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In order to adapt the Hamiltonian dynamics of a system of classical (nonquantum) particles to general
relativity it seems necessary to generalize the transformations used from contact transformations of phase
space to extended point transformations of a joint observer and phase space. When this is done the curvature
of observer space is seen to arise from the physical interaction of particles without the introduction of new
gravitational field variables.

In order to extend this theory to quantized particle and 6eld theory it seems necessary to extend the
unitary transformations of quantum mechanics in a similar manner, to linear transformations of matrices
maintaining the trace of the product of two matrices, the Hermitian nature of a matrix, and the unit matrix.
Such transformations do not preserve the phases of wave functions or the product of two matrices, but do
preserve the characteristic values of matrices and the traces of the products of any number of matrices.
That observers should be designated by q numbers, not c numbers, makes it dificult to interpret the theory
except in the classical limit.

INTRODUCTION

HK essential starting point of quantum mechanics
is that a statistical matrix gives the state of the

universe under discussion relative to an observer; and
the laws of dynamics provide canonical transformations
from this matrix to those giving the same absolute
state relative to other observers. In general relativity,
however, the observer reached from one observer by a
displacement, for instance to a later time, depends on
what the state of the universe is; change in the number-
ing of observers may change this dependence but does
not in general remove it. The starting point requires
therefore some modi6cation, and what this modi6cation
should be may be suggested from classical (that is non-
quantum) mechanics by using the correspondence
between Poisson brackets and commutators (Dirac's
rule), which, however, must be extended to a wider set
of transformations. '

1. CLASSICAL (NONQUANTUMl DYNAMICS IN
CANONICAL FORM RELATIVE TO A

GROUP OF OBSERVER&

Although an observer and his equipment are really
part of the universe, we shall formulate dynamics 6rst
relative to a group of observers speci6ed by parameters. '

A specific (nonstatistical) absolute state of the uni-
verse under discussion is given by a set of values of a
number, say e,' of pairs of canonically conjugate
variables, ni, p'; rrs, p', ; n, p". Any given absolute
state may be described relative to any one of an
s-parameter family of observers numbered by s con-
tinuous parameters P', P, , P.' This description

' L. H. Thomas, Revs. Modern Phys. 17, 182 (1945), contains
the ideas of this paper except for widening the transformations.' L. H. Thomas, Phys. Rev. 85, 868 (1952},where this formu-
lation is extended to quantum mechanics.

3 In general e need not be Gnite.
4 We shall take s=10, for observers with various orientations

and velocities at various places in four-dimensional space-time.
The simpler case s=3, for observers with various velocities at
various places in a world with time and one space dimension, may
also be considered.

may be given by a set of values of n pairs of canonically
conjugate basic dynamical variables pi, q'; p&, q';
p, q". These variables are functions of nt, p'; ns, p'; ~ ~

n„, p" given by a set of contact transformations' de-
pending on (', P, , P as parameters. Any other
dynamical variable f, which can be observed by one of
the observers, will be a function of the variables pi, q',
ps, q', ; p„, q" for that observer.

The dynamical variables have physical meaning, so
that, while one-to-one transformations from pi, q';
ps, q'; . ; p„, q" to another set, r', r', , r'", say,
may be used for analysis and simplification, the new
variables have in general different physical meaning
from the old, as when we change from Cartesian com-
ponents of relative position of two particles to distance
apart and position angles. The variables giving the
absolute states are subject to arbitrary contact trans-
formations, which may be called "changes of repre-
sentation, " and the parameters giving the observers
are subject to arbitrary continuous transformations.

We suppose further than an observer can characterize
neighboring observers as having a physical relationship
to him, described by an in6nitesimal displacement with s
components) dx' dx' . . dx')' suppose, in terms of
which changes in g', P, . , P can be expressed linearly,
and reversely,

dP=I- der,', a=1, 2, , s,

doc'=I, dg", a=1, 2, , s,

where we have used the usual summation convention
over a repeated index, and where J.," are codFicients
that may be functions of P, P, ~, P, but have non-
vanishing determinant, and J. are the reciprocal set.
dx' dx' ~ ~ ~ dx' must be regarded as differentials of
quasi-parameters, ' there being no true variables corre-
sponding to them.

E.T. Whittalter, Areatytica/ Dyrsamics (Cambridge University
Press, Cambridge, 1937), fourth edition, p. 292.

In general these will be displacements in time, dt, position,
dz, dy, ds, velocity, du, dv, dm, and orientation, dl, dm, dn.

~ Reference 5, p. 41.



L. H. THOMAS

where

df Bf dp Bf dk
)

ds Bp ds Bx' ds
(1.2)

A continuous series of observers is given by making

P t2 P functions of a variable s, and the rate of
change of a dynamical variable observed by this series
of observers for a fixed state is given by

tions. ' The additive constants h~, which must also
satisfy certain relations, can be adjusted by adding
constants to X~, X2, ~, X„and in particular, for the
inhomogeneous Lorentz group of special relativity, can
be reduced to zero simultaneously.

Statistical states are in this theory defined by a
function of the dynamical variables, P(q', , p„), the
density in phase, such that

Bf/Bg =L 'Bf/Bx, n=1, 2, , s,

Bf'/Bx =L,~Bf/Bg, a=1, 2, , s,
(1.3)

P(q', ,p„)dq' ~ dp„=1, (1.7)

in terms of rates of change Bf/Bx' with respect to the
physical displacements dx', dx', ~, dx'. While these
rates of change are not in general rates of change with
respect to true variables, we regard them as having an
invariant physical meaning that the rates of change
Bf//Brc with respect to the arbitrary parameters do
not have.

The laws of dynamics now give for equations of
motion as seen by an observer, the equations, in
canonical form,

Bf/Bx'= (X,f), a=1, 2, , s, (1.4)

mhere X~, X2, , X, are s functions of the dynamical
variables pr, q'; ps, q';; p„, q"; and the Poisson
brackets have the usual meaning'

BQ 88 BN 8'v

(N, v) =
Bq Bpb Bpb Bq

If the dynamical system is the whole universe con-
sidered, we suppose that these rates of change depend
only on the values of the dynamical variables p&, q';
p, , q';; p„, q" and, expressed in terms of these, are
independent of the observer, that is, of P, P, ~, p.
We suppose indeed that these s functions X&, X~,

~ ~, X, specify the nature of the dynamical system in a
manner invariant with respect to the transformation of
n, , P'; n, , P';; n„, P" and of tr, P,

The equations giving q&, p'; q&, p'; ~; q„, p" in
terms of nr, P'; ns, P';; n„, P"; and $', $', , P are
now the finite equations of a group of transformations
of which (1.4) give the infinitesimal transformations.
Finding the finite equations is equivalent to integrating
the equations of motion (1.4), and the necessary and
sufhcient conditions that this should be possible are
that the Poisson brackets of any pairs of the functions

X&, X2, ~ ~, X, should be linear combinations of these
functions with constant coefficients,

(X,Xb) =C~'X,+h~ (1.6)

The constants C~' are the structure constants of the
group and have definite values determined by the
physical meaning of the displacements corresponding to
X&, X&, , X,. They necessarily satisfy Jacobi rela-

and a consistent theory can be built up because the
volume element of phase space,

dq' ~ .dp =dP' ~ dn

is invariant for contact transformations.
We can immediately include the observer as part of

the dynamical system if there is no interaction between
them and if the observer is described by a dynamical
system admitting the same group. The variables p&, q';
ps, q';; p, q" are made up of two sets, for the
observer and for the rest of the universe, and the func-
tions X~, X2, ~ ~, X, are sums of functions of each set
separately. If the observer's system by itself provides
a faithful representation of the group, the dynamics of
the rest of the universe can be described by functions
giving its variables in terms of those of the observer,
these functions being invariant for the displacement
operators (1.4).

When there is interaction between the observer and
the rest of the universe, we seem to require, even if the
dynamics still admits a group such as the inhomo-
geneous Lorentz group, at least some of the ideas and
notation suitable for more general cases. This seems to
be true even in the important special case in which the
observer's dynamical system is reduced to one "test
particle, "no diGerent from others of the universe, and
interacting with them.

2. A GENERALIZATION OF CLASSICAL DYNAMICS
WHEN THE OBSERVERS DO NOT

FORM A GROUP

We desire to generalize the above formulation so that
while the laws of nature still appear the same to each
observer, their mutual relationship may have a curva-
ture depending on the state of the universe. This will
be e6'ected erst with the observers specified by param-
eters. We mould like the coefficients C~' to depend on
the dynamical variables, and the coeKcients I. and
1. to depend on the dynamical variables or on the
variables specifying the state of the universe as well
as on the parameters specifying the observer. It is
then only in a special class of cases that the transforma-
tioris of dynamical variables from observer to observer

SReference 5, p. 299. Eisenhart uses the opposite sign; see
reference 9, p. 261.

L. P. Eisenhart, Continuous Grolps of Trawsforbaaiiorb (prince-
ton University Press, Princeton, New Jersey, 1933},p. 26.
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&=1 gr~
(2.2)

and the equations of motion (1.4) are replaced by

&f/Bx =D,f. (2 3)

These coefficients g,"cannot be arbitrary functions of
r', r', , r; in order that variables P, P, . , P;

should exist such that equations of the
form (1.3) hold, it is necessary that the operators
D1, D2, , D, should form a complete set. Conversely,
if the operators (2.2) form a complete set, being s
operators on m variables, they have in general m —s
invariants, " and we may transform r', r', ~ ~, r to
new variables s', s2, ~ ~, s, of which the last m —s are
invariants, the erst s any other independent combina-
tions, and we shall have

(2.4)

'o Reference 9, p. 9.

can be contact transformations of these variables alone
(see Sec. 4 below).

We describe a specific state of the universe in terms
of m dynamical variables p') p', -,p, and any given
state may be described relative to any one of an
s-parameter family of observers numbered by s con-
tinuous parameters ti, P, , P by the values of m
dynamical variables r', r' . r, which will be func-
tions of y', y', .

, y, and of g', P, . , P. Any other
dynamical variable f is a function of r', r', , r . The
dynamical variables have physical meaning, while the
variables y', p', .

, y, describing an absolute state,
are subject to arbitrary point-transformations. Thus
we are not immediately requiring the variables de-
scribing a state to comprise canonically conjugate pairs.
Further, we allow arbitrary point transformations of
the parameters P, P, . , P, which may depend also
on the state given by p', p' . . . p . We still have
physical displacements dx', dx', ~ ~, dx' such that
equations (1.1) hold, but the coefficients I.. . I. may
now be functions of y', y', , y, as well as of t', P,

, t'. Equations (1.2) and (1.3) also still hold.
The laws of dynamics now give for equations of

motion as seen by an observer the sm rates of change
of the dynarrucal variables with physical displacements
as functions of the dynamical variables,

Br~/Bx =g,", a=1, 2, , s; k=1, 2;,m. (2.1)

If the system is complete in itself, we still suppose that
these rates of change depend only on r', r', . . ., r, and
indeed these sos functions of r', r', , r specify the
nature of the dynamical system in a manner invariant
with respect to the more general transformations of

, y, and of P, P, , P. The rates of change
under displacements of the observer of an arbitrary
dynamical variable are now given by the s linear
differential operators

where the coeflicients f'," are functions of s', s2, ~, s .
If we now write

sk —~k(gl g2 . . . Ps ~ ~1 ~2 . . . ~m)

k=i) 2) '' s
sk Pk—(pl p2 . . . pen) P s+1 s+2 . . . rpg

and take

(2.5)

ggaia —Pfk
k=1 Bs~

u=1, 2, , s; a=1, 2, , s; (2.6)

expressed in terms of P, P, , P; y', y', , y, by
(2.5), then we have the general solution, and, inci-
dentally, the condition is sufhcient.

The necessary and sufficient conditions that (2.2)
form a complete set are given by the conditions that
their commutators

(D.»~)f=D~if D~.f— (2.7)

which are also linear differential operators, should be
linear combinations of the operators themselves:

(D„Di,) =C~'D„ (2.8)

where the coe%cients C,&' which we may call "structure
functions" may be functions of r', r', ~, r .

In this theory statistical mechanics is a little com-
plicated because which observer has a given description
depends on the specific state. It is natural to describe
a statistical state by a density in p', &', . -, p space,
as usual:

P(+1 +2 . . . +en)d+ld+2. . .d+m (2.9)

~fypdp dpdy' ~ .dy"
J

(2.11)

and is invariant for our general transformations. An
ordinary observer is now a special case with q having as
a factor a 8-function in P P P space, and, if the
expectation values of all dynamical variables are given
relative to one such observer, P is determined.

To be able to build up thermodynamics conveniently,
we may assume further that all our transformations

is to be invariant for transformations of y', y',
space. There is, however, no unique meaning for the
expected value of a dynamical variable relative to an
observer with a given designation, invariant for our
general transformations.

We must specify "statistical observers" by densities
in observer space, which may be functions of the state
also,

~(k', 8, . , P v', v', ., v")dh'dV dP' (2 1o)

to be invariant for transformations of P, P, - ., P
space also perhaps involving y', p~, ~ ~, y . The
expectation value of a dynamical variable f is then
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space-time. "Each of these six-parameter groups is to
be a realization of the homogeneous Lorentz group in
transformations of the dynamical variables, so that
the corresponding physical displacements form. a six-
vector. We suppose further that the four remaining
physical displacements to neighboring subsets form a
four-vector.

Thus we divide j into two sets; the first we call
g, n=1, 2, 3, 4; they specify point-events comprising
six-parameter groups of observers, and are subject to
arbitrary transformations involving the state of the
universe; the second we call 8",X= 1, 2, , 6, specifying
which observer of the six-parameter group at that point-
event is involved; these are subject to arbitrary trans-
formations involving the $ and the state of the uni-
verse. Likewise we divide dg into two sets; the 6rst
we call dh, a=1, 2, 3, 4, the four-vector of physical
displacements to neighboring point-events, which neigh-
boring point-event depending on the state of the
universe; the second we call dh'~, forming a six-vector,
so that

preserve the volume element

dr'dr2 . .dr~= dy'dy' dy~ (2.12)

(or if we make transformations of y', y', ~, y, or of
P, P, . -, P, that do not, we introduce corresponding
multipliers explicitly). This implies that the physical
transformations given by D preserve the volume ele-
ment, and so have unity for a multiplier. "Their com-
mutators then also possess this property, as does a sub-
class of the complete set they determine. (Members
of the subclass are of the form f D„where D f =0.)

In this theory the distinction between dynamical
variables and parameters describing observes becomes
almost nonexistent. The operators

8 8
~k La

Br@ B(N
(2.13)

with L,~ functions of r' r' r" P P $' are
such that a point transformation from r' r'
gl g2 . . . P to +1 +2 . . . +m Pl P . . . gs tales
them to

(3.1)

comprising infinitesimal rotations and velocity changes
(2.14) of the homogeneous Lorentz group.

Equations (1.1), (1.2), and (1.3) now take the form

where L, are the transformed functions of y', y',
~r, y, P, P, , P. The operators (2.14) certainly
form a coxnplete set, since they comprise s operators in s
differentiations, so (2.13) must be a complete set, and if
p ~ are functions of r', r', , r only, D form a com-
plete set. The requirement of preserving volume may
easily be introduced.

Reversely, if we can introduce s variables into the
operators D„as in (2.13), so that the new operators
are still a complete set, and if we express the variables

, r in terms of the invariants of this set and
of the new s variables, we have a solution of the equa-
tions of motion corresponding to D . If we take these s
variables to be some among those used to deQne D„
for example those describing one particle, the situation
is similar except that the variables now corresponding
to $ enter g ~, representing reaction of this particle on
the rest of the system. This will not prevent a point
transformation from r', r', ~, r, g', P, , P to

, 7, P, P, . , P being found, with the same
degree of arbitrariness as before.

3. THE RIEMANNIAN SPACE OF
GENERAL RELATIVITY

Ke now assume Einstein's principle of relativity,
perhaps slightly strengthened. The ten-parameter family
of observers breaks up into a four-parameter set of six-
parameter groups of observers with various orientations
and velocities at the point-events of four-dimensional

»E. Gonrsat, 3EatharaaHcal Asalysra (Ginn and Company,
Boston, 19I/), VoI. 2, part 2, p. 82.

dP = l ~dx'

d8"=L "dx +,'L~"dW, -
dx =l d$,

dx" =l ~dP+L&, '~d8",

a=1, ~ ~, 4

6)

a, b=1, , 4

(3.2)

df Bf dP Bf d8" Bf dx' 1 Bf dW
+ = +— —,(3.3)

ds BP ds B8" ds Bx' ds 2 Bx ds

Bf Bf—&J ab

80" Bx

Bf B B=l: +,'l.~-
Bg Bx' Bx

Bf Bf
X

Bx iN"

(3.4)

Bf Bf Bf=l +L", u b=1, , 4.
Bx' BP B8"

~ Reference 1, p. 186.

The coefficients omitted must vanish, and the factors $
occur because each is included twice in the summation.

.Equations (2.1), the laws of dynamics, become

Br"/Bx =rl, ~, a, b=1, , 4; k=1, 2, , e;
Br~/Bx =q '-

'
(3 5)



GENERAL RELATIVITY AND PARTICLE DYNAMICS 2133

and (2.2) and (2.3) become

D Qstk

Deb —Q
a=~ Br~

(3.6)

ennuple, speci6ed by / or their inverses E . If we

consider a vector (over the homogeneous Lorentz
group) function of position and dynamical variables,
given by A~ or A where Ay= ly A, we have

8
D&b =I,™ Ab+ ss L,"Lse"D~b

()$a

and
Bf/Bx= Dof,

8f/Bx b=D~f.
(3.7)

8
=l (lbt'Att)+ ,'L "Lg~-(g~a gabA, ),—

(j

The assumption that the operators D~ are physical
displacement operators corresponding to the homo-

geneous Lorentz group allows us to choose them and
the corresponding four-vector D„so that dx', Cx', and
dx' are orthogonal displacements in space, dx' a time
displacement, dh", Ck" dx" rotations from dx' to dx'
dx' to Cx', and dx' to dx', while c'dx" c'Ch", c'dx" are
velocity displacements in directions dx', dx', and dx',
c being the velocity of light. Kith this choice there
goes consistently a fundamental tensor g~ of the special
form

glt=gss=gss= 1, g44= —c, gab= 0, a/5, (3.8)

and we use this and its inverse to raise and lower the
indices a, b, , after the manner of general relativity
theory.

The commutators of D~ must be given by

D~,a D,aD, b
=g„D—ba gb.D~+g~D—eb gbeD„) (3.—9)

and those of D& and D, by

D~, D,D~= g„D—b gb,D . —(3.10)

More specially, operating on a vector function of
dynamical variables

DW.= grab —gW. , (3.11)

with corresponding results for tensors.
We 6nd that for these dynamical laws to 6t into a

Riemann space it is necessary and sufhcient that the
commutators of D, have the form

Dj)b DbD = ,'R'"~~, —-(3.12)

so that
y ttd$ d$~= g~x'dx, —

pap ~a I'p gab.

(3.13)

(3.14)

The physical displacements define an orthogonal

» A. S. Edd&ngton, ibt'athematieal Theory of Relatioity (Cam-
bridge University Press, Cambridge, 1923), p. 217; L. P. Eisen-
hart, Ezemaeman Geometry (Princeton University Press, Prince-
ton, ¹wJersey, 1926), p. 97.

without any terms in D on the right-hand side.
E~

& are physical components of the Riemann curvature
tensor as functions of the dynamical variables.

To show that this is necessary we follow the text
books. " We introduce the fundamental tensor of
general relativity by

which should agree with the covariant derivative in
terms of Christos'el symbols,

giving us

BAtt —A~
~P P~

4. CANONICAL FORM AND QUANTIZATION

Any set of linear diGerential operators can be put in
classical canonical form by introducing a new variable
for 8/Br" to be canonically conjugate to r"; the im-
portant question is whether they can be put in canonical
form with fewer than 2@i variables, since the new

8
(l;)+l:L.&L;g~l,b (3.15. )

(jp

That
l

is symmetrical in p and a turns out to be7 I .
Pn

just the condition that when we form the commutator
of D, and Dq the terms in D, cancel; in addition the
coefficients of D,a take the form (3.11).

The suKciency follows from the general argument of
Sec. 2. If we solve the dynamical equations, which
form a complete set, the conditions (3.9) allow us to
separate out the local Lorentz groups, and (3.10)
and (3.12) make the geometry at which we arrive
Riemannian.

H we regard the observers as speciied by some of
the dynamical variables of the system, we must arrive
at just the above results, provided that we can neglect
the reaction of the observer on the system. When this
cannot be neglected, the curvature tensor will depend
also on the observer.

Einstein's principle of the equivalence of gravita-
tional and accelerational fields is now seen simply to
state that if the physical displacement operators are
given satisfying (3.9), (3.10), and (3.12), when ex-
pressed in terms of the dynamical variables, gravitation
is already included, and requires no new field variables.
We see in addition that the state relative to one ob-
server gives, by solving the equations of motion, the
state relative to any other observer. To set up statistical
mechanics it is convenient to make the additional
assumption that unity is a multiplier for each physical
displacement operator.



2134 L. H. THOMAS

variables are not physically observable. It is well known
that a single operator can be put into canonical form
without introducing extra variables, "and this theorem
can be extended to any set of operators giving the
in6nitesimal transformations of a group.

For a general complete set of linear differential
operators we must use the 2' variables, but we do not
wish to consider all contact transforrnations of these
2' variables but only those that are extended point
transformations'~ in the es variables r', r', . , r~. Our
complete set of s linear operators together with the m

variables r', r', . ~, r, themselves now form a function

group, ' reducible in general to s pairs of canonically
conjugate variables and ns —s singular variables. Indeed
the singular variables are just the invariants and the
reduction is equivalent to a solution of the equations of
inotion.

If the complete set were so special that it could be
expressed in canonical form in terms of the m variables
r', r', ~ ~ -, r, only, the s functions representiog the
operators and at most half the remaining m —s variables
would have to form a function group of which the
latter would be singular variables, so that the structure
functions could involve only the first s functions and

(m —s)j2 variables with zero Poisson brackets with
them and with each other. This justifies the statement
made at the beginning of Sec. 2.

In classical mechanics we have generalized from
canonical transformations of dynamical variables to
more general point transformations of these, a special
class of canonical transformations in a "larger" space
of twice as many dimensions. In quantum mechanics
our dynamical variables and statistical states corre-
spond to infinitesimal unitary transformations of the
Hilbert space of wave functions; in fact to Hermitian
matrices over this space. Now all the matrices over this
space may be regarded as the vectors of a "larger"
Hilbert space, the trace of the matrix product of two of
them giving the scalar product of vectors of the "larger"
space, '~ We shall regard unitary transformations of this
"larger" space as corresponding to canonical trans-
formations of the "larger" classical space. The extended
point transformations will be those that maintain
Hermitian matrices of the smaller space Herrnitian,
which are characterized in the larger space as com-
muting with a certain conjugation. " Finally, it is
convenient to restrict our physical displacements to
those infinitesimal transformations which maintain the
unit matrix of the smaller space: this corresponds to
having unity for a multiplier in the classical case.

The most general linear in6nitesimal transformation
of the matrices of the smaller space has the form

F'=F+ie Q„A„FB„, (4.1)

"The theorem of I.ie and Konigs. See reference 5, p. 275.
'~ Reference 9, p. 85.
'6 Reference 9, p. 283."M. H. Stone, Lirlear 1'rarlsformatiorIs of Bilbert Space (Ameri-

can Mathematical Society, New Vork, 1932), p. 67.
'8 Reference 17, p. 357.

where A„and B„are matrices. It is an infinitesimal
unitary transformation of the larger space if it has the
foal

F'=F+ce Q„(A„FB„B„F—A,), (4.2)

and it further maintains the Hermitian nature of F if
A„and B„are Hermitian, while any such transformation
that does this can be reduced to this form. Finally it
maintains the unit matrix I if

Q„(A„B„—B„A„)=0. (4.3)

LIt can then be written in such forms as

P=F+,'ae Q„(-A,(FB„—B„F)+(FB„—B„F)A,
—B„(FA„—A„F)—(FA„—A„F)B„).j

While transformations of this form do not apply to the
original wave functions„and do not in general preserve
the product of two matrices, they do preserve the trace
of the product of any number of matrices, and therefore
also the characteristic values of Hermitian matrices.
Thus the statistical matrix corresponding to a wave
function is transformed into a matrix that breaks up in
the same way, though the phase of the resulting wave
function is not determined.

By taking the point of view of the larger space, we
see that what corresponds to multiplying an infinitesimal
point transformation in classical theory by a function
of the variables is here replacing a term A„FB„bya sum
of terms

g, ((C,A,+A„C,)F(D,B„+B„D,)
y (D,B,+B,D,)F(C,A„+A„C,)),

C, and D, being Hermitian matrices. This leads immedi-
ately to a definition of a linear combination of infinitesi-
mal transformations with functions of dynamical vari-
ables as coe%cients. This preserves the form of (4.2) but
not (4.3), just as in classical mechanics the corresponding
operation does not leave the infinitesimal transforma-
tion in general with a unit multiplier. Ke can then
de6ne a complete set of infinitesimal transformations as
a set for which the alternants of any two members of
the set are linear combinations of the members of the
set, with dynamical variables as coeKcients. I then
conjecture that all such transformations that leave
unaltered the matrices that the set leaves unaltered are
linear combinations of the members of the set.

These sets are expected to have enough of the
properties of the complete sets of the classical theory to
allow us to extend that theory. Even if the difhculty
that our observers and test particles are defined by
q numbers rather than c numbers makes it impossible
to set up a Riemann space except in the classical limit,
that would perhaps be suKcient. "We see that classical
theories extended in this way can be quantized, and
that quantum theory carj be extended in general to
allow of the wider range of transformations.
"Perhaps Everett's " 'Relative State' Formulation of Quantum

Mechanics" may help. H. Everett, III, Revs. Modern Phys. 29,
454 (1957).


