inter-
action of the nucleus,

except for the change in the isotopic spin dependence
7.+—+7.3, T+—&T3. If charge independence of the nuclear
states is assumed, the substitution r+—+r3, T+.—+T3
alters the matrix element only by a factor. Thus, up to
a factor, the vector beta transitions and the electro-
magnetic transitions from one isotopic multiplet to
another, involve exactly the same nuclear matrix ele-

ments; in particular, the multipole expansions of the
transition matrix elements for the emission of a photon,
and for vector beta decay, generate the same multipole
operators. Comparison of the observed decays of the
diRerent members of an isotopic multiplet leads to a
test of the theory. Note that only the vector part of
the beta coupling has been altered; the axial vector
part is treated as before. '

As an example, Gell-Mann discussed the decay of
the T=i, J=1+ multiplet in the A=12 system, into
the T=O, J=O+ ground state. The electromagnetic
transition is pure HID, isotopic vector, and according to
the new theory the observed rate of the electromagnetic
transition enables one to predict the vector contribu-
tion to the beta decays of 8" and N". In the conven-
tional vector coupling, this transition would involve the

iver r+V„f +Q,'y„f.+$,'y„f„,

would generate the usual Fermi interaction; but in
order that the current be conserved under the action
of the strong coupling between nucleons and pions, we
must add to the expression above the term

In analogy with the conservation of total charge in
electrodynamics, the conservation of this current im-

plies the identity of the vector coupling constants in
beta decay and muon decay.

In a recent paper4 Gell-Mann has shown that the
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d authors show that there would be too large an effective pseudo-

g scalar coupling in the beta decay of the neutron, while the latter
authors show that the m-p, decay would be forbidden completely.
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second-forbidden matrix element Jr~rr&C r, which is
the ordinary magnetic moment operator for a Dirac
particle. Here the new theory results in the replacement
of the ordinary magnetic moment operator by the to/al
magnetic moment operator, Dirac plus pionic.

The axial vector part of the interaction contributes
t.he allowed matrix elementf. r~o, which in fact domi-
nates the transition matrix element, as well as further
second-forbidden terms. The observable consequences
of the theory are therefore restricted to the small
corrections to allowed transitions introduced by the
second-forbidden matrix elements. These corrections
are, of course, present in the Fermi theory as well as
the Feynman —Gell-Mann theory; in the latter the
corrections due to the vector interaction are directly
related to the electromagnetic multipole moments, and
can be determined separately. For 8" and N" the cor-
rections to the spectrum have been shown by Gell-Mann
to be 10%,and of opposite sign for the two transitions.

In this paper, we shall extend the calculations of
Gell-Mann in several respects. Firstly, rather than
keeping only first-order terms in the momentum trans-
fer, we will include all the contributions normally
classed as second forbidden. There seems to be no
justification in general for considering matrix elements
like Jr~r g, as small compared to matrix elements like
Jr~u, r;. Elsewhere in the literature these have been
called "moment" and "velocity" terms, respectively;
the first is of order (pR)' and the second of order
(s/c)pR The two .matrix elements fr,r,a+and J'ot, r.;r+
are in fact both replaced by the electric quadrupole
operator in the Gell-Mann theory, and contribute
essentially equally. It is important to realize that the
inclusion of more matrix elements in the analysis makes
it much more difficult to obtain a clear-cut proof or dis-
proof of the idea of a conserved current, since there are
more free parameters in the theory. We shall discuss
in Sec. III the possibility of reducing the number of
unknowns su%.ciently to test the theory.

Secondly, we shall extend the calculations to include
angular correlations' as well as beta spectra. Since the
allowed transitions give rise to no directional correla-
tions, the observation of a correlation constitutes a
direct measurement of the effect of the corrections due
to higher multipole moments.

Thirdly, we shall include some Coulomb e6ects in
the calculations. There is, of course, no rigorous way of
including electromagnetic efFects, since the electro-
magnetic interaction destroys the validity of the con-
served beta-decay current, and of the charge inde-
pendence of nuclear states. However, there is probably
some meaning to attempting an approximate Coulomb
correction by using Coulomb wave functions for the
electrons, rather than plane waves. For example, this

The importance of studying angular correlations in allowed
transitions as a check on the new beta-decay theory has also been
stressed by M. Gell-Mann and B.Stech (private communication);
See F. Boehm et al. , Phys. Rev. Letters 1, 77 (1958).

correction serves to bring into agreement the ft values
of decays from diferent states of the same isotopic
multiplet even when the multiplet is tilted by the
Coulomb energy differences; the equality of the ft
values of the decays of P" and Al" provides a case in
point.

It seems appropriate to make a few general comments
on the problem of designing a conclusive test of the
concept of a conserved current. Since we want to Inake
use of the charge independence of nuclear states, the
applications must be limited to the light nuclei, where
with few exceptions beta transitions are allowed.
Transitions along the multiplet do not seem to lead
to an unambiguous test of the theory; one notes first
that the corrections due to higher multipole moments
will be very small due to the low energy transfer and
the superallowed nature of the allowed matrix elements.
Second, there seems to be no way, at least insofar as
the nucleus can be represented as a collection of inde-
pendent nucleons, of distinguishing experimentally
between the old and the new forms of the allowed vector
matrix element. The only difference between them is
that in the Fermi theory the operator which appears is
~+, while in the Feynman —Gell-Mann theory the opera-
tor is I+= r++ T+. Since for a single nucleon these two
operators have matrix elements which are proportional
to one another, any difference between them can be
absorbed into the (arbitrary) coupling constant. Thus
by appropriate adjustment of the coupling constant,
the Fermi theory and the Feynman —Gell-Mann theory
can be made to predict the same over-all rate for allowed
transitions.

The only remaining transitions are those in which the
isotopic spin changes7; the only contribution of the
vector interaction to such transitions is in second-
forbidden matrix elements, and we are forced to look
for small corrections due to such terms. These correc-
tions are only expected to be discernible when the
momentum transfer is very high, or the main Gamow-
Teller matrix element very small, or both. In the dis-
cussion in Sec. III we have therefore concentrated
attention on those transitions which have the most
favorable combination of high momentum transfers,
and small matrix elements.

We also note that the most striking diGerence be-

'It is interesting to note another distinction between the old
Fermi theory and the new theory which might be studied experi-
mentally. In a J-J transition the usual Fermi matrix element
would involve v+, the contribution to the isotopic spin from the
nucleons alone, while in the new theory the Fermi matrix element
involves I+, the total isotopic operator. Hence in the new theory
J-J (no) transitions oR an isobar are forbidden by the BI=0
selection rule. In the old Fermi theory one would have to evaluate
the matrix elements of v+, which diRers from I+, and allowed Fermi
transitions o6 an isobar are possible in principle. If the nucleus is
adequately described by an independent-particle model then the
same selection rules hold for v+ and I+, which is to say, with this
assumption the old theory and the new one would both imply the
impossibility of allowed Fermi transitions oR of the isobar. A case
in point is the mass-24 system in which the 4+~4+ I= 1 to I=O
transition of Na'4 could have a Fermi matrix element according
to the old theory (apart from that due to electrodynamic effects).
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tween the old and new forms of the vector interaction
should appear in the Mi matrix element, rather than
the E2 matrix element, since the anomalous contribu-
tion to the M1 operator is quite large, and that to the
E2 operator is probably small. '

II. GENERAL THEORY

As we have already noted, the matrix element appear-
ing in the vector beta-decay interaction divers from
that appearing in the electromagnetic interaction only
in its isotopic spin dependence, and so the multipole
expansion of these matrix elements contains the same
multipole operators. This can be explicitly verified by
constructing the expansions of both matrix elements to
zeroth order in the meson field. Such a derivation serves
the purpose of relating the multipole operators to their
conventional definitions, and of relating the multipole
expansions of the Feynman —Gell-Mann interaction to
that of the Fermi interaction. We shall only give the
results of this procedure.

Starting with the actual beta-decay Hamiltonian
written in the notation of reference 4,

—( G/~2)(u. '+7 8"")zteve(1+vs) ~3

+Herm. conj. , (1)
with

the nonrelativistic limit as follows:

EQ'= ' r'

1
rXy+e, E2= t (rr sr—r'I),

m&

where I is the unit dyadic. Of course, in this approxima-
tion the Feynman —Gell-Mann theory is identical with
the Fermi theory. Including higher order meson eGects
changes the explicit form of the multipole operators, but
does not change the form of the effective Hamiltonian.

For the particular applications we wish to discuss,
several of the terms will not contribute. For allowed
transitions, the parity does not change, which rules out
the matrix elements E1, J'pr, and Jo,r;'.For. transi-
tions in which the total isotopic spin changes, the matrix
element EO vanishes. Finally, the matrix element EQ'
does not contribute to either the beta spectrum or the
angular correlation functions, but only to such eQects
as the circular polarization of gammas, and so it
is dropped. Hence, we consider only the simpler
Hamiltonian

IIeff = (G/&2)zzg (p) z(-,'Wop&a-, k;——,'k, k,) (Zs),;
rl„+v =P(7+y„g+Herm. conj.

+zL~*&+&.~ (&.~)*&+—~j, (2)

e

—ipreXk M1+XI e jl e+iprk ~lpir

g„+" g(z+iy„yp)f+H——erm. conj.
se'k~—k~ ' e'&g« I (1+yp)zz, (q). (6)

and X= —Cz/Cz (in the V-A theory lI, is a positive
number), it can be shown that the effective Hamil-
tonian has the form

II ff ——(G/42)zz, t (p) Z (1+yp)N„(q),

2= SO+i(pzeWp —k) E1

The rather tedious derivation of the beta spectra and
angular correlation functions resulting from this Hamil-

(3) tonian is discussed in the appendix. The results are as
follows:

The beta spectrum has the allowed shape, multiplied
by the factor

—ipreXk Mi+i(s Wopto''k; —ok'k~) (E2),g gg bp(L, L). (7)

+(-', Wpp e k—-'k')EO'

+"I e'Jt e+zptk p&r ,o;k;k~ —t e—,r.,~~
J

Zo 'kJ 0'~f& pr pr' —

The parameters bl, (L,L') are tabulated for k=O, 2 in
Table I of the appendix. One may easily check that
this result reduces to that of Gell-Mann4 if one drops
the Coulomb corrections, and terms quadratic in the
momentum transfer.

The beta-gamma directional correlation function is
(4) given by' (A12):

Here k=y+q, where y and q are the momenta of elec-
tron and neutrino; the isotopic spin dependence has
been suppressed. We have included all those terms
normally classed as allowed, first and second forbidden.
In zeroth order, the multipole operators are given in

' See, for example, R. I. Blin-Stoyle, Revs. Modern Phys. 25,
75 (1956).

W, (8) ~ Q Rgb'. pb(L, ')LF ( pLL', jj,)
kLL'

XFp(M', jsjs)Ps (cosg). (8)

Here j&, j&, j3 are the spins of the initial, intermediate
and final nuclear states; the quantities PI, are defined

9 We have given the correlation functions only up to constant
factor; hence the ~x: symbol.
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in the appendix, and are tabulated in the literature. "
5q is the reduced matrix element for the electromagnetic
multipole operator of order X, and I'~ is the Legendre
polynomial.

Finally, the beta-alpha directional correlation func-
tion for a 2+~0+ transition is given by (A15):

8" (0) ~ P (2k+1)lFg, (LL',jt2)
kLL'

(2 2 k)
)&bs(L,L')

i iPs(cos8). (9)
Eo 0 0)

III. APPLICATION AND DISCUSSION

We have already emphasized that the most evident
practical test' of the new theory lies in the small correc-
tions to allowed transitions, and that these can only be
measured in transitions with a large momentum transfer
and/or anomalously large ft values. We will now discuss
separately the various special cases of such transitions,
concentrating especially on the A =4e nuclei. Since the
relevant gamma lifetimes are not generally available,
we are forced to estimate them, making use of the em-

pirical systematics of gamma lifetimes in light nuclei.
We will assume, in each case, that the gamma widths
have the average value given by Wilkinson: that is,
F(M1)=0.15K~, where Fs is the Weisskopf unit,
j.'~=5.5'')&10 ' in units in which A=m=c=1. The
E2 width is much more dificult to estimate, and so no
attempt will be made to do so.

A=8

The highest energy component of the decays of Li',
B are interpreted as transitions from a T= 1, J=2+

state to the first excited state T=O, J=2+ of Be',
which then breaks up into two alpha particles. The
transition is of considerable interest due both to its
high energy, and its rather large ft value" (logft=5. 6).
Assuming the gamma transition to have a normal life-
time leads one to expect large contributions from the
second-forbidden matrix elements. For example, the
ratio (~~M1~~)/(X~~o~~), which is just the parameter a
introduced by Gell-Mann aside from a sign, is esti-

"The notation for the various spherical functions introduced
here and hereafter is that of A. R. Edmonds, Angular Momentum
in Quantum Mechanics (Princeton University Press, Princeton,
New Jersey, 1957). The functions F& have been tabulated for
even k by L. C. Biedenharn and M. E. Rose, Revs. Modern Phys.
25, 729 (1953), and by M. Ferentz and N. Rosenzweig, Argonne
National Laboratory Report ANL-5324 (unpublished). Alder,
Stech, and Winther I Phys. Rev. 107, 728 (1957)j have given a
tabulation including the odd k values needed for effects in which
parity nonconservation is detectable. Our derivation of the corre-
lation functions follows a rather similar derivation made by the
latter authors.

~1 The ft values given here and below are quoted from F.Ajzen-
berg and T. Lauritsen, Revs. Modern Phys. 27, 77 (1955), and
R. M. Endt and C. M. Braams, Revs. Modern Phys. 29, 683
(1957), as well as nuclear data cards.

mated to be

=-3X&O-',

so that aE becomes as large as 7.5'Po. Of course, in
general, there are three unknown matrix elements
in the axial vector contribution to the beta spectrum,
and two additional ones which appear in the correlation
functions. In this, and in future applications, we must
carefully consider the number of unknown constants
and the number of available experimental data; we
shall see that often it is the case that there are more
adjustable parameters than there are experimental
data, so that nothing can be concluded about the
validity of the new theory.

For example, in the Li' beta spectrum, the axial vector
contribution contains three real parameters, the re-
duced nuclear matrix elements, which we will treat as
completely unknown. But examination of the param-
eters so in Table I shows that the general form of the
correction factor to the spectral shape is a quadratic
function of the electron energy, so that there are only
two experimental constants, the coefficients of the
linear and quadratic terms. Thus the deviations from
the allowed shape, insofar as they can be 6tted by a
quadratic function can always be fitted by the contribu-
tions from the axial vector terms alone, and cannot
possibly lead to any conclusion concerning the vector
interaction. The same is true of the B' decay, and of
the beta-alpha correlation functions of Li' and B',
taken individually

If, however, we compare the decays of Li' and B'
and consider both sets of data simultaneously, the
situation is quite different, due to the almost complete
charge independence of the system. The charge inde-
pendence implies the identity of the nuclear matrix
elements. Hence the number of parameters remains the
same, while the number of experimental data is doubled.
This observation simplifies the analysis suBRciently to
consider testing the nature of the vector interaction;
for example, in the spectra of Li' and B there are now
four experimental parameters, and if one assumes a
pure M1 electromagnetic transition, there are only four
theoretical parameters.

However, in this case there is a further simplification
due to the fact that the energy differences along the
multiplet are small compared to the energy differences
between multiplets. Here one can compare the spectra
(or correlation functions) at each energy. There are at
each energy eGectively only two parameters —the total
contribution of A-A terms and of V-A terms. As Gell-
Mann has pointed out, the A-A contribution is the
same for Li' and B', and the V-A contribution is of
opposite sign. Therefore the vector contribution can

"M. Morita and H. Vatnada LProgr. Theoret. Phys. (Japan)
IB, 114 (1955)j have given a calculation of the P-n correlations ig
Li' on the basis of the old Fermi theory.
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Tanr. z I.The parameter bs(L,L') is the product of the reduced matrix element of the tensor operator in the third column of the table,
times the fourth column of the table, times the reduced matrix element (~~0.~~). An over-all factor has been extracted so that »=1 for
the main Gamow-Teller term. For LvsL', we have tabulated bz(L, L')+b&(L', L) We. have denoted the electron energy, momentum,
by TV, p, and the neutrino energy q.

I. Z r
1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

I.' X' r
1 0 1

1 0 1

1 2 1

2 2 1

3 2 1

2 2 0

1 1 0

Tensor operator

T1~=Cg Z C„q~"'0.&Cpr'

Tp'~—=Cg 5 C„q~'220.7 Cgqr'

T3~=—Cg & C„q~'23of C2qr'

CyCg~r'

CgipIC1 r

sp=1

» = (2/9) (f(P'g/W) les —kp'+—f[a 3(6W— P'/W—)])
» ——(8/27) p'g/W

o = (4/9) (v'M)9[f+ lp'/W]
» =

3 (v'1o) (P'/W) [f+sW+ (2/9) gj
» = (2/+15) (p'/W) [f—-', g+ (2/15) W

» = ——', (l4/15) 'p'

» = —(4/3v'10) (P'/W) [t+sg+ lW3

» =2[f+ l (P'/W)+ l g3
s, = —s (P'/W)

0 1

1 0

2 1 1

1 1 1

Cyip1 & C„q~'"cr&CIqr
yq

Cyip1 Z C„q~"'~I C&qr
pq

» = (4/3v'5) (P'/W)

»= 2WZ[g+ ', (p'/—W) ;'gj-—-
» ———(4/3v2) (p'/W)

be deduced directly by comparison of the two spectra
point by point.

The beta spectra of Li' and 8' may not provide a
good test of this type owing to the probable existence
of additional broad excited states nearby. It would be
very difficult to distinguish the effects of complexity in
the beta spectra, from the deviations from the allowed

shape, especially if the states are broad and overlapping.
On the other hand, the beta-alpha correlation func-

tion seems to provide a very worthwhile test. The
essential difference is that one can study the angular
dependence at a fixed energy, rather than the energy
dependence. A remeasurement of the correlation func-
tions for Li' and 8' near the upper end point seems
particularly interesting. Present evidence" on the cor-
relation in Li' is consistent with no correlation within
about 3%%uq. If we use our crude estimate of the M1
lifetime, and neglect completely the E2 contribution, the
expected correlation in 8' at the upper end point is,
assuming zero correlation in Li',

W(f))—1+(10/7) '(8/3) aEF s (11,22)Ps (e)
—1~0.105'2.

The origin of the sign ambiguity lies in the fact that the
estimate of the M1 matrix element used above gives
only its magnitude, but not its sign.

A=1Z

The only possible experiment here is a measurement
of the spectrum; Gell-Mann4 has already discussed the
deviations from allowed shape due to terms of first
order in the momentum transfer, and has pointed out
that the additional terms in the axial vector part of
second order, will cancel out in the ratio of the spectra
of 8" and N"

The anomalously large ft value of C" (ff= 1.1)&10s)
might seem to make the mass-14 system ideal for a
study of the vector contribution. However, Gell-Mann
has noted" that since the major difference between the
new and old theories for M1 transitions is in the spin
contribution to the magnetic moment, which is pre-
sumably small in /-forbidden transitions, both theories
should predict the same deviations in the spectra,
assuming, of course, the validity of the independent-
particle model. Nonetheless, it would seem to make
sense to test the theory by measuring the gamma life-
time in N", and comparing it with the expected devia-
tions in the 0' spectrum. It appears that the experi-
mental deviations in the C" spectrum are certainly less
than a few percent, " and that therefore one might
expect observable deviations in the 0" spectrum. In
this system, the splitting of the multiplet is by no
means negligible, nor does the charge independence of
the nuclear states hold accurately. However, owing to
the wealth of information about the mass-14 system,
one can hope to calculate the nuclear matrix elements
and predict the spectral shape. "

A=ZO and Z4

These systems provide examples of transitions which
should show beta-gamma correlations due to the for-
biddenness corrections. In the mass-20 system one can,

"We are indebted to B.C. Carlson for communicating the results
of his analysis of the spectral deviations in the mass-14 system
from the point of view of the Fermi theory.

Such calculations have been reported, see for example W. M.
Visscher and R. A. Ferrell, Phys. Rev. 107, 781 (1957), and D. T.
Goldman and R. A. Ferrell, Bull. Am. Phys. Soc. Ser. II, 2, 206
(1958).We would like to thank Professor Ferrell and Dr. Goldman
for a discussion of their work.
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unfortunately, study only the decay of F", and the
analysis is therefore complicated by the appearance of
several unknown matrix elements from the axial vector
part. " The mass-24 system is of interest due to its
large fk value (logft=6. 1), and large energy release.
Presumably both members of the multiplet, Na'4 and
AP4, can be studied and compared. It has already been
established that there is no correlation in Na'4 to within
0.1%."One would therefore expect a possible correla-
tion in AP4; the situation is however diferent from that
in the mass-8 case, since the splitting of the multiplet
is no longer negligible, and the analysis is complicated
thereby.

v2Cg
(~)= 2 (-)"(2K+1)

XLM

(Err )Iv„tTL~ (K,I'))P„(rr)

where

X) «2)pe ~L )pv(r2) I 1rsl = lrrl& (A3)

2'LM= Q C q~rKL~ sC Q

uQ

For example, the erst term in the Hamiltonian becomes

It is of some interest to note that the beta spectrum
of P" is the only one in which deviations due to higher
multipole corrections seem well established experi-
mentally; deviations linear in the electron energy from
the allowed shape have been reported, to the extent of
about 3%." One readily sees that this experimental
result can be explained by the axial vector matrix
elements alone, and therefore no conclusion can be
drawn concerning the vector contributions.

In conclusion, it is clear that a detailed test of the
Feynman —Gell-Mann scheme will be quite difficult,
but several very interesting experiments seem to be
suggested.
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APPENDIX

We shall describe here some of the more important
steps in the Inultipole expansion of the transition matrix
for the V-A beta interaction. We write the Hamiltonian
in the conventional form

H =&2Cgf„"mjv„)Ive ir)Ivv+&2Cg)P„2pr)P„)Pe spr)Pv

+V2Cvfr P„)Pe (Pv+V2Cv)P„ iprrrlP„Pe iprmgv. (A1)

use is made of the special representation of the Dirac
matrices in which

0 —iq (
—1 Oq

0j ( 0 1j

The radial functions f„, g„are given by Rose"; the
Coulomb phase shifts are

Since we intend to compute only scalars, the replace-
ment C(1+ps)—+Cv2 has been made. The Hamiltonian
can be written in spherical, rather than Cartesian,
form by use of the identity

—({+iuZ/p
Ag= 2 alg1

y+ i(rZW/p
—

argr (&+.~ZW/p)

+-2,2rD((()+1—yg,

~ Professor Cell-Mann has informed us that an experiment is in
progress at the California Institute of Technology to look for
P-7 correlations in F"."R. Steffen (private communication). We are grateful to
Professor Steffen for a discussion of the angular correlation meas-
urements in the mass-24 system.

lr See I. Iben, Phys. Rev. 109, 2059 (1958) for a discussion of
the experimental situation in P" and of the implications of the
old theory in connection with the spectral deviations.

051)0'2 fry

«.(~2I&I~)&(~2'I&l~r)* (A6)

Substituting the wave functions and carrying out the

"M. E. Rose, Phys. Rev. 51, 484 (1937).

with y = (((2—(22Z2)'*.

If we call the initial and final nuclear spins j& and j2,
the density matrix is
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TABLE II. The multipole expansion of the Feynman-Gell-Mann
interaction leads to the same parameters t q(I,I.'), with the ex-
ception of a different identi6cation of the reduced nuclear matrix
elements, for the vector part of the interaction. The tensors in
the Grst column are to be replaced by those in the second column
to obtain the correct bf, Note also that the constants Cy, Cg are
to be replaced by G/K2, —XG/K2, as defined by Feynman and
Gell-Mann. The multipole operators 3f1, E2 are taken to include
the effect of the pions.

J'pi(~Xr)'
J'(r'"i —s4r')
J'ipi(o;ri+~ir„', (e —r)S-;;).

—2J'(Ml);
y (g2),,
&oJ'(~2)'i

indicated operations, we obtain

)2k+1q -'*

pmsms'~ P P ( )i'+
r,r. I ~ acre rv &2jr+1)
XFi (LL',jijs)b~(LL')

js js l
X&.e"*(—v, —0,0)l, I, (A&)

& —p —m, m, ')'
where

Fs(LL',jijs)=(—)'+" '

The functions F~ have been tabulated elsewhere'; the
quantities b~ are given in Table I for k=0, 2.

The beta spectrum is given by the trace of the density
matrix,

(A10)trpmsms'" Pg bp(L, L).

The beta-gamma directional correlation is

W~(e) = P Pmsms''pmsms'&
N22m2'

where
-2J+1

Pmsm~'~= P (—) ii+ kg'()t) /san s)ops&, ~

z»' 2gs+1

Finally, the beta-alpha correlation function, for a
2+ to 0+ transition is

(X
l !&sso*'(k), (A11)—ms ms' M)

so that

W (8) Q Q 8)8);bs(LL')Fs(LL',j its)
LL'y(; X) '

XFg(X)t', jsjs)P&(cos9). (A12)

XL(2k-+1) (2js+1)(2I.-+1)(2L'+1))' W-(8) = Q Pmsms"pmsms',
ts2m2'

(A13)

and
(2I+1) ' (2 2 I)

!Pmsms' =P
l ! (—)a~E 4m ) Eo 0 0)

t'L L' k) ' L L' k where
(A8)—1 0~ js js ji

bi P(2E+=1)(2E'+1)
K ' K ~ KV

1

(2l+1) (2l'+1) (2j+1)(2j'+1)
X

(2L+1)(2L'+ 1)

L' L k
X( )i+j'+j„,'+i+i'+L+L'—

J J Jv

l l' k l k l') /L L' k)
j' j —', 0 0 0) (1 -1 Ol

Xe'&a" a"'&e'&'s&&' (gsllT~(ZI')llgi)

X(jsll&r. '(&'I")
ll ji)*(»ll»ll» ) (»'ll»'ll") (A9)

(2 2 I)
X

l !YJ*~(k), (A14)
& ms —ms'

so that

W (0) ~ P (2k+1)'Fz(LL', ji2)
LL'k

)2 2 kq
X

l !b~(LL')Ps(cos8). (A15)
&0 o 0)

To obtain the multipole expansion of the interaction
defined by Feynman and Gell-Mann, it is just necessary
to rede6ne the multipole moment operators appro-
propriately; the relevant substitutions are given in
Table II.


