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Electron Number Distribution in Electron-Photon Showers
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Numerical results for the number distribution of electrons above a given energy due to primary electrons
and photons are given. The average numbers derived from the distributions are also given. Values are
presented both for the case of approximation A and for more accurate cross sections at low energies in air.
Collision losses and Compton effect are taken into account but scattering at low energies is neglected. The
calculations were carried out using Monte Carlo methods on the electronic digital computer SILLIAC. The
results of the calculations are discussed and compared with previous work on the subject.

1. INTRODUCTION

'UCH theoretical work has been done on cascades
- ~ since Bhabha and Heitler' first suggested that the

formation of an electron-photon cascade is an important
factor in the penetration of electrons through matter.
This work has been roughly divided into two branches,
one dealing with the one-dimensional longitudinal de-
velopment which considers the number development of
shower particles, the other with the three-dimensional
angular and radial spread of a cascade shower as it
penetrates matter. Only the number Quctuation problem
is considered in the present paper.

The analytical solution of the Quctuation problem in
cosmic-ray shower theory has been presented in a series
of publications. ' ' The formal solution is eGected when
we have obtained an expression, however complicated,
for the distribution function C which satisfies the
diffusion equations describing the multiplication of
particles in the cascade. Physically C represents the
probability of finding a given number of particles of a
particular kind, above a given energy, at a certain depth
below the cascade origin, the cascade having been
originated by a given type of particle with a particular
primary energy.

Two approximations, usually referred to as approxi-
mations A and 8, are commonly used in dealing with an
electromagnetic cascade. In approximation 2, full

screening cross sections are used for bremsstrahlung and

pair production; other processes are completely neg-

lected. Ionization loss, assumed to be at a constant rate,
is introduced for approximation 8 but no other change
is made. Even in the case of these two approximations
the diGusion equations for C are of considerable com-

plexity and their solution' ' of such a complex nature
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that it is well-nigh impossible to evaluate the results
numerically.

The best that one has been able to do to date nu-
merically is to evaluate the first two moments in ap-
proxirnation A, ' and the erst moment in the case of
approximation J3.' The erst few moments do give some
useful information about the probability distribution,
such as average numbers, spread, symmetry, and so
forth. However, the lack of any realistic numerical
tables for C has made the qualitative interpretation of
many cosmic-ray and machine experiments next to
impossible, and in many cases has undoubtedly led to
results of dubious value.

Attempts have also been made to reconstruct the
distribution function C from its first two moments.
Arley in his book on the electron-photon distribution
assumed that C was a Polya distribution, used the
calculated erst moment of the electron-photon distribu-
tion and a guessed value of the second moment to fit the
two Polya parameters. Messel" likewise assumed that
the distribution was Polya, but rather than using a
guessed value for the second moment, used the calcu-
lated values obtained by Janossy and Messel. r Perhaps
the only comment one can make about these attempts is
that they were the best one could do in the circum-
stances. One could not expect, even in the range where
calculation of the Arse and higher moments are reliable,
to get suKciently precise information about C.

Aside from these comments, it is also clear that the
meager results on either the moments or the distribution
itself, based on approximation A and 8, are likely to be
in great error at low energies, where the pair-production
cross section and the rate of bremsstrahlung radiation
become smaller and where the Compton eGect plays an
important role.

These considerations have led us to a full-scale attack
on obtaining numerical results for C using the automatic

'L. Janossy and H. Messel, Proc. Phys. Soc. (London) A63,
1101 (1950).

H. S. Bhabha and S. K. Chakrabarty, Phys. Rev. 74, 1352
(1948).' N. Arley, On the Theory of Stochastu Processes (Gads Forlag,
Copenhagen, 1943).' H. Messel, Proc. Phys. Soc. (London) A64, 80'l (1951).
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digital computer SILLIAC. The present paper presents
the results of our calculation so far.

We have been successful to date in evaluating C in
the cases of electrons being produced in air by primary
electrons and photons, both in approximation A and in
the case where accurate cross sections for bremsstrahlung
and pair production are used. In addition both collision
losses and Compton e6ect are taken into account;
however, scattering at low energies is neglected.

In Secs. 2 and 3 we give the relevant details of the
method used; in Sec. 4, results and their discussion are
presented. The SII,LIAC. is now being used six hours
daily in the evaluation of 4 for a wide variety of cases
and in diferent absorbers. During the next twelve
months most of the cases of interest to experimentalists
will have been completed.

2. MONTE CARLO METHOD IN CASCADE
SHOWER CALCULATIONS

The Monte Carlo or simulation method is the device
of constructing an artificial statistical model whose
statistics are known to bear a relation to the problem
under consideration and by sampling from the model to
study the properties of the relevant statistics and thus
of the original problem. In our case, as the problem is
itself a stochastic one, it is convenient to preserve a close
analogy between the model and the physical problem.

Thus our model would be of "electrons" and "photons"
that have numbers associated with them representing
the position, orientation, and energy of the "particles. "
Each "particIe" would have a certain probability of
su6ering a given type of "collision" while traversing a
given "distance. "

All the "particles" that are produced are considered
in turn, and the whole process continues until all
"particles" have moved outside the region of "energies"
and "positions" that interest us. At the end of each
"shower" the number of "electrons, " say, that had
"energies" above a given value at a given "depth" is
assessed and added into a histogram.

A new "shower" with a specified "primary particle" is
started and the whole process is repeated suKciently
often for a given accuracy to be obtained.

The di6iculty that most obviously arises in doing as
we have described is in keeping track of all the "par-
ticles" that are produced. While one "particle" is under
consideration the appropriate information about the
other ones must be stored in the limited space of the
computer. However, the method we use overcomes in a
convenient way all the obvious difhculties that might
arise.

A directory is kept of all particles that are to be
considered. When, because of a collision, two particles
replace one, the particle of higher energy has its informa-
tion stored at the end of the directory, and the other is
the next considered. When a particle is to be taken from
the directory the last one in the directory is always
chosen. It is easily seen that doing as we have described

puts a limit on the total number of sets of entries that
will ever be needed in the directory, and in fact the
number cannot exceed the integral part of logs(Eo/E),
where Eo is the energy of the primary particle and E is
the energy below which particles are no longer con-
sidered.

Cg(E, e) =

—s(1—e)Loafs(~) —s»~3) (1)
4nEZ'ro'p

C 2(+ e) fl„e + (1 e} j$ fl(7) lnZj

+-;e(1—e) L-,
' fs(y) —-', inZ)), (2)

where C ~ is the differential cross section per unit distance
for bremsstrahlung, that is for the production of a
photon of energy ~E by an electron of primary energy E,.
C 2 is the diGerential cross section per unit distance for a
photon of energy E producing a pair of electrons one of
which has energy eE. o., l7, and ro are, respectively, the
fine structure constant, Avogadro's number, and the
classical electron radius / en(sm is expressed in energy
units throughout). A and Z are the atomic weight and
number of the absorbing medium. p is the density of the
absorber. y is a variable that depends on the influence
of the screening eGect of the outer electrons on the
electromagnetic interaction, being given in the brems-
strahlung case by

(3)

and in the pair production case by

m 1
y=100— Z &.

Z e(1-e)
(4)

f, and fs are numerically tabulated functions which
become, in the full screening case (y=0),

fg(0) = 4 ln183,

fs(0) = ft(0) —s.

For convenience we use the variable 8= (13&y/100)
instead of y. We have found that ft and fs can be closely
approximated as follows:

For 6& 1,

fg = 20.838—3.6(&y—2.767''+6.081''—2.943y4
=20.838—2.6478—1.4969+2.4178—0.8608' (5)

f.=20.170—1.599' —4 405''+5. 275ys
—1.661''

=20.170—1.1765—2.3828+2.0978—0.4865', (6)
n B. Rossi, High Energy particles (p-rentice-Hall, Inc. , Engle-

wood Clips, New Jersey, 1952),

3. SIMULATING THE PHYSICAL PROCESSES

The cross sections for bremsstrahlung and pair pro-
duction are taken to be as follows (see Rossi"):
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for 8&1

f& fs——19——.80—4.184 In(y+0. 695)
=21.12—4.184 In(8+0.952).

then the cross sections become

yg(E, e) =4 g(E, p)R

( 1 ) 1 Jr i—p)= »2/ e+
9ln(183Z &)) ! In2 (

ys(E, p) =Is(F,p)R
&&L~(~)7+L-'7L2p7L&(~)7, (8)

1
L17L&(~)7

36 ln(183Z &)

9ln(183Z &))

where

If we measure distances in terms of radiation lengths,
where a radiation length E is de6ned by

1/R=4rsÃZ'rp'p ln(183Z &)/A)

generating these numbers and using them it is con-
venient to seek numbers that appear to be uniformly
distributed.

The method used to generate such numbers in the
SILLIAC was to take a certain linear combination of
the preceding four random numbers and a number
formed by permuting the digits of the fifth from last
number as the next member of the sequence at each
step. Various tests applied to these numbers give results
completely acceptable under the hypothesis that these
numbers are uniformly distributed and independent.

In what follows, it is assumed that a supply of
random numbers uniformly distributed between 0 and 1
is always available. We shall denote such numbers by
the symbols t, $&, $s, as required.

A theorem that makes it possible in principle to write
down a rule for computing variates from any distribu-
tion is that, if F(x) be the cumulative distribution
function of a variate x, then F(x) is itself distributed
uniformly. F(x) is defined by the property that if x is
sampled from the corresponding distribution, the proba-
bility that the value of x will be less than x' is F(x').
F(x) is a monotonically increasing function of x and
hence

ProbLF (x) &F(x')7=Prob(x&x')
=F (x'),

~(~)= t.9f (&)—3f (~)—8 inZ7/

L9f, (0)—3fs(0) —8 lnZ7,

JJ(~)= L3f, (h) —4 Im7/L3f, (0)—4 Im7,

C(o) = $9f (5)+3f (b) 16 lnz7/—
L9fg(0)+ fs(0) —16 lnZ7.

(10)

(11)

(12)

F(x) is therefore uniformly distributed between 0 and 1.
Thus we may- draw variates from this distribution by
drawing a uniform random number (, and solving the
equation

F(x)=g.

In the important case of the exponential distribution,

The reason for the factorization used in Eqs. (8), (9)
will be apparent later, but we may observe here that the
first factor in each case is a constant, and the last is a
factor not greater than unity which alone depends on
the absolute energy and becomes unity in the full

screening approximation.
In each case but one, the middle factor is normalized

in the sense that its integral from 0 to 1 is unity. The
"infrared catastrophe" term in the bremsstrahlung
cross section is "normalized" in a sense that will be
explained later.

For the time being we may ignore the existence of
processes other than radiation and materialization and
consider how we might simulate the physical events
that may take place.

To begin with, we clearly need a method of generating
some random event in a computer; In the computer
SILLIAC, as in most computers, every operation the
machine can perform is completely deterministic. Hence
it is necessary to use some sequence of operations which

produces numbers which, though precisely determined
from some initial set of conditions, have many of the
appearances of randomness. For convenience both in

F(x)=1—exp( —x/x),

the general method yields

x=x InL1/(1 —
P) 7,

or, more simply, replacing 1—$ by $,

x=x In(1/p).

This method is the one used to compute exponential
variates in our program. However, as a rule, it is
advantageous to proceed less directly. Two general
methods sometimes called "the composition method".
and "the rejection method"" may be combined in the
applications we have made of them to the following (see
Appendix) .

If the frequency function of a distribution is f(x) and
if f(x) can be written

(13)

'sr J. W. Butler, SymPossstm ost Mortte Carlo Methods (John
Wiley and Sons, Inc. , New York, 1956), p.' 249.
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where
0&g;(x) &1,

a;&0,

f'(*)

f,(x)dx=1,

f(x) = (m+x+1)!
~

ding, db
&o

X d)~2
pl 1

d8m+3' ' '
J d$m+n+1

and. hence the frequency function of x= $~~ is

then samples may be drawn from the required distribu-
tion by first choosing an integer from 1 to e with
probability proportional to 0.; of being i. This may be
done by drawing a uniform variate P and forming in turn

xg=$-
at+&2+' ' 'a~

xg xg
O'i+~2+

x3—x2
~)+~2+

and terminating the process for the first x; that becomes
negative and choosing the corresponding i. Having
selected the value of i, a sample is drawn from the
distribution function with frequency function f;(x), and
the value is accepted or rejected by computing the value
of g, (x) and comparing with a random variate $. If

p) g;(x), reject x;
P& g;(x), accept x;

so that the probability of accepting x is g;(x).
In the case of rejection the process is repeated again

and again until a value is finally accepted.
The value of the method lies in the fact that a

decomposition of the frequency function as in (13) can
usually be found, without much difhculty, such that e
is a low number, f, (x) corresponds to a distribution
easily sampled, and g;(x) is never much less than 1 (so
that rejection of a sample is a rare event).

Examples of distributions easily sampled are those
with frequency functions of the form

(m+m+1)!x"(1-x)".

The reason for the factorization of the pair production
cross section (9) is now obvious, for we may set

ng=-', —1/36 In(183Z &),

n2 ———,', L:;+1/9 In(183Z-&) $,

fg=i,
f2 12=(~ 2)—',

gg= C(b),

g,=x (s).

The distribution corresponding to f& is simply the
uniform distribution, and that corresponding to f2 may
be sampled by drawing three uniform random numbers
and selecting the one that divers most from one half.

For bremsstrahlung, the cross section is of course not
so simple. An artificial cutoff must be introduced to
avoid the infrared catastrophe, so for convenience we
replace the term (1/ln2) (1—e)/e by a function fo(e),
say, which has this value for

2-"&~ ~&1,

and has the constant value (1/ln2) (2"—1) for e &~ 2 '. lf
we now define

f;(e)=0, e&~2' '

1 (1—e2' ')
2—

i&~ e&&2'—'
ln2

2~' e& 2—~

ln2

fori=1, 2, ~ .r, then we have

(m+m+1)!
f(x)= *-(1—*)., 0«*1,

r
o~=

where te and n are positive integers, for such a distribu-
tion may be realized by drawing m+e+1 uniform
random numbers, ordering them in increasing order,
say,

6~ 6N 6N i 4+'++4

and selecting as the value of x the number g~~. For the
joint frequency function of $q, $2, ~ $~~q is (m+n+ 1)!

Furthermore all the f;(e) have unit integral, and. a
variate from the f; distribution may be drawn by
multiplying a variate from the f& distribution by 2' '.

Thus we have, as a suitable decomposition of the
bremsstrahlung cross section,
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0.6

0.5
Cf~0.40
a.

0,3

0.2

Prob(e&~—,') =1/2 ln2=0. 72,

we may first compare a random number $& with 1/2 ln2,
and if 1/2 ln2~&(&, we may take as our value of e

&= 26.
When 1/2 ln2&$~, we must draw from the distribution
with frequency function

0. I

0.0 3 4 5
t (radiation lengths)

9 IO

FIG. f. Approximation A, E0/E= j0, primary photon. Proba-
bility of no more than n eIectrons with energies greater than E;
e is attached to the curves.

where

n, =ln2 -,'+ i=1 2 ~ .r
9 1n(183Z ')

=Ir+1. =
g ~

0.7

0.6--

—0.5
O
M 0 40
a.

0.3—
The f, are as defined for i=1 2 r and

Also

0.00 I 3 4 5 6
t Cradiation lengths)

7 8 9 IO

FIG. 3. ED=50 Mev, E=5 Mev; absorber: air; primary photon.
Probability of no more than e electrons with energies greater than
E; I is attached to the curves.

Variates from the distribution with frequency func-
tion 2e may be drawn by taking the higher of two
random numbers, or more simply on a computer by
drawing two random numbers, $~ and t2, and computing
e thus:

We need now consider only how to draw variates
from the distribution with frequency function

. 0.5,

0~0.4 ——
o
o.

0.3

/o

0.2

I.O

0.?

3 4 5
t(radiation lengths)

FIG. 4. Approximation A, Eo/E= 10, primary electron. Proba-
bility of no more than e electrons with energies greater than E; e
is attached to the curves.
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0
Alp 4
Ia.
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O. l

0 we substitute &=1——,'x so that x wiH range from
zero to 1, we have as the frequency function of x, h(x)
say„

1
h(x) =

(4 ln2) —2 1——',x

0.0 3 4 S 6
t (rodiotlon Icngthsj

IQ

FIG. 2. Ep =500 Mev, E=50 Mev; absorber: air; primary
photon. Probability of no more than e electrons with energies
greater than E; e is attached to the curves.

[x+-',x'+-,'x'+ ]
(4 ln2) —2

=Cp(2x)+Cs(3x')+C4(4x')+ ~ ., say.
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The series is terminated at a point such that the
combined weight of the terms neglected is negligible
compared with the accuracy to which we are working
and the coeScients C2, C3- - ~ are tabulated.

As a distribution with frequency function rx' ' may
be sampled by choosing the highest of r uniformly
distributed random numbers, we have a suitable de-
composition of h(x) as in Eq. (13) with all the g(x)
actually unity. From the value of x sampled from h(x),
~ is found from the relation c= 1—~x.

O. l

0.0
3 4 5 6 7 8

t (radiatian lengths}
9 IO

0.7—
FIG. 7. Approximation A, Eo/E= 100, primary photon. Proba-

bility of no more than e electrons with energies greater than E; e
is attached to the curves,

.=0.5

00.4
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t I radiatian lengths)

IO

0.8

0.7

0.6

~05
0~ 0.40
L

L
0.3

0.2

FIG. 5. Ep=500 Mev, E=50 Mev; absorber: air; primary
electron. Probability of no more than n electrons with energies
greater than E; n is attached to the curves.

where the restrictions applying to the functions as in
Eq. (13) are satisfied, then taking the total cross
section a,s g,=i"a; introduces no error if we proceed as
follows.

Draw an exponential variate with total cross section
P,=r" n, , i.e., with mean free path 1/P; i" n, . Simulate
the movement of the particle being considered through
this distance. Draw a sample of e as previously de-
scribed, either accepting or rejecting the value of e by
comparing a random number with the appropriate
g;(a). However, in the event of rejection, instead of
assuming that the distance that the particle has moved
is to be rejected too, suppose. that the particle has
moved but is to be moved again and again until a value
of e is accepted. If the true cross section is 0 and the
value of P; i"u, is a.', then clearly the probability of
acceptance of the a at a given step will be just o./o. '.
Thus, if we require m attempts before acceptance, the
distance traveled I will be distributed as (o.') "$" 'e '/
(n 1)!.B—ut the probability of having exactly rr at-
tempts is (o/o') (1—o/o') " '. Hence the distance

3 4 5 6
t (radiation Icngthsj

IO

FIG. 6. Ep= 50 Mev, E=5 Mev; absorber: air; primary electron.
Probability of no more than I electrons with energies greater than
E; e is attached to the curves.

We have seen how to sample from the distribution of
secondary energies as de6ned by the cross sections for
the various events. However, the task of computing the
total cross section for a given primary energy still
appears to remain. This problem may be completely
avoided by observing that if we assume the cross
sections to have the form

O. I

0,0 3 4 5 6
t {radiation Icnrlths)

0
9 IO

FIG. 8. Ep=5000 Mev, E=SO Mev; absorber: air; primary
photon. Probability of no more than I electrons with energies
greater than E; e is attached to the curves.
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., & YxL~~
'!~ '9'%

., '~9k a i~ I
7 Vi« lz'

I
O. I

0.0 3 4 5 6
t (radiation lengths)

9 IO

Q. I

0.00 2 3 4 5 6 7
t ( ra di ation le ngths)

9 IO

FIG. 9.E0=500 Mev, Il =5 Mev; absorber: air; primary photon.
Probability of no more than e electrons with energies greater than
E; e is attached to the curves.

traveled will be distributed as

(~I)IIIII—r~—n'I ~ ( ~ ) II-r—
i

1——
i

=oe—".
(e 1)! o'—& o')

Thus the e6'ective cross section is correct.
The cross section for Compton effect is taken to be

given by the Klein-Nishina formula. That is, the cross
section for a photon of energy E giving a scattered
photon of energy eE per radiation length is given by

arm

~ (&, )= —L1+e —e sin IIj&
4rrZ ln(183Z *) Ee

where 8, the scattering angle, satisfies the relation

m(1 —e) = eE(1—cosa).

The computation of variates from this cross section is
straightforward.

Ionization loss is allowed for by subtracting from the
electron energy, after each Right through a distance t

FIG. 1I. ED=5000 Mev, E=50 Mev; absorber: air; primary
electron. Probability of no more than e electrons with energies
greater than E; e is attached to the curves.

radiation lengths, the quantity

rm
20.2+3 ln——2 lnZ I,

2nZ ln(183Z &) m

where Eo was the energy at the beginning of the Right
and E the corrected energy. This formula is based on
Eq. (1.12) of reference 11 but differs by a negligible
amount in that Eo in the logarithmic term replaces p,
the momentum of the electron, and that it is assumed
that the rate of energy loss is constant as the electron
moves through the small distance t.

4. DISCUSSION OF RESULTS

Results are here presented for 12 diferent cases which
are summarized in Figs. 1—12. In each graph we have
plotted the probability of having no more than e
electrons with energies greater than E in a shower of the
specified type, as a function of depth measured in
radiation lengths. The number e is attached below the
corresponding curve. Thus to read from the graph the
probability of exactly e electrons, one need simply read
the distance between the two adjacent curves between
which the number e is written.

.. &hV9Yb. r ~1'r ~1II., ))VYiX '/. &/'/ ~r''Y w
1 (7'A. =- //z'/ / ~

i/'/ /)'/ /

0.2

O. I

=- 0.5

o
o 0.4
I
a.

0.3

0.2

O. I

I .O

L P
0.0

3 4 5 6
t (radiation lengths)

0.00 I 4 5 6
t fradiation Icngthsj IO

FIG. 10. Approximation A, Ep/E = 100, primary e1ectron.
Probability of no more than n electrons with energies greater than
E; e is attached to the curves.

FrG. 12. Eo ——500 Mev, X=5 Mev; absorber: air; primary
electron. Probability of no more than e electrons with energies
greater than 8; n is attached to the curves.
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I.O
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0.3
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— =-—~~9~~ ' 0-

r
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0 I 2 3 4 5 6 7 S 9 iO
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.D~0.40
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O.
0.3

l
I
I
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0 I 2 3 4 5

t {radiation lengths)
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4
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FIG. 13. E0=5000 Mev E=50 Mev; absorber: air; primary
electron. Probability of exactly I electrons with energies greater
than E; e is attached to the curves.

FIG. 15. Eo=500 Mev, E=5 Mev; absorber: air; primary
electron. Probability of exactly e electrons with energies greater
than E; n is attached to the curves.

The first of each trio of figures (1—3, 4—6, etc.) corre-
sponds to approximation A (Figs. 1, 4, 7, 10) while the
second and third are for the more accurate approxima-
tions for showers in air with diferent values of Eo and
E but with the same value of Ep/E(=10 or 100). For
Figs. 1—6 the ratio Ep/E is taken as 10 and for Figs. 7—12
it is taken as 100. Figures 1—3 and 7—9 correspond to
showers initiated by a primary photon while Figs. 4—6
and 10-12 are for showers initiated by a primary
electron.

To obtain a more ready comparison of the striking
way in which the properties of showers depend on
energy and depth, we have plotted in Figs. 13—15 the
probability of finding exactly e electrons with energies
greater than E, with e attached to the curves for the
cases e=0, 1, 2, 3, 4, etc.

Generally speaking, the quantitative results appear at
first sight to bring out pretty well what one wouM expect
from arguing on a purely qualitative basis. However, we
shall see that the detailed behavior is most complex and
defies purely qualitative reasoning. Furthermore, the
complexity of the curves bears out the contention that
the task of trying to find a simple analytical solution of

I.O

0.9

0.8

the problem, amenable to easy numerical evaluation,
was a hopeless one.

Many interesting features are highlighted by the
curves. For instance, in Figs. 13, 14, and 15 the odd-
even effect in a shower is clearly shown. In the case of a
primary electron, the probability of an odd number of
electrons before the cascade maximum —which corre-
sponds roughly to the minimum of the curves —is
greater than the probability for an even number. Thus
at a depth of one radiation unit the probability of one or
three electrons is considerably greater than the proba-
bility for zero, two, or four electrons. A similar plot in
the case of a photon primary using Figs. 7—9 would
show the reverse with the highest probabilities showing

up for even numbers of electrons. The two-maxima
behavior for the curves e= 2, 3, 4, and higher numbers
is easily understood. The number development of the
shower builds up through the small values of e, eventu-
ally reaching the maximum value for a certain depth t,
and then the numbers decrease as the particles die off.
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FIG. 14. Approximation A, Ep/E= 100, primary electron.
'

Probability of exactly I electrons with energies greater than 8
n is attached to the curves.
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Fro. 16. Probability of finding exactly 0 electrons with energy
greater than E (primary photon) in the case of approximation A
with Ep/E= 10, and in the case of accurate cross sections, Compton
eGect and ionization losses being taken into account, Eo=500 Mev,
E=50 Mev; Eo=50'Mev, E=5 Mev. The energy Eo or the letter
A in the case of approximation A is attached to the curves. The
absorber is air or, in the case of approximation A, a general
absorber.
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Hence before and after the cascade maximum the
probability of finding e electrons, where e is less than
the average number at the maximum, must be greater
than at the cascade maximum. The value of the depth
t for which each curve reaches its maximum value must
therefore also approach more and more closely to the
value of the depth at the cascade maximum as m ap-
proaches the value at the cascade maximum. Near and
beyond the average number at the shower maximum
there is only one peak for the curve —namely near the
cascade maximum. It is interesting to note that im-

mediately past the cascade maximum the value of the
probability of finding ted=0, 1, 2, 3, 4 electrons (I less
than the average value of the maximum) increases with
increasing e. This behavior is understandable since the
odd-even eGect brought about by pair production be-
comes masked as the other shower factors come into
play and overshadow pair production eGects. On the

FIG. 17. Probability of ending exactly 0 electrons with energy
greater than E (primary electron) in the case of approximation A
with Es/E= 10, and in the case of accurate cross sections, Compton
eBect and ionization losses being taken into account, ED=500
Mev, E=50 Mev; E0=50 Mev, E=5 Mev. The energy E0 or the
letter A in the case of approximation A is attached to the curves.
The absorber is air or, in the case of approximation A, a general
absorber.

other hand, at su%ciently great depths the order men-
tioned above is completely reversed.

In each of Figs. 13, 14, and 15 the ratio of primary to
secondary energy is 100. However, the effect of de-
creasing primary and secondary energies brings into
play the accurate cross sections for pair production and
bremsstrahlung as well as Compton eGect and ionization
loss. The resultant complex interplay of all these
factors with the odd-even e8ect thrown in gives rise to
the complicated detailed behavior depicted in the
figures. For instance, at a depth of one radiation length
the probability of finding exactly four particles in the
case of approximation 3 is about 0.125; for ED=5000
Mev, 8=50 Mev the value is 0.110, and for E(l——500
Mev, 8= 5 Mev the value is about 0.075. As would be
expected, this shows that at higher energies the proba-
bility of finding a high number of particles is greater
than at low energies. However, at a depth of only two
cascade units the corresponding figures are 0.135, 0.150,
and 0.175, respectively, showing that the eGect has
completely reversed. This single example chosen from
dozens of similar ones shows the danger in the analysis
of shower results without the aid of quantitative
numerical results.

Figures 16 and 17 give the probability of zero elec-
trons with energies greater than E in the cases for which
L~'s/E= 10, plotted as a function of depth. Again for
convenience of comparison we have shown each set of
three comparable cases, namely: approximation A with
Es/E=10, and in the low-energy case in air with
Ep=500 Mev, A=50 Mev; 80=50 Mev, A=5 Mev.
Figure 16 is for the case of a photon-initiated shower and
Fig. 17 for an electron primary. Both figures again
demonstrate the strong energy dependence of the
probability distribution and the important roles which
Compton eGect, ionization loss, and accurate cross
sections play. Figure 17 for a primary electron exhibits
an interesting feature, namely the behavior of the
curves between the depths of zero and three quarters of
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FIG. 18. Probability of ending exactly n electrons with energy
greater than E for ti= 0, 1 (attached to the curves) in the case of a
primary photon and using approximation A with Ep/E=10. The
broken lines give probabilities of e electrons when one assumes
that the distribution was Poissonian with the correct mean value.

FrG. 19. Probability of ending exactly n electrons with energy
greater than E for m=0, 1 (attached to the curves) in the case of a
primary electron and using approximation A with E0/E=10. The
broken lines give probabilities of e electrons when one assumes
that the distribution was Poissonian with the correct mean value.
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TABLE l. Approximation A, Ez/E= 100, primary electron. The probability of exactly n electrons with energies greater than E at a
depth t. The numbers in parentheses are those of Messel'; the others are the values of the actual distribution found in the present
paper.

10

0.008
(0.003}

0.008
(0.001)

0.013
(0.008}

0.167
(0.129)

0.507
(0.452)

0.045
(0.018)

0.011
(0.004)

0.061
(0.040)

0.244
(0.240)

0.261
(0.310)

0.078
(0.049)

0.023
(0.016)

0.089
(0.095)

0.225
(0.246)

0.128
(0.147)

0.112
(0.096}

0.049
(0.041)

0.151
(0.152)

0.148
(0.184)

0.057
(0.060)

0.132
(0.140)

0.069
(0.075)

0.183
(0.182)

0.091
(0.111)

0.031
(0.022)

0.138
(0.164)

0.116
(0.112)

0.162
(0.175)

0.056
(0.058)

0.140
(0.160)

0.125
(0.139)

0.123
(0.140)

0.036
(0.027)

0.104
(0.134)

0.142
(0.147)

0.091
(0.096)

0.015
(0.012)

0.097
(0.098)

0.125
(0.137)

0.055
(0.057)

0.008
(0.005)

0.058
(0.064)

0.110
(0.113)

0.030
(0.031)

0.002
(0.002)

See reference 2.

a radiation length. In this interval the probability of
there being exactly zero electrons is smaller for the
lower-energy case than for the high-energy one. The
opposite behavior might normally be expected. Ap-
parently in this interval the radiation losses are so small
that the electron has a considerable chance of travelling
a long distance.

It is of some interest to compare our results with
those obtained by assuming that the distribution is of a
simple form with one or two parameters, and computing
these parameters from the accurate values of the mean
and, if necessary, the second moment. The two forms
that are most naturally chosen are the Poisson, with
probability generating function e (" ", and its generali-
zation, the binomial, with probability generating func-
tion L(A+Iris)/(X+rN)ji. )The probability generating
function g(u) of a distribution with probability f(n) of
having the value n is defined as g(u) =P~ s" I'"f(rr)
In the case where the parameter X is negative, the
binomial distribution is usually called the negative
binomial or the Polya distribution.

In Figs. 18 and 19 we have plotted the probability of
6nding exactly zero and one electron for the case of a
primary photon and electron, respectively, in approxi-
mation A with Es/8=10. Also plotted in broken lines
are the values that these functions would have if the
distribution was Poissonian with the same value of the
mean. It is seen that only after the region of the shower
maximum is agreement close in this case.

For the case of an electron primary and Ep/E= 100,
we may compare our results in the approximation-A
case with those of Messel' who computed the distribu-
tion function using calculated values of the hrst two
moments and assuming that the distribution is of the
negative binomial type. This comparison is shown in
Table I.

As would be expected, the agreement shown in
Table I is better at large depths than at small ones.
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Fzo. 20. The logarithm of the average number of electrons with
energies greater than E at a depth of t radiation lengths due to a
primary photon. The value of E0/E is shown beside the two sets of
curves. The energy E0 in Mev of the primary photon, or the letter
A in the case of approximation A, is attached to the curves. The
absorber is air or, in the case of approximation A, a general
absorber.

However, again as in the case of the Poisson distribu-
tion, we see that the reliability of using reconstructed
distribution functions is very poor indeed. Using our
results we have tried to 6nd some simple empirical
formula which would yieM these; however, to date we
have been unsuccessful. By the time one takes the odd-
even and various other factors into account, one seems
to end up with an empirical relation too complicated to
be of much value.

It should be noted that throughout this paper for
probabilities whose values are of the order of 0.1 the
standard deviation of our results is about 0.005, and for
values of the order of 0.02 it is about 0.002.

Our results yield in a direct and accurate manner the
average-number curves for the cases considered. In
Figs. 20 and 21 the logarithm of the average number of
electrons with energies greater than E at a depth of t

radiation lengths, due to a primary photon, and primary
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APPENDIX

Consider the distribution with frequency function
f(x) given by Eq. (13) with the same restrictions on the
symbols. We shall show that using the composition and
rejection methods as we have described, we do in fact
arrive at this distribution.

First we choose an integer from 1 to e with probability
proportional to n; of being i. By following the procedure
we outlined, i is to be chosen when xi&0, xi i ~& 0, which
is equivalent to

n

2 ~~/ 2 ~'&~5& 2 ~~/ 2 ~'.

FxG. 21. The logarithm of the average number of electrons with
energies greater than E at a depth of t radiation lengths due to a
primary electron. The value of E0/E is shown beside the two sets
of curves. The energy E0 in Mev of the primary electron, or the
letter A in the case of approximation A, is attached to the curves.
The absorber is air or, in the case of approximation A, a general
absorber.

electron, are given. The values of Ep/E, 10 and 100, are
shown beside the respective curves. The energy Eo in
Mev of the primary or the letter A in the case of
approximation A is attached to the curves.

It is of great interest to observe the behavior with
energy of the position of the shower maximum. It will

be noted that the depth of the shower maximum de-
creases with decreasing energy of the primary and
secondary particles, whereas it may have been expected
that the opposite would be the case. Clearly the de-
creasing rate of bremsstrahlung and materialization at
low energies would be expected to extend the region in
which the shower builds up to a maximum, whereas the
higher rates of Compton eGect and ionization loss
should give the opposite eGect. The results show clearly
that the Compton eGect and ionization loss outweigh
considerably the eGect of decreasing cross sections for
bremsstrahlung and pair production.

A further surprising feature is the large variation of
the average numbers with primary and secondary
energy, even though the ratio of Ep/'E is constant. For
instance, in the case of 80=5000 Mev, 8=50 Mev, it is
reasonable to expect that the results for this would be
yielded accurately by using approximation A. However,
this is simply not the case, the error being in most cases
as high as 15%. In the case of Ep ——500 Mev and E=5
Mev the differences are so large that approximation-2
results would be of little or no value.

Since $ is uniformly distributed, the probability of this
occurring is simply EE;/P;, ~ &;.

The joint frequency function of (i,x) before we allow
for rejection is

~'f'(x)/ 2
i 1

However, there is a probability of 1—g, (x) that we shall
reject this value once we have chosen it. Letting j=0
denote acceptance and j= 1 rejection, we have as the
joint frequency function of (ij,x)

L~'f'(x)/ 2 ~') I j—g'(*) I.

Hence, as we repeat the process until we reach a zero
value of j, the joint frequency function of the 6rst
accepted values of (i,x) will be cn;f, (x)g, (x), where c is a
constant required to normalize the function. To find the
frequency function of x, we must sum over i, obtaining

n

c Q n;f, (x)g;(x) =cf(x)
i~l

Thus, as it was supposed that f(x) is normalized, c is in
fact unity and we have established the required result.

It is of interest to note that the probability of rejec-
tion (j =1) is

n n

(n~f, (x)/ P u;)L1—g;(x))dx=1 —(1/ P n;).
i=i i~1 i=i

Thus Q; ~"u; is the average number of attempts that
must be made until a value of x is accepted.


