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Resonance Theory of Neutron Cross Sections of Fissionable Nuclei
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The general Wigner-Eisenbud resonance theory is used to develop a method of analysis for the neutron
cross sections of fissionable nuclei. The method is employed in giving a reasonable description of the low-
energy cross sections in U" . The single-level fit for U"' is known to be unreasonable. Many-level expressions
for the cross sections are derived —the only approximation to the general theory being the neglect of all
but a small group of resonances. No explicit reference to fission channels is needed and the many-level
expressions require few level parameters: the Ez, I z„,1 p~, and I'zy of the single-level theory for each resonance
and a few additional parameters pertinent to the interference between levels. The interference terms are
described and shown to be important. Their average value yields information about the number of channels
involved in fission. The shape and size of the U"' cross sections below 2 ev are fitted to within one or two
percent using: (a) only one negative energy resonance of smaller size than in the single-level fit; (b) no
additional levels to fit the shape other than the observed levels at positive energies; (c) three interference
parameters whose size suggests that there are several fission channels in U"'.

1. INTRODUCTION

'HE low-energy neutron cross sections of U"',
measured by Sailor and Shore, ' are among the

best-known nuclear cross-section data. In spite of this
fact many difficulties have been encountered in the
description of these cross sections with the resonance
theory —difhculties which also seem to occur in the
other common fissionable isotopes, U'" and Pu'".' The
troublesome features of the cross sections are: (1) at
thermal energies both the total cross section, O„z, and
the fission cross section, O.„,y, are uncommonly large;
(2) the shape of the resonances, particularly of the first
two at positive energies in U"', is quite asymmetric
about the resonance energies; and (3) the value of the
cross sections between resonances is anomalously large.
The data of Sailor and Shore, ' for U"', clearly show
all of these features.

If only the first difhculty, the large thermal cross
section, had occurred the problem could be easily
solved by assuming the existence of a single resonance,
of normal size, at negative energies. By such a device
the U"' cross sections could be 6tted, to within experi-
mental error, from zero energy up to the first maximum
at 0.29 ev. However the Breit-Wigner single-level

theory does not lend itself very readily to providing

solutions for the difficulties (2) and (3) above. To fill

in the cross sections in between the 0.29-ev and 1.13-ev

resonances of U"', the negative-energy resonance can
be moved further from zero neutron energy and in-

creased in size. In effect the two peaks (at 0.29 and

1.13 ev) are made to lie on the wings of a huge negative-

'F. J. Shore and V. L. Sailor, preceding paper [Phys. Rev.
112, 191 (1958)).' See Fig. 3. A summary of the U"' data as well as that for the
other 6ssionable isotopes is contained in Neutron Cross Sections,
compiled by D. J.Hughes and J.A. Harvey, Brookhaven National
Laboratory Report BNL-325 (U. S. Government Printing Oifice,
Washington, D. C., 1955), and Neutron Cross Sections, compiled
by D. J. Hughes and R. Schwartz, Brookhaven National Labora-
tory Report BNL-325, Supplement No. 1 (U. S. Government
Printing 0%ce, Washington, D. C., 1957).
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energy resonance. Such a fit requires that the reduced
neutron width of the negative-energy resonance be
unreasonably large (roughly 25 times the average size
of the reduced widths of the levels observed at positive
energies) and even then it does not give a solution to
the difficulty (3) above. The single-level fit' required
additional resonances at —0.02, 0.4, and 0.9 ev to fill
in the unusual shape of the cross sections of U"'. These
latter three levels do not all correspond to actual peaks
in the cross section. The difficulties with the shapes of
the cross section are such that these levels had to have
both an unusually small value of the reduced neutron
width and a large fission width. Such levels have a
low probability of occurring.

Since the single-level Breit-Wigner formula does not
give a reasonable description of the U"' cross sections,
the explanation of those cross sections lies in either the
more general resonance theory which includes the
effects of the interference between levels or in a break-
down of the resonance theory. Interference between the
levels of U"' was erst considered by Sailor. ' There are
many reasons to suspect that the interference between
levels should be important for the fissionable isotopes.

The single-level Breit-Wigner formula is strictly
valid only when the widths, I'&, of the neighboring
resonances are much smaller than their spacing, D,
from the resonance being considered. In the fissionable
nuclei p&/D is frequently larger than 0.1. To be more
precise, the capture width should be subtracted from
the total width in this criterion since the capture width
is really a sum of a very large number of partial widths
each pertaining to the decay of the given level into one
of the lower lying states. The reduced width amplitudes
for capture presumably have sign fluctuations so that

3 J. A. Harvey and J. E. Sanders, Progress in Nuclear Energy
(McGraw-Hill Book Company, Inc. , New York, 1957), Series l;
see also, H. Bethe, Progress crt Nuclear ErMrgy (McGraw-Hill
Book Company, Inc. , New York, 1957), Series I.

4 V. L. Sailor, Proceedings of the International Conference on the
Peaceful Uses of Atomic Ertergy, Getseea, 2955 (United Nations,
New York, 1956), Paper P/832.
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it is very unlikely that the capture process can ever
cause interference between the levels of heavy nuclei
(see Sec. 2).

In the non6ssionable nuclei the average level spacing
is usually several orders of magnitude larger than the
neutron width of any level. Where this is not so, as,
for example, in Mn", it is necessary to consider inter-
ference between the levels in order to describe the cross
section accurately. This has been done for Mn" by
Krotkov. ' In the nuclei U"', U"', and Pu'" the 6ssion
width is usually only about an order of magnitude
smaller than the spacing between adjacent levels (the
neutron width is much smaller). If the principal
contribution to the fission width, I'~~, comes from only
a few 6ssion channels then interference between the
levels can occur.

At 6rst sight it would appear that each set of 6ssion
products in each state of excitation is a separate fission
channel. However, Bohr' pointed out that in the fission
process the nucleus passes through an intermediate
state which is a shape deformation. Furthermore, if
the energy is low enough then the number of these
states is small. Bohr suggested then that the term
channel should be applied to the intermediate states of
deformation. In his picture many diAerent sets of
6ssion products arise in the same channel by small
interactions between the particles in the channel during
the existence of the intermediate state. If Bohr's
suggestion is correct then it should be possible to
analyze resonances involving 6ssion using only a few
channels to describe 6ssion. The distribution in size of
the 6ssion widths, as analyzed by Porter and Thomas, '
is in agreement with the idea that there are only a few
fission channels. H there were many independent
channels for 6ssion the fission widths would be expected
to remain constant from level to level as the radiation
widths apparently do. ' From the distribution in size
of the fission widths Porter and Thomas inferred that
there were two or three important fission channels. In
this case the large fission width combined with the
small level spacing of the fissionable nuclei can cause
serious error in the application of the single-level
formulas to the cross sections of these isotopes.

The analysis of Sailor4 showed that the shape of the
cross sections could be changed considerably by the
interference of resonances. The formulas he used were

based on an analysis for which Fz/D is small, where D
is the average spacing between levels and, as is shown

in the next section, under the assumption that there is

only one 6ssion channel. Neither of these assumptions

are likely to be good for U"'.
The present study was undertaken to show that the

s R. Krotkov, Can. J. Phys. 33, 622 (1955).
6A. Bohr, Proceedings of the International Coeference on the

Peaceful Uses of Atoracc Euergy, Geueea, 1955 (United Nations,¹wYork, 1956), Vol. 2, p. 151.
s C. E. Porter and R. G. Thomas, Phys. Rev. 1Q4, 483:".(1956).
s J. S. Levin and D. J. Hughes, Phys. Rev. 1Q1, 1328 (1956).

low-energy U"5 cross sections could be explained in a
reasonable and simple way with the general Wigner-
Eisenbud' " theory. Toward this end the next section
provides a method which is derived from the corn-
pletely general theory by only one weak assumption —-
that the analysis of the cross sections at a given energy
can be made using only a small grostp of resonances.
The method can be used for any of the fissionable
isotopes. It involves only a few parameters: apart from
the usual widths and energies of the Breit-Wigner
formula, only one extra parameter for each pair of
levels of the same spin and parity. The application of
this method to U"' is given in Sec. 3.

2. MANY-LEVEL CROSS SECTIONS

The resonance theory developed by Wigner and
Eisenbud'" contains almost no specific assumptions.
On the other hand, the theory is, in general, very
complicated and contains a discrete infinity of free
parameters. Simple expressions for the cross sections
can be obtained for two types of approximations in
which the cross sections are assumed to involve: (i) a
few channels and an arbitrary number of resonance
levels; (ii) a few levels but an arbitrary number of
channels. Which approximation is the best depends on
the physical situation. The general formula for cross
sections near a single resonance line is a special case
of (ii).

Of the two types of approximations to the general
resonance theory the one which applies most naturally
to the low-energy neutron cross sections of the fission-
able nuclei is (ii). The reason for this fact is that the
number and de6nition of the fission channels is ambig-
uous and that, strictly speaking, the number of channels
for resonance capture is very large. On the other hand,
it will be shown below, and in Sec. 4, that even for
resonances involving 6ssion one needs to consider only
a small number of resonance levels at a time. Thus
approximation (ii), above, can be justified for the
neutron cross sections of 6ssionable nuclei. In addition,
the cross-section expressions derived from this approxi-
mation require no explicit reference to the number or
definition of the 6ssion channels: indeed, the number
of 6ssion channels is deduced from the results of this
method rather than being inserted i.nto the method
initially.

The nature of the many-level approximation (ii),
above, can be pointed out by examining the cross
sections of the fissionable isotopes. As was pointed out
in the preceding section the single-level formulas break
down for these isotopes because I'i/D for these reso-
nances is only slightly smaller than unity. However,

~ E. P. Wigner, Phys. Rev. 70, 15 {1946);70, 606 (1946); and
E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

~0 For a summary of resonance theory the reader is referred to
A. M. Lane and R. G. Thomas, Revs. Modern Phys. (to be
published) or to E. Vogt, Nuclear Reacttous LNorth-Holland
Publishing Company, Amsterdam (to be published) j.
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if we consider in full detail all of the states lying in
some small energy interval around the energy of
interest we are ignoring only the overlap eGects due to
the many smaller amplitudes from the states outside
this interval. The average magnitude of these smaller
amplitudes falls off as (Eq—E) ' where Eq E —is the
energy separation between the distant states and the
energy E, of interest. Even though the magnitude does
not decrease very quickly, the sign of the small over-

lapping amplitudes presumably fluctuates from one
distant level to another (see Sec. 4) so that their actual
contribution to the cross section near E should be small.
A completely similar assumption about the distant
resonances must be made for the single-level theory
even when I'q/D is very small. In the latter case the
single-level formula has always worked very well. In
considering all of the levels in an interval about E,
the many-level theory [approximation (ii), above]
should be valid whenever I'&,/(Eq —E) is small for the
~geored levels. As long as the interval contains at least
several levels, I'q/(Ey —E) for the ignored levels will be
much smaller than I'q/D, where D is the average
spacing between levels. Thus, by taking enough levels
at a time, the many-level theory [approximation (ii),
above) for closely spaced levels (I'z D) can presum-
ably be made as good as the single-level theory for
widely spaced levels (I'z«D). In the remainder of this
section the many-level expressions for the cross sections
of fissionable nuclei will be developed using the approxi-
mation (ii) above.

The commonly measured cross sections of the fission-
able isotopes are the fission cross section, O-„, f, the
scattering cross section, o-, „, the capture cross section,
o,„ the total cross section o ~r (= o ~, „+o c, r+ o ~, „),
and the absorption cross section. o- x(=o.„,,+o„,y).
Each cross section is integrated over the angles of the
emitted particles. In the Wigner-Eisenbud theory' "
the general expression for a cross section, 0„,proceed-
ing from an incident channel c to an outgoing channel
c', integrated over the possible angles of c' is

(2/+1)o„=—P (1)
k ' ~ (2I+1)(2i+1)

where I is the spin of the target nucleus, i the spin of
the incident nucleon, J the total angular momentum
of the system, k, the relative momentum of the incident
particle and the target nucleus, and U„~ the collision
matrix component of a given J referring to the channels
c and c'. In addition to being integrated over all angles,
(1) has been averaged over the possible polarizations
of the incident nucleon and the target nucleus. For the
low-energy neutrons which we are considering, only
s waves are important so that J=I&-,' and the sum
over J, in (1), contains only two terms corresponding
to the two spins of the compound nucleus that can be
reached by s-wave neutrons. In all of the cross sections
which we are considering, there are these two species

of levels: as far as the cross-section calculations are
concerned, the two species are treated completely
independently.

If we label the s-wave neutron channel by e then,
in (1), c=e for each of our cross sections. The scattering
cross section is o-, , the fission cross section is a sum
of r, over all the c' which correspond to fission.
Similarly, the capture cross section is a sum of a-„,
over all the channels corresponding to capture. The
total cross section is a sum of cr„, over all c' but,
because of conservation laws, the collision matrix is
always chosen to be unitary and symmetric, a fact
which leads to the following simple expression for the
total neutron cross section:

(2)

where Re stands for the real part of the expression in
parentheses, and g is the statistical spin factor:

g=
(2I+1)(2i+1)

(2) follows at once from (1) and the symmetry and
unitarity of U~, that is, from

Pc' +c'cvc'c

where the asterisk indicates the complex conjugate.
Equation (2) states that o„T depends only on the
diagonal component of U~ pertaining to the incident
s-wave neutron channel, and only linearly on this com-
ponent. This fact makes 0-„z particularly simple to
calculate.

In order to calculate the cross sections we must
evaluate the components of the collision matrix, U„
to be used in (1).It is at this stage that we write down
the many-level form of the collision matrix. " As is
shown in Appendix A, U„~ may be written

where (I'q, )'* is the square root of the observed partial
width I'&, for the decay of the level X into the channel
c. The square root is to be taken with the sign appro-
priate to the reduced width amplitude y),„that is

(6)

where I', is the penetration factor of the channel c.
The (I'q, )& can, in general, have either sign. We use
this notation to avoid referring explicitly to the pene-
tration factors of fission and capture channels, which
we shall neither use nor defLne. The q. of (5) are
potential scattering phase shifts, that is, the sum of a
Coulomb phase shift and a hard-sphere potential
scattering phase shift. The only p, we shall need are
those for s-wave neutrons. In that case p = —ka where

n E. P. Wigner, Revs. Modern Phys. 70, 606 (1946).
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a is the radius of the nucleus. The Aii of (5) was
derived in Appendix A. The rows and columns refer
to levels not to channels, and we must remember
that the levels are of the same species since U~ refers
only to levels of a given spin and parity. The reciprocal
of A has the components

(A- )- = (E.—E)~- —:Z.(1' .)-:(I''.)', (7)

where c runs over all channels and Eq is the resonance
energy of the level X.

The cross-section expressions (1) with the collision
matrix components (5) and, in turn, the level matrix A
determined from (7), are still those of the completely
general Wigner-Eisenbud theory. However, in general,
a physical scattering process involves an inhnite number
of levels so that the matrix inversion of (7) cannot be
accomplished. We shall ignore all but a small number
of levels so that the inversion (7) can be accomplished.
With this one approximation we can use (1), (5), and

(7) not only to write down but also to calculate the
cross sections which are of interest to us.

To simplify the expressions for the cross sections we
de6ne a reduced neutron width, Fq„', as

F),.'= 2gFg.E-i,

where E is the neutron energy (in ev). We have ab-
sorbed the statistical spin factor into the de6nition of

*

the reduced width. Then using the fact that ~/k„'
=6.52X 10'/E barns, where E is in ev, we obtain

0.„rE*'=6.52X10' Re((1—e "~')2gE ~

+ie ""'P-i, ), (I'~ ')l(1'~ „')'*Aiv)
+similar term for the other spin, (9)

t'6 52 XI
IZ.IZ '(1.-)'(I )'A» I''")

+similar term for the other spin, (10)

reduce to the sum of single-level contributions. It is
this case which we have referred to above as the
single-level formula. A ' will be diagonal if the sum
Q, (1'q,)**(1'i,)'* of (7) vanishes for all P W1%,'. The fact
that the cross terms between resonances in the cross
sections vanish in this case is obvious for o „r from (9)
and for 0„,, from (12). The single-level expressions for
the cross sections involve four independent parameters
for each level: E& and any three of F&, F&„, Fz~, or F».

When the nondiagonal elements of A ' are included
in the cross-section calculations, terms arise which
correspond to interference between levels. These inter-
ference terms can be important in the low-energy
neutron cross sections of 6ssionable nuclei. Their use
will be described below and their importance in the
cross sections of U23' is described in the next section.
At 6rst sight it would seem that the formulas for
levels (X)1) and nondiagonal A are dificult to handle
because they involve inverting the complex matrix A
and that this general case involves a large number of
additional parameters —such as the signs of the (I'i„)&
and the partial widths for individual 6ssion channels—
which did not occur in the single-level formulas. The
6rst of these impressions is correct but the second is not.
As is shown below, the cross sections are independent
of the signs of the (I'q„') ** and the only new parameters
which occur in the cross sections are the X(X—1)/2
oG-diagonal components of A ', where Ã is the number
of resonance levels which are being considered. That
the latter fact is so is evident at once from a look a t0, 0. z, and 0,„(9) to (12) above, which do not
involve the partial fission widths. Since cr, ~

——o.„z—o.„,~—o.„, , this fact must also hold for o „,~.
To make the new independent parameters more

perspicuous we shall look at the 6ssion cross section
itself. We define a vector gi~ whose components refer
to fission channels and are equal to (I'i, )'*, where c
refers to a 6ssion channel. With this de6nition the
nondiagonal terms of A ' are

where c refers to 6ssion channels for o-„~, to capture
channels for o.„,~, or to both for o-„~. The sca ttering
cross section, r„,„, is

E&= (6 52x105) E-'I1
x~1+ Z '(I'..):(I''.)»- &

I'
+similar term for the other spin. . (11)

Since there are assumed to be very many capture
channels and the (I'i, )& for these channels are assumed
to Quctuate in sign, we can simplify o-„,~E' at once to

0 „,,E~= (6.52 X10'/2)

Xgx, z., ), I'~, (1'v„')'(I'x"„')'Ax~ A) ~-*
+similar term for the other spin. (12)

In (12), I"i, is the total radiation width for the level X.
If A ' (and therefore A) is assumed to be a diagonal

matrix, then the cross-section expressions (9) to (12)

(A ')ii = —(i/2)gag gi g PiWX') (13)

We have neglected the contribu tions of the capture
channels to (A ')qi since they are negligible because
of sign fluctuations. The neutron channel is also neg-
lected because the value of the neutron widths are so
small: more precisely, for the fissionable isotopes,
(I'i„)'(I'q )*' is always small compared to any Iq so
that the contribution of the neutron channel to the
o8-diagonal elements of A ' is several orders of magni-
tude smaller than any of the diagonal elements of A
Because of this fact we can neglect the neutron channel
in the oB-diagonal elements. Using the vectors g~~ to
write the fission cross section, (10), we obtain

0m gE =(652X10/2)Py i, i,js i,,lr(1'y&)~(I)I ) g s~yil

'gi eiAi,i!~Ail!i,all*. (14)

Thus precisely the 1V(E—1)/2 parameters graf'g) f
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which occur in the o8-diagonal elements of A ' also
su%ce for the description of the fission cross sections.
The fission channels enter into the cross sections only
in this way.

To show that the cross sections discussed above do
not depend on the signs of the (I'&„0)l [or, equivalently,
on. the signs of the (I'i„)'$, we look, first of all, at the
signs of the Aii. From (8) and (13) it is apparent at
once that changing the sign of the vector g» simultane-
ously changes the sign of the components of A ' in the
Xth row and the Xth column [(A ')ii does not change
sign]. Therefore the determinant of A ' does not change
sign along with g» but the co-factor of the element
(A ')„., pW v, does change sign. As a result the sign of
A„„ is proportional to g„~ g„~. Using this result an
inspection of the cross sections, (9) to (12), shows that
as far as signs are concerned the amplitudes (I'i„')'—
or (I'&,„)'—always occur as a product with g», and
since the latter are assumed to have arbitrary signs,
all the (I'i„')l or (I'i„)& can be chosen to be positive
without imposing any limitation on the cross-section
description. No measurement of 0- z, a, , 0„,f 0 + or
0-, ~ will tell us anything about the sign of the neutron
reduced width amplitude (I'i„')&.

The X(X—1)/2 new parameters in the many-level
cross sections are the scalar products, g» gi i, between
the vectors g». Since the length of these vectors is
known,

~
g»~2=re f each of the scalar products gi f'gi'f

can be characterized by the angle, Biz, between @&
and g&, ~, that is,

g) f ' g"'f
I g» I I

g'i'
I

cos~»'

For a set of 1V levels, and therefore 1V vectors g», we
can always choose the unit vector g»/~g»~ for the
first level to be the polar axis. Then the same unit
vector for the second level defines a polar angle (from
its scalar product with the g» of the first level) and,
together with the vector of the first level, a plane from
which the azimuthal angle of the next vector can be
measured. Continuing in this way the X vectors g»
map out a space of Ã dimensions. This means that the
values of the g» gi y determined by fitting an X-level
formula to the cross sections of 6ssionable isotopes
can always be described in terms of only X fission
channels. If it turns out that according to some natural
dehnition of the concept fission channel there are a
great number of such channels, for the purpose of our
X-level fit we could have chosen X independent linear
combinations of the original channels. The new linear
combinations would suffice completely for describing
the cross sections. Thus with the X-level fit we can
never tell whether or not there are more than X
channels for fission. If there are less than Ã channels
some of the g» will be linear combinations of the
other g».

It is important to remember that the X(N 1)/2—
parameters Q&q g&.i are not completely independent of
each other. For example, if g» is approximately

parallel to gz y (that is, Biz 0), then for any third
vector gi. ~ we must have Bi,i =Bi i . To make sure
that the g» gi y actually correspond to the scalar
products of a set of X vectors, it is simplest to obtain
the scalar products by first constructing the vectors as
outlined in the preceding paragraph. An example of the
construction is given in Table I of the next section.

Although the values of the scalar products g&,i gi ~

are not directly related to the number of fission chan-
nels, the average size of these scalar products is. For
example, if there is only one fission channel all the g»
are "parallel" or "antiparallel, " that is cos8q), =&1.
For more than a few levels, it would be very unlikely
to find the pic closely parallel if there were more than
one channel of importance in the fission process.
Similarly if the fission process can proceed at an
appreciable rate through a large number of channels we
would expect all of the scalar products, g»'gi'f to
vanish, that is 8ii =&~/2 so that the vectors gii are
mutually perpendicular. This fact would be true if the
componen. ts of the g» have random sign fluctuations
from level to level. If the fission process is assumed to
occur with equal probability in exactly m channels,
then the average value of cos8~~ for random sign
fluctuations of the components and a Gaussian distri-
bution' of their sizes is the average value of ~cos8~
over a sphere in m dimensions, 8 being the polar angle.
The magnitude of the average scalar product calculated
in this way is

(m —1)!
&icosAY [&=

2m—i('[i (m 1))!)2'
pE odd

2(m —1)!
, m even (16)

[1 3.5 (e—1)]'
= [2/m (m —1)j', m large.

The variation of the magnitude of the average scalar
product, (16), with the number of fission channels m
is shown on Fig. 1. Thus when the interference param-
eters g». gi ~ have been computed by fitting the cross
section, Fig. 1 can be used, with the average of the
interference parameters taken as in (16), to give a
rough indication of the number of channels which are
important in fission.

To illustrate the eGect of the interference terms on
the cross section, the contribution of the g» gi ~ term
to the cross section has been calculated, where X is the
0.29-ev resonance of U23' and X' the 1.13-ev resonance
of the same element. The calculation was made by
taking the diBerence between the successful four-level
fit of Fig. 3 to the U"' data for the total cross section
and the values of the total cross section obtained by
setting gi, q g&, ~

——0 for the two resonances, leaving all
the other parameters the same. Since the value of
cos8ii was approximately —1 for the fit of Fig. 3 (see
Table I) the result obtained in this calculation shows
the maximum contribution of the interference from two
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&ICos a„,, ()

cross section from these terms. If we choose them to
contribute constructively at one energy, they will
always contribute destructively —in roughly equal
measure —at some other energy. Because of their change
in sign at resonance energy. the interference terms can
cause a shift in the position of the peaks from the
energies E~.

The fact that the approximate treatment of inter-
ference by means of (17) is only very rough means that
we must use the complete expressions (9) to (12) in
the cross-section computations. Although the actual
number of parameters is not large the computation
becomes laborious for more than two levels.

0
I

FIG. 1. The average value, (~cos8z&, ~), Eq. (16), of the inter-
ference parameters (15) as a function of the number oi 6ssion
channels, m.

particular resonances in the presence of other inter-
fering resonances. The result is shown by the dashed
curve on Fig. 2. As is evident from Fig. 2, the inter-
ference term between these two resonances makes an
appreciable contribution to the total cross section of
U"' even though these resonances are not larger than
average and are not very close together.

The important property of the cross-section contri-
bution from the interference of a given pair of levels is
that. it changes sign very near the resonance energy of
each of the two levels. Furthermore, the absolute value
of the contribution has four maxima of roughly equal
size, one on each side of both resonances. The maxima
occur at energies di6ering from the energy of the
nearest resonance by the half width, 1'z/2, of the
resonance. The minimum in the absolute value of the
contribution midway between the two resonances is
deeper when the separation of the resonances is greater.
The sign of the interference contribution is determined
by the sign of g&,r gq r. A rough approximation to the
interference contribution, o.„p&"~'&, of the resonances ),
and X' to the total cross section is given by

0.„&"~'~E'=6.52)&10' cos8),),.

(»—~)(» —~) (1'& -'1'x -'f'& ff'~ r)'

r(» —&)'+ (1' /2)'lL(& —&)'+(1' /2)'3

3. ANALYSIS OF U23~ CROSS SECTIONS

Of the various low-energy neutron cross sections
that can be measured, detailed data are available, in
U"', only for 0- T and O.

, f. Because of the complication
of Doppler broadening in the higher energy resonances,
the analysis of this section will limit itself to (T„z and
0-, ~ below 2 ev in U"'. The fact that 0.

, „or 0-, ~ have
not been Ineasured in detail for U"' is not disturbing.
A crude analysis of the two peaks below 2 ev in U"'
shows that for these peaks the neutron width is about
104 times smaller than the total width so that the
resonance scattering is at most a small fraction of a
barn, compared to the potential scattering of about 12
barns. Thus 0-„„is smooth and fairly constant at about
12 barns (see Fig. 4) and therefore o„,~ and o x can
both be deduced from o-„z and 0-, ~. Ke shall apply the
method of the preceding section to the analysis of O-„T

and 0-„ f. Figure 3 gives the data of Sailor and Shore'
for cr„,f and O.„z below 2 ev, and, in addition, the world
value" of these cross sections at thermal energies.

l~

BARNS (ev) s

which is the approximate formula used by Sailor4 if we
set cos8qq =1 and I'~f=I'~, r) f=I"y. This approxi-
mation is not necessarily very accurate, as is shown on
Fig. 2 by a comparison of (17) with the actual o „r&""'&

as computed above. It can be shown to be a good
approximation for the interference between a pair of
levels belonging to a set of mell-separated resonances,
and it can be used to give rough quantitative estimates
of the importance of the interference terms.

The interference described on Fig. 2 shows that we
must always pay a price for the contribution to the

0
I I I I I I I I

0.2 0.4 0.6 0.8

E„(ev)

I I

I.O
I I

l.2
I I

I.4

Fro. 2. The contribution of the interference between the
0.29-ev resonance with the 1.13-ev resonance to the total neutron
cross section of U235 as a function of the neutron energy, E„.
The solid curve corresponds to the approximation (17), the
dotted curve to a calculation of the contribution as made with the
many-level theory in Sec. 2.

"At the 1957 meeting of the American Physical Society, L.
M. Bollinger, reported a thermal fission cross section five percent
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In describing 0- ~ and O-„, J we shall from the outset
use only one negative-energy resonance. We also note
that the sharp resonance at 2.04 ev has a small total
width and from o„&/o„,r at resonance, a very small
6ssion width so that it doesn't interfere appreciably
with any other resonances. It can therefore be treated
by the single-level formulas, regardless of its spin. The
contribution of the 2.04-ev resonance to the cross
section is negligible below 1.7 ev. The analysis was
begun by assuming that the negative-energy resonance,
the 0.29-ev resonance, the 1.13-ev resonance. , and one
of the resonances (see reference 1) between three and
four ev had the same spin. If the former three resonances
do not all have the same spin, this fact will emerge
from the analysis inasmuch as it should then be possible
to choose the g&,~ for one of the resonances to be perpen-
dicular to the g&,~'s of the other two. If this turns out
to be not possible, this fact is strong evidence that
these levels actually have the same spin. The details of
the one high-energy resonance chosen are unimportant—we could as well have chosen one level at, say, 8 ev.
The high-energy resonance was included to illustrate
the effect it has on the cross sections above the energy
of the 1.13-ev level. Below this energy it makes no
appreciable contribution. In the language used at the
beginning of the preceding section, the contribution of
the high-energy resonance will tell us how important
the "external" resonances are at the edge of the energy
interval whose resonances are being considered.

First of all, an attempt was made to 6t the cross
sections of U"' with a negative-energy resonance near
zero energy and therefore of reasonable size. By use of
the optimum interference between such a level and the
two positive-energy resonances (below 2 ev) the cross
sections can be increased sufficiently at 0.70 ev to
bring them into agreement with the observed cross
sections. The amount of interference required to do
this is, roughly, the maximum possible; the gz~ of the
negative-energy resonance is parallel to that of the
0.29-ev level and antiparallel to that of the 1.13-ev
level, as in the case of a single fission channel. This
amount of. constructive interference at 0.70 ev is, how-
ever, balanced by a large amount of destructive inter-
ference at 0.15 ev and at energies above 1.13 ev. The
two resonance peaks are then very asymmetrical. This
fact precludes the possibility that the negative-energy
resonance is near zero energy and of average size.

We then put the negative-energy resonance increas-
ingly further from zero energy and make it correspond-
ingly larger so as to 6t the thermal cross sections. We
do not have to go as far as is necessary in the single-
level analysis, ' ' that is up to —1.4 ev, because we can
now receive assistance from interference. The size of

higher than the world value used on Fig. 3. If his thermal cross
section is correct then all the fission cross section data of Pig. 3
should be increased by this amount since they were normalized
with the world value of the thermal fission cross section. In turn,
the fission widths in our analysis of U23' should then be increased
by the same five percent, all other parameters being left the same.

the interference terms necessary to 6t the cross sections
at 0.70 ev becomes smaller as the negative-energy
resonance moves from the origin —because the negative
energy resonance makes an increasingly larger direct
contribution. For the same reason the I'~, I'~„, and I'),f
of the 0.29-ev resonance become increasingly smaller.

It was pointed out above that the strong interference
which is present if there is only one fission channel
makes the observed peaks too asymmetrical when the
negative-energy resonance is near zero energy. This
eGect becomes even stronger when the negative-energy
resonance is placed further from zero energy, because
the amplitude of the negative-energy resonance be-
comes larger at the positions of the positive-energy
resonance. It seems almost certain from this fact that
U"' cannot be analyzed in terms of a single channel for
fission, as long as one invokes the use of only a single
negative-energy resonance.

By the time that the negative-energy resonance has
gone as far as —0.8 ev from zero neutron energy
(roughly half the way toward the energy required by
the single-level picture)' ' the amount of constructive
interference required to 6t the 0.7-ev cross sections is
only about half of the maximum possible. As pointed
out above, the maximum interference was needed when
the level was near zero energy. For this value of
Eq(= —0.8 ev) the cross sections o r and o.

, r can be
fitted everywhere up to 1.2 ev to within the one or two
percent error in the data. However, the interference
parameters g~r. gx r required to to produce such a fit
still provide too much destructive interference in the
vicinity of 1.4 ev. Roughly speaking, it would require
the optimum interference from several of the stronger
levels above 2 ev to 6t the cross section at 1.4 ev as
accurately as at lower energies. This is invoking too
much help from external levels.

One needs to proceed only slightly further from zero
energy. Figure 3 shows the fit that is obtained at
E&= —0.95 ev for the one negative-energy resonance.
The remaining parameters are given in Table I. The
calculation was carried out using (9) and (14), pro-
grammed for the Chalk River Datatron computer.
No approximation was made in these formulas. One of
the resonances from above 2 ev was used, interfering
moderately with the —0.95-, the 0.29-, and the 1.13-ev
resonances. Thus four levels were employed —the 2.04-
ev resonance was ignored since no attempt was made
to fit the cross sections near 2 ev.

Of the six possible interference parameters, gqy gq. y,
in the four-level formulas only three independent ones
were required for the 6t of Fig. 3. This means that our
6t allows the possibility that there are only two inde-
pendent 6ssion channels, a fact which is brought out
clearly by the vectors @& of Table I. The fact that
such a two-channel fit was possible does not imply,
even mildly, that there are only two 6ssion channels.
Its meaning lies in the fact that the other three inter-
ference parameters, even when they are of moderate
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FzG. 3.The', dat f ha for the total neutron cross section, 0. z, and the fission cross section 0- of U235'as

E . The solid points (upper set of data) are the data of reference 1 for „a~
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many-level fit to the data as discussed in S 3 Th) in ec. . e parameters of the fit are given in Table I.
ev) are a so shown. The solid curves are the

size, do not contribute much to the cross section. The
important interference parameters are those involving
the scalar product of gi, r for the strong negative-energy
resonance with the vectors of the other three resonances.
The value of the average (cos8~q.) is 0.530 for the six
interference parameters, which lies close to the average
expected for three fission channels (see Fig. 1).

The fit of Fig. 3 is about as good as the data every-
where up to about 1.3 ev. In the vicinity of 1.5 ev both
of the computed cross sections are too low. The cross
section in that region depends on the resonances above
2 ev. The contribution from a higher energy level can
be chosen to interfere so that it makes an appreciable
contribution at 1.5 ev without affecting the cross section
elsewhere. The 3.14-ev resonance used in Table I i.e.) ' ')
on Fig. 3, was used in this way. Its contribution at
1.5 ev is twice the difference between the computed and
observed cross sections at that energy. Thus only a
minor contribution from the higher energy resonances
is required to fit the cross sections up to 2 ev.

The 6t of Fig. 3 is fairly unique. The position of the
negative-energy resonance cannot be placed much

further from zero energy than —0.95 ev. In the single-
level fit' 4 the slope of the computed cross sections near
zero energy was very small, a fact which was corrected
by assuming the existence of a second negative-energy
resonance near zero energy. On Fig. 3 the slope of the
computed cross sections near thermal energies is much
greater than in the single-level fit without the addi-
tional negative-energy resonance. The difference in
slopes is due to two facts of almost equal importance.
First, from the fact that the negative-energy resonance
of Table I is closer to thermal energies than the similar
resonance in the single-level fit; second, from the
interference between the negative-energy resonance and
the 0.29-ev resonance. The interference contributes a
dip near 0.20 ev. Because of the two facts we get away
without the additional resonance near zero energy that
was necessary for the single-level fit. However, if we
move the negative-energy resonance of Table I further
out—even by 0.15 ev to —1.10 ev—the decrease in
slope at thermal energies must be compensated for by
more interference between the negative-energy reso-
nance and the 0.29-ev resonance. This, in turn, makes



RESONANCE CROSS SECTIONS OF F ISSIONABLE NUCLEI

TABLE I. The many-level 6t to U"' of Fig. 3. The table contains the parameters employed in the many-level Gt of Fig. 3. The second
column gives the level energy, the third column gives the total level width, the fourth column is the reduced neutron width (8), and
the fifth column gives the 6ssion width. The vectors g)I,y are de6ned in Sec. 2. In the table the vector g1y was chosen as the polar axis
so that it has a component only for "channel I" (see Sec. 2). Channel 2 was chosen so that g2r had nonzero components only for it
and channel 1. The components of gsj in channel 3 and g4y in channels 3 and 4 were chosen to be zero since these do not affect the
cross sections appreciably. (Such a choice makes the fit compatible with a two-channel picture for Gssion. ) Since the length of each
ger is connected to F&,r, ~ g&r ~

'= F&r, only three of the seven nonzero components are not derivable from F&r. The interference parameters
cos8z&, , listed below, were de6ned by (15).Fy~, which is also given below, is Fy~= Fg —Fgr —Fy„=Fg—F&,r. Quantities derived from the
table are cose&s=0. 148, cos&~3= —0.326, cose~4= —0.707, cosss3= —0.906, cosSs4=0.630, cos834 —0.452, and thus (Icoss,;I)= 0.53.
In addition, F1~=0.028 ev, F2~ =0.029 ev, F3~=0.044 ev, and F4~ =0.031 ev.

Level
number ev ev 10 8(ev)& ev "channel 1"

g~(ev)&
"channel 2" "channel 3" "channel 4"

—0.095
0.275
1.144
3.16

0.197
0.128
0.169
0.186

1,49
0.00570
0.0157
0.0182

0.169
0.099
0.125
0.155

0.411
0.047—0.113—0.278

0
0.311—0.334
0.278

the 0.29-ev resonance too asymmetrical so that we
cannot make such a change in the energy of the nega-
tive-energy level without invoking the use of an addi-
tional state. The size of the important interference
terms cannot be changed much without disturbing the
shape.

The size of the huge negative-energy resonance has
been decreased by a factor of two from the single-level
analysis. "This leaves it still a very large resonance
but quite comparable now to the state at 35 ev in U"'.
The present fit makes it appear almost certain that a
negative-energy resonance as strong as this is a fact
of nature for U"'. The one strong resonance could be
replaced by two weaker resonances, each one-third as
strong if their mutual interference is optimum. This
possibility, or the consideration of any larger number
of negative-energy resonances seems less attractive
(because it involves more free parameters) and is

certainly no more probable.
It seems highly likely that the 1.13-ev resonance

has the same spin as the negative-energy resonance
because we cannot move the latter (without invoking
the use of additional resonances) and at its present
position it must interfere with the 1.13-ev state to
describe the cross section. The evidence for the fact
that the 0.29-ev resonance also has the same spin is

weaker since this resonance is weaker and its inter-

ference terms are therefore less important. In the

present analysis it seemed difFicult to avoid using the

0.29-ev resonance as interfering with its two neighbors.

Some independent evidence toward the confirmation

of the above analysis of U"' is given by the few data
for the scattering cross section, 0.„,„.It was pointed out
in the beginning of this section that the resonance

scattering from the 0.29- and 1.13-ev resonances was

negligible compared to the potential scattering cross
section. However a negative-energy resonance of the
size needed for the 6t of Fig. 3 can contribute appreci-
ably to 0.„, particularly through the interference of
resonance and potential scattering. The value of 0„,„,
computed from (11) with the parameters of Table l, is

shown by the solid line of Fig. 4. The most recent data"
for o-, „are also shown on the figure. The broken line
of Fig. 4 gives the potential scattering, 4ma' computed
with a radius (a=132)&(2~+1)&(10" cm)] chosen
to make 0„,„at 0.27 ev coincide with the experimental
value at that energy. The large deviation of 0.

, „from
4m'' is caused by the negative-energy resonance. The
effect of the 0.29- and 1.13-ev resonances on r„,„ is
clearly evident on Fig. 4. The few experimental points
on Fig. 4 agree with the computed curve and therefore
with a negative-energy resonance of the size given by
Table I. The present data for O.„„are not very com-
patible with an increase in the size of the negative-
energy resonance by a factor of two as required by the
single-level fit.'4 The agreement of Fig. 4 would also
be made worse by decreasing the size of the negative-
energy resonance by a factor of two.

When the single-level fits'4 to the U"' data were
made, a few years ago, the old data4 for t7 „ implied
the existence of a larger negative-energy resonance
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FIG. 4. The scattering cross section O. , „of U"' as a function
of the neutron energy. The experimental data of reference 13 are
shown as open circles with bars indicating the probable error due
to counting statistics. The solid line is the value of 0.„, computed
from (11)with the parameters of Table I. The broken line, 4s-as,
is the computed nonresonant part of cr~ „.

"H. L. Foote, Jr., Phys. Rev. 109, 1641 (1958).
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than that of Table I: the value of o-„,„at 0.27 ev was
then 18.3 barns instead of 14.7 barns. At that time the
data for 0.

, were actually strong supporting evidence4
for the large negative-energy resonance of the single-
level fit. We are fortunate that the new data for 0-„,„
prefer our picture to that of the single-level fit.

4. CONCLUSIONS

The analysis of the cross sections of fissionable nuclei
was begun to determine whether or not a reasonable
and simple description of the cross sections could be
made with the Wigner-Eisenbud resonance theory.
The preceding sections of this paper have shown that
the general resonance theory, with one approximation
(consideration of only a finite number of levels), could
be used in a straightforward manner for the description
of the cross sections of these nuclei. The derived
method does not make explicit reference to the number
or definition of the fission channels but can yield
information on the number. Again without referring
to the fission channels, we can say something about the
justification for neglecting the distant levels. It was
shown in Sec. 2 that the sign of the interference term
between any pair of levels, I, and X', was given by
(1 x ) *(Pg' ) gXf ' gi' f. From considerable experience
with the cross sections of nonfissionable nuclei, we
suspect that the reduced neutron widths, (Fi„')&, have
random sign Quctuations. Therefore, even if the vectors
ger for a large number of levels are strongly correlated
the signs of the interference terms will still have
random sign fluctuations. The interference from the
many distant states will therefore cancel regardless of
the fission process. Consequently our principal assump-
tion shouM be a good one.

The application of our method of analysis to the U"'
cross sections has given a good Qt to the data below
2 ev. It has given evidence for the fact that there are
only several channels important in the fission process
and that the 0.29-ev and the 1.13-ev resonance have
the same spin as the large negative-energy resonance
near —1.0 ev. Many artificial features of previous
analyses have been removed: only ore negative-energy
resonance was required and no additional resonances
at positive energies. An equally good or better fit could
have been obtained by using two negative-energy
resonances, say one of each spin type. However, such a
fit would be less desirable (because it involves more
arbitrary parameters) than the present one and un-

necessary (because the present fit is about as good as
the data).

We are still left with an uncomfortably large negative-

energy resonance. The Fq„' of this resonance is smaller

than in previous fits by about a factor of two—which is

important in the determination of the probability of

ending a resonance as large as this. According to the
Porter-Thomas distribution the probability that, a
given level has a Fz ' of at least this size lies roughly

between 0.1 and 0.01%. A level with twice the Fi„' is
less probable by several orders of magnitude.

It has been suspected for some time that the need
for a huge negative-energy resonance is common to the
common fissionable isotopes, U'" Pu"', and U"' Such
a fact would be very disturbing. The proof of such a
fact must await the analyses of the cross sections of the
former two isotopes by the methods of the present
paper. A preliminary fit" of the data' for Pu"' up to
the second resonance at 7.8 ev did not meet such a
difFiculty. Without interference a huge negative-energy
resonance was required to describe the cross section in
the vicinity of 3 ev. With interference one negative-
energy resonance with a F&„' only three times average
(therefore a 25% probability, see above) was needed,
in addition to the first few levels at positive energy,
to fit the data everywhere up to 7 ev.
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APPENDIX A. MANY-LEVEL FORM OF THE
COLLISION MATRIX

In the usual form of the Wigner-Eisenbud resonance

theory, '" the collision matrix is written in matrix
notation (with all rows and columns referring to chan-

nels) as

U=ki(O RO' RbO) '(I—RI'—RbI)k *',—(A.1—)

where the matrices E and b refer to the stationary
states of the compound nucleus which are characteristic
of the Wigner-Eisenbud theory, and the matrices k, 0,
O', I and I' refer to the wave functions of the various
reaction alternatives or channels. More specifically,
b is a diagonal matrix whose diagonal components, b„
are the arbitrary set of boundary-condition numbers

which, together with the Hamiltonian of the compound

nucleus define the stationary states X& of the resonance

theory: b, is the negative of the logarithmic derivative
of Xq at the nuclear surface. E is the matrix whose

components E„are

where y~, is the reduced width amplitude for the decay

"E. Vogt (unpublished).
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of the state X~ into the channel c and Eq is the char-
acteristic energy of the stationary state Xq. The sum
in (A.2) runs over all the states.

The matrices (k)'* and (k) ' are diagonal matrices
whose diagonal components are, respectively, (k,)'* and
(k,) &, k, being the relative momentum of the channel
c. I, I' and 0, 0' are also diagonal matrices. The
diagonal components, I, and O„of I and 0 are, respec-
tively, the radial wave functions of incoming and
outgoing waves evaluated at the nuclear surface, r,=a,.
The diagonal components, I,' and 0,', of I' and 0' are
the derivatives with regard to r, of I, and O„also
evaluated at r, =a,. The radial wave functions are
normalized so that

level shifts and whose imaginary part —,'~T leads to level
widths.

Since (A.S) must hold for arbitrary values of yi„
and pz, we can set the square bracket of (A.S) equal
to zero for each X and X' separately. From (A.S) we
have, therefore,

(& ')u, = (K—&)4i —$),x. (A.10)

The components of A itself can be obtained from
(A.10) by simply inverting the level matrix A '.

We can use (A.S) and (A.6) to obtain at once

!:(1—RL) '(1—RL*)] ~

=~."+Z),i v~.v~ .~i,x (L"—L"'). (A.11)

0,'I,—I,'0,=2i k, . (A.3) In order to arrive at the desired result for U„~ we
define the level width

For the derivation of (A.1) and a more complete
discussion of the quantities involved in it the reader is
referred to the original papers by Wigner and Eisenbud'
or the review by Lane and Thomas. "The expression
(A.1) is the familiar form of the collision matrix in the
resonance theory. The purpose of the present Appendix
is to derive the many-level form of U from (A.1). The
derivation of this less familiar form of U was erst
given by signer. "

To simplify the derivation of the many-level form
of U we define a diagonal matrix, L, :

L=0'0 '+b—
in terms of which (A.1) may be written

(A.4)

which is

where

kkk" = pc" 'rxa'"Yx "c"Lc" ~(A.9)

The components of $ also refer to levels not channels.

$ is a complex matrix whose real part, —6, leads to

U= k, '0(1—RL) '(1—RL*)Ik '* (A.5)

where the star implies the complex conjugate. (A.5)
follows from the fact that I*=0 and I'*=O'. For a
large number of channels the matrix inversion of
(1—RL) ' may be very difficult. The problem of the
inversion of a matrix whose rows and columns refer to
channels can be converted into a problem involving
the inversion of a matrix whose rows and columns refer
to levels, not channels. To accomplish the conversion
we define a level matrix Azz by

! (1—RL) 'j" "=~."+pi), vi" v~, "L.&»" (A 6)

To determine what Az& is, we multiply both sides of
(A.6) by (1—RL)„- and sum over c", obtaining

1')„=—i (L.—L.~)Yi,.', (A.12)

and note that the radial wave functions normalized
according to (A.3) yield immediately that

(A.13)

where q, is the sum of a Coulomb phase shift and a
hard-sphere potential scattering phase shift. The
product of (A.13) and (A.11) yields

U .=e' + "!5„+i+ „.(1',)'(1',)&A„„.], (A.14)

where
(A.15)

The result (A.14) is the one required in Sec. 2.
The matrix A to be used in (A.14) is computed from

(A.10). For the low-energy cross sections of the fission-
able nuclei we can ignore the real part, 6, of P which,
in general leads to shifts in the energies of cross-section
maxima from the level energies Eq. For s-wave neutrons
0, /0, is imaginary and the proper choice of b, for this
channel is b, =0. Thus the s-wave neutrons cannot
contribute to A. For the fission channels (as well as for
the radiation channels) the definition of 0.'/0, is not
clear. However it should be true that the value of
0,'/0, does vary much in an energy interval of a few
electron volts near the neutron binding energy so that
we can choose the constant b, for these channels to
make 6 vanish. The use of (A.9) and (A.15) in (A.10)
gives directly Eq. (7) of Sec. 2.

The expression (A.14) for U„~ is useful whenever
the matrix A ' can be truncated so that only a few
rows and columns of A and A ' are involved in the
inversion (A.10). This truncation is equivalent to the
neglect of all but a few of the resonances. It is possible
to include some of the effects due to the bulk of the very
distant resonances in an approximate way. For example,
giant resonances in the neutron strength function
several Mev away from the energy of interest could
make an appreciable contribution R " to the diagonal
element of R which refers to neutron channels. Such an
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R „" would change the "radius" of the potential
scattering in our cross sections. However, for the
fissionable nuclei, R „"is expected to be small compared
to the radius, a, because these nuclei lie almost halfway
in between the 4s and 5s peaks in the s-wave neutron
strength function. Consequently we have not included
R„„"in the discussion above or in Sec. 2.

The truncation of the matrix 3 ' refers actually only
to the o8-diagonal components. We can include, in
addition to the small set of levels whose interference is
considered exactly, any number of levels for which

only the diagonal component of A ' is retained. These
additional levels then appear in the analysis exactly as

they do in the single-level formula. As pointed out in
Sec. 4, the contributions to the cross section from
interference between a level close to E and the many
levels far away will roughly cancel because of sign
fluctuations. Therefore the contribution to the cross
section of the neglected levels —the nearest. neglected
levels as well as those very far away —can be treated
with the single-level formula. These contributions can
be important. The very distant levels, as discussed
above, will make a contribution R„„"to the scattering
length, which has been neglected. The eGect of the
nearby neglected levels, estimated in the above way,
is unimportant for U"' but is significant in Pu"'.
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Scattering of Low-Energy Neutrons by Deuterons*t'
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Neutron-deuteron scattering lengths are calculated by a new variational method which makes provision
for polarization (space distortion) of the deuteron. Central Gaussian potentials are employed to represent
the two-body interaction, and the trial function is also Gaussian in nature. The results indicate that polar-
ization is not important in either spin state, except for that which is automatically provided by the exclusion
principle. The calculated scattering lengths are not in good agreement with either of the two experimentally
allowed sets.

I. INTRODUCTION

'HE nuclear three-body problem provides a logical
6rst test of any conclusions drawn from the

two-body data concerning the nature of nuclear forces.
For the description of low-energy phenomena, these
conclusions are adequately expressed in terms of a
static potential which is charge-independent, contains
a tensor component, and has a de6nite spin dependence.
The low-energy two-body data do not specify the exact
shape of the potential and yield no information con-
cerning the interaction in states of odd parity. They
are not incompatible with the existence of a repulsive
core at small separation, which is indicated by experi-
ments at higher energies.

Calculations on the three-nucleon bound state are in
general agreement with these conclusions. It is known,
for example, that purely central forces, chosen to 6t
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the deuteron's binding energy, lead to too much binding
for the triton, whereas the inclusion of a tensor force
brings the calculated binding energy into reasonable
agreement with experiment. ' The addition of repulsive
cores to the central potentials does not appear to alter
this result, ' although the effect of including tensor
forces and hard cores together has not been calculated.
Again, little information is obtained from the triton
concerning the odd-parity two-body interaction, be-
cause the ground state is almost completely space
symmetric. ' In the scattering problem, however, the
spatial wave function must necessarily have an anti-
symmetric component, so the results may be sensitive
to the odd-parity two-body potentials even at very low
energies.

In the limit of zero energy, the e-d scattering is
characterized by two parameters, the quartet and
doublet scattering lengths u4 and a2. Unfortunately,
these parameters have not been uniquely determined

experimentally. There are two possible sets of scattering
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