
PHYSICAL REVIEW VOL UM E 112, NUM B ER 6 DECEMBER iS, 1958

Inelastic Scattering from Light Nuclei the Alpha-Particle Model for Be't'*
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The inelastic scattering of nucleons, deuterons, and alpha particles from light nuclei is discussed in terms
of direct interactions. The validity of this description, and of the approximations made here and by other
authors in calculating cross sections, are analyzed in detail. Physical arguments are given for the use of a
collective representation of light nuclei, in order to explain the preferential excitation of certain well-defined
nuclear states by short-wavelength projectiles. As an example, the alpha-particle model is used to char-
acterize Be and the inelastic cross sections for excitation of rotational, vibrational, and single-particle
states are calculated with an impulse approximation. The model, and results computed from it, are examined
and compared to experimental findings.

r. IN TRODUCTIDN

~~ONSIDERABIE attention has been directed in~ recent years to the experimental investigation of
the angular distribution of particles with wavelengths
of the order of 10 "cm which are inelastically scattered
by light nuclei to discrete final states. The experiments
of interest include those carried out with incident
beams of 10- to 200-Mev protons, 10- to 20-Mev
deuterons, and 20- to 48-Mev alpha particles.

The general characteristics of the observed cross
sections to de6nite final states are as follows: (1) The
angular distributions display marked oscillations with
angle. Such oscillations are particularly regular and
sharp and persist to rather high "order" in the case of
many alpha-particle experiments. ' In these experiments
the wavelength, X, is quite small, being of the order of,
or less than, O.SX10 "cm. (2) The inelastic scattering
cross sections to some of the Anal states are surprisingly
large. For example, the di6erential cross section, aver-
aged over the range of center-of-mass scattered angles
of 15' to 145', for 43.5-Mev alpha particles which
excite the 4.43-Mev level in C" is estimated' to be 5.3
mb. This implies a total cross section to this one level

alone of 7% of the geometric cross section. Indeed, it
appears that the sum over final states of such inelastic

scattering may comprise a major share of the nonelastic

cross sections in light nuclei, in contradiction to the
usual belief that "direct processes" form a small but

t Portions of this work have been reported previously: J. S.
Blair and K. M. Henley, Bull. Am. Phys. Soc. Ser. II, I, 20
(1956), and Physica 22, 1126 (1956).
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' This is strikingly illustrated by the excitation of the 1.37-Mev
state of Mg24 by 42-Mev a particles, P. C. Gugelot and M. Rickey,
Phys. Rev. 101, 1613 (1956), and of the 1.63-Mev state of Nest

by 18.9-Mev cx particles, see Seidlitz, Bleuler, and Tendam,
Phys. Rev. 110, 682 (1958).' G. Farwell and A. I. flavin, Cyclotron Research, University
of Washington, Annual Progress Report, 1957 (unpublished),
and A. I. Yavin, Ph. D. thesis, University of Washington, 1958
(unpublished).

interesting subset of nuclear reactions. ' (3) The shape
of the angular distribution and the magnitude of the
cross section are strong functions of the final state.
Some states, such as the 1.8- and 3.1-Mev levels of Se'
and the 7.65-Mev level of C", are quite dificult to
excite by inelastic scattering.

It is possible to draw several qualitative conclusions
from the angular distributions of the cross sections.
(1) They strongly suggest that we are dealing with
simple optical interference phenomena, i.e., the scat-
tered wave receives coherent contributions from di&er-
ent locations inside, or at the edge of, the nucleus and
the angular distribution is a sensitive function of the
phase, K r, suitably averaged over the spatial coordi-
nate r (K is the momentum of the recoil nucleus). This
statement is reinforced by the observation that, except
in a few special cases, the maxima and minima of the
alpha-particle angular distributions shift in a reasonable
way as the wavelength is changed; as a specific example
we cite the angular distributions when the 1.37-Mev
state in Mg' is excited with incident 48-Mev, 42-Mev, '
and' 31-Mev alpha particles. The variation of the
angular distributions with wavelength is less regular in
the case of inejastically scattered 10—20 Mev protons
where the wavelength is larger than 10 " cm and the
number of oscillations is small. Even here the optical
interference interpretation is supported by the obser-
vation that the distribution of gamma rays coincident
with (p,p') is usually symmetric about the recoil
direction~; this may be easily understood if K defines a
preferred axis of quantization. ~

(2) The observation of interference patterns implies,
by analogy to physical optics, the existence of a well-
defined and localized "radius" E; such a radius might

' For example, about ~3 the geometrical cross section is exhausted
in Ne by alpha-particle inelastic excitation of discrete states
with energy less than 8 Mev. See Seidlitz et al. , reference 1.

F. J. Vaughn, Universit of California Radiation Laboratory
Report, UCRL-3174, 1955 unpublished).' H. J. Watters, Phys. Rev. 103, 1763 (1956).

s R. Sherr and W. F. Hornyak, Bull. Am. Phys. Soc. Ser. II, 1,
197 (1956).' G. R. Satchler, Proc. Phys. Soc. (London) A68, 1057 (1955).
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be associated with the location of the scattering units
of the nucleus which participate in the excitation or
with the extent of homogeneous nuclear matter. The
persistance of the interference patterns to high order
indicates that the "radius" is extremely sharp. The
"radii'" which one obtains by simple optical arguments
are usually large compared to electromagnetic radii.

A simple formula for the inelastic differential cross
section, do/dQ, incorporating the above conclusions has
been developed by Austern, Butler, and McManus':

do/dQ P&(l', l",0,0
~
l,0)'jP(ER),

where (l',l",0,0~l,0) is a Clebsch-Gordan coeKcient, l'

and I"are initial and final angular momenta character-
istic of the bound nuclear states, and j& is a spherical
Bessel function. The above angular distribution is a
consequence of four drastic assumptions, which are
independent of the choice of nuclear model: (1) The
reaction proceeds through some "direct" (single-step)
interaction in which angular momentum is conserved;
the conservation of angular momentum is, of course,
responsible for the occurrence of the Clebsch-Gordan
coeS.cients and the order of the Bessel function. The
assumption of a one-step interaction maximizes the
interference oscillations obtainable since it guarantees
that the coherence in inelastic events is not smeared
out by subsequent secondary events. (2) There is

only a slow variation of the direct interaction itself with

angle and energy so that there is no dramatic modu-

lation of the angular distribution given by Eq. (1).
(3) The incident and final unbound particles are well

represented by plane waves in the nuclear surface

region, an assumption which guarantees that the
angular distribution is a simple function of E. (4) The
direct interaction occurs at the well-defined radius, E.
We should not be surprised to find that Eq. (1) displays
the desired interference oscillations since the assump-

tions necessary for its derivation essentially include our

previous qualitative conclusions; what is surprising,
however, is that many physical observations are so
well described by a formula based on such crude

assumptions, or equivalently, by the qualitative con-

clusions previously listed.
We have already noted that the derivation of the

ABM formula does not depend explicitly on the choice
of nuclear model": Eq. (1) was first derived in the case

where the direct interaction links the projectile and a
target nucleus which is described by a shell model; it
also follows, under similar approximations, for an inter-

It is perhaps worth noting that, for incident alpha particles,
these "radii" are of the same order as those obtained by extra-
polation to small A of the formula for sharp cutoff radii obtained
by analysis of elastic alpha scattering. See Kerlee, Blair, and
Farwell, Phys. Rev. 107, 1343 (1957).

'Austern, Butler, and McManus, Phys. Rev. 92, 350 (1953).
This paper will be referred to as ABM in the text. See also R.
Huby and H. C. Newns, Phil. Mag. 42, 1442 (1951).

'0 This point also has been made recently by H. Ui, Progr.
Theoret. Phys. (Kyoto) 18, 163 (1957).

action with a distorted nuclear surface" or with an
alpha-particIe substructure in the nucleus, a result
which we shall derive later. (There are some differences
in the appropriate Clebsch-Gordan coeKcients and
other angular momentum coupling factors for the three
models above; however, in practice, it has been difEcult
or impossible to distinguish between these models on
the basis of the different coupling factors. ) Thus the
primary questions which now face anyone attempting
to construct a more complete theory of inelastic
processes in light nuclei are: (n) Is it possible to obtain
an angular distribution approximating Eq. (1) when
the sweeping assumptions (1)—(4) are not explicitly
introduced, and will this shed any light on which
nuclear model is to be preferred? (P) Which model
most naturally explains the further observations (2)
and (3), that the magnitudes of the inelastic cross
sections may be very large and are strong functions of
the final stateP (y) In cases where there are marked
deviations between observations and the ASM formula,
is there a unique explanation for the deviation?

We shall not be able to answer completely and
satisfactorily any of these questions in the present
paper. Nonetheless; we believe that a partial solution
is to be found in the use of some collective nuclear
model for light nuclei, and especially for those states
that are strongly excited by short-wavelength pro-
jectiles."The recent success" of the collective model in
the d shell particularly tempt us to apply similar ideas
to the p shell.

The reasoning that leads us to advance the above
suggestion can best be demonstrated by discussing a
direct process with a target nucleus that is described
by the independent-particle model. In the original
derivation of the ASM formula and a subsequent
derivation of a related expression, " the plane wave
assumption and the occurrence of a definite radius are
justified on the grounds that the direct interaction takes
place when the target nucleon and projectile are both
outside the main body of the nucleus; an extremely
short mean free path of the projectile for compound-
nucleus formation is presumed to concentrate the direct
interaction at the surface. We note that without this
surface assumption it is not possible to obtain the
desired structure in the angular distribution; if the
relevant radial integrals are evaluated throughout the
nucleus, the diffraction structure is washed out because
of the large spatial extent of the wave function of the
struck nucleon or, in classical terms, there simply is not
enough momentum in the initial and final states of the

» S. Hayakawa and S. Voshida, Progr. Theoret. Phys. (Kyoto)
14, 1 (1955); Proc. Phys. Soc. (London) A68, 656 (1955). S.
Yoshida, Proc. Phys. Soc. (London) A69, 668 (1956).

» This point has also been made by K. Nishimura and M.
Ruderman, Phys. Rev. 106, 558 (1957), and by Th. A. J. Maris,
Nuclear Phys. 3, 213 (1957)."S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 29, No. 16 (1955);A. E. Litherland et ol. , Can J. of Phys.
36, 378 (1958)."S.T. Butler, Phys. Rev. 106, 272 (1957).
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struck nucleon to absorb the large momentum transfer
of the projectile. On the other hand, it is not clear
that the short mean free path and plane wave assump-
tions are mutually compatible; if the mean free path
is really so short that the interaction is electively
localized at the surface, then the projectile wave
function is highly distorted from a plane wave. How-
ever, use of a reasonable mean free path may not lead
to the desired localization.

Furthermore, the surface assumption leaves so little
of the target nucleon visible to the projectile that it is
dificult to explain the very large observed cross sections.
The relative cross sections for excitation of definite
final states have been discussed in terms of fractional
parentage arguments'5: the relative population of some
states in Li' and Li' and the inhibition of the 7.65-Mev
level in C" can be explained with reasonable shell-model
assignments. " An investigation of the relative cross
sections to some of the low-lying states of Be on the
basis of the shell model is presently being made by
Pinkston. "

Calculations performed by Levinson and Banerjee"
bear on these points. " Cross sections for inelastic
scattering of protons to the 4.43-Mev level of C'2 were
evaluated when the proton-nucleon interaction was
treated in Born approximation but the projectile and
target nucleons were described by complex optical-
and shell-model wave functions, respectively; radial
integrals were performed throughout the nuclear vol-
ume. Reasonable fits of the proton angular distribution"
and gamma-ray angular correlation' could be obtained
with realistic nuclear parameters for proton energies
between 14 and 31 Mev, a range where the ABM
formula fails to match experiment. For higher incident
energies and large momentum transfer, however, the
calculated cross sections became very small and lost
their oscillatory behavior. Further, in all examples, the
strength of the two-body potential needed (in Born
approximation) to 6t the magnitudes of the inelastic
cross sections was more than a factor of two times
reasonable strengths as estimated from effective range
theory. We conjecture that these difhculties will persist
when similar calculations are extended to inelastic
alpha-particle scattering.

In contrast to the independent-particle model, both
the ellipsoidally deformed nuclear surface and alpha-

particle models introduce a sharp radius in a natural

way, without essential need for a short mean free path.
The interference pattern will be damped in the de-

formed-surface model by the extent of the taper in the

'5 A. M. Lane and D. H. Wilkinson, Phys. Rev. 97, 1199 (1955)'
'6 C. A. Levinson and M. K. Banerjee, Ann. Phys. N. Y. 2'

471, 499 (1957);3, 67 (1958).
"M. T. Pinkston, Bull. Am. Phys. Soc. Ser. 11, 3, 223 (1958).
'8 See also J. R. Lamarsh and H. Feshbach, Phys. Rev. 104,

1633 (1957); Kajikawa, Sasakawa, and Watari, Progr. Theoret,
Phys. (Kyoto) 16 (1956); and R. Kajikawa and W. Watari.
Progr. Theoret. Phys. (Kyoto) 18, 103 (1957).

"R.Peele, Phys. Rev. 105, 1311 (1957).

nuclear potential" and the finite deformation, " and in
the alpha-particle model by zero-point fiuctuations
about the equilibrium value of the distance between the
centers of the alpha particles. Such damping should be
no larger than that resulting in the independent-particle
model from the use of finite mean free paths. In addi-
tion, large values for the inelastic cross sections can be
obtained with known val'ues of the nuclear well depth'
and projectile-alpha-particle interactions, respectively.
Physically, the large cross sections arise from the now
highly correlated motion of the nucleons. The strongly
excited states will be those belonging to the same
rotational band as the initial state. But while these
arguments make a collective mode of excitation more
appealing to us, a thorough distorted-wave treatment
of collective excitation has yet to be carried out in the
regions of critical interest. ""

In the preceding discussion, little mention has been
made of the compound-nucleus theory of reactions.
Where the dominant processes are qualitatively de-
scribed in terms of the direct theory, we believe that
the usual statistical theories have small relevance. "
This is generally the case for inelastic scattering of
high-energy projectiles to low-lying levels of light
nuclei since the decay of the compound nucleus to
such levels tends to be very improbable. In particular,
we feel that it is then incorrect to attempt to separate
such angular distributions into a compound-nucleus
contribution, symmetric about 90', and a direct contri-
bution as given by simple Born-approximation argu-
ments. For these cases, an understanding of the devi-
ations from the simple direct theory should be sought
in terms of all the neglected (higher order) corrections,
such as effects due to nuclear binding forces, and
multiple events. In other words, we believe that the
true physical situation here converges towards the
direct-interaction description and is not a linear combi-
nation of two diametrically opposite, highly simplified
points of view. The phrase "compound-nucleus for-
mation" should not be used to hide everything that is
not understood about reactions in light nuclei.

The remainder of the paper will be devoted to the
alpha-particle model, as an example of a model incorpo-
rating collective dynamical eGects. Our discussion will
be concentrated on the nucleus Be', which seems

~ Chase, Wilets, and Edmonds, Phys. Rev. 110, 1080 (1958)."J.Sawicki, Nuclear Phys. 6, 613 (1958).» Toshida, reference 11, has cons&dered the znelastzc scattering
of 10-Mev protons from Mg'4 due to a deformed surface without
employing the Born approximation. Unfortunately, the experi-
mentally observed rapid variation of the inelastic cross sections
in this energy range indicates a rather complex situation, so that
it is not surprising that his simple direct-interaction theory has
difFiculty in matching experiment.

2'Chase, Wilets, and Edmonds, reference 20, have treated
low-energy neutron inelastic scattering by heavy nuclei in a
particularly careful fashion. Such computations are being extended
to high-energy scattering from light nuclei. (L. Wilets, private
communication. )~ See, however, G. E. Brown and C. T. De Dominicis, Proc.
Phys. Soc. (London) A70, 686 (1957).



2032 J. S. BLAIR AND E. M. H ENLEY

108 4

IO—

7.9

58 7/2

290 2+

245 (&I/2 )

17

242 5/2

0- p+ 0 VR

(4)

Be

{B)

Be

(C)

Be

Fro, 1.Level structure of Be' and Be . The experimental levels~
of Be and" of Be' are given in Mev in the left-hand margins of
parts (A) and (B), and the spins of the levels are given in the
right-hand margins. The rotational band of Be is shown in (C)
for a moment of inertia that is taken to be equal to that of Be'.

particularly appropriate to this model; arguments
supporting this statement are presented in Sec. II.
Cross sections for inelastic scattering into rotational,
vibrational, and "single-particle" excited states are
calculated in the impulse approximation in Sec. III. A
critique of the model is made in Sec. IV. An appendix
contains a general derivation of the inelastic scattering
cross section in the impulse approximation.

» J. A. Wheeler, Phys. Rev. 52, 1083 and 1107 (1937); L. R.
Hafstad and E. Teller, Phys. Rev. 54, 681 (1938).I D. M. Dennison, Phys. Rev. 96, 318 (1954).

"A. E. Glassgold and A. Galonsky, Phys. Rev. 103, 701 (1956).
~8 R. R. Haefner, Revs. Modern Phys. 23, 228 (1951); D. R.

Inglis, Revs. Modern Phys. 25, 390 (1952); A. Herzenberg and
A. S. Roberts, Nuclear Phys. 3, 314 (1957); A. Herzenberg,
Nuclear Phys. 3, 1 (1957).

» J.K. Perring and T. H. R. Skyrme, Proc. Phys. Soc. (London)
A69, 600 (1956).

II. ALPHA-PARTICLE MODEL FOR Be'

The alpha-particle model for nuclei, proposed many
years ago,"has not met with the success accorded the
shell model. In recent years, however, it has been
revived to discuss the energy levels of" 0" and" C"
as well as 8 Be and Be'. Further, theoretical investi-

gations have shown similarities between shell-model

and alpha-particle wave functions. "
Consideration of the energy levels of Fig. 1 and

experimental results on inelastic scattering from Be'

6rst suggested to us that it might be appropriate to
picture Be' as a dumbbell of two alpha particles to
which a neutron is strongly coupled. At the left are
indicated the experimental levels of Be as deduced
from n-n scattering" and in the center are the experi-
mental levels of Be'." On the right is the expected
rotational band for Be' if the same moment of inertia
is used for both Be' and Be', and if the projection of
neutron angular momentum on the body axis, 0, is
assumed to be -', . The fact that the relative spacing of
states in Bes approximately fits the ordering of a rigid
rotator cannot of itself be taken as evidence for the
alpha-particle model since essentially the same sequence
results from intermediate-coupling shell-model calcu-
lations. " However, if it is assumed that inelastic
scattering preferentially excites states of the same
rotational band and if the 2.43-, 6.8-, and 11.3-Mev
levels are identified as those of angular momenta 5/2,
7/2, and 9/2 of the 0=3/2 band, one has a qualitative
explanation for the large excitation of these levels" at
moderate momentum transfer in contrast to the weak
excitation of the 1.8-, 3.1-, and 4.8-Mev levels.

There is additional evidence favoring a collective
approach: (1) Shell-model calculations have not been
able to explain unambiguously the properties of the
3=9 nuclei. The observed magnetic moment can be
matched only for a value of the spin-orbit parameter,
t'= 1.4, which may not fit the energy levels"; further
such a small value of f indicates a puzzling discontinuity
between A=9 and A=10, where /=4 (2) Th.e high-
energy (p,d) reaction. on Be' suggests that the strongly
bound neutrons have a momentum distribution similar
to neutrons from He' and C" while the weakly bound
neutron has a distribution weighted towards smaller
momenta. '4

We note that the above arguments can be applied
equally well in favor of the Bohr-Mottelson model. "
The preferred Nilsson con6guration, "

(s 0=-')4(p 0=-')4(p Q=s)

leads to a prolate nucleus with the same band structure
as that which we have assumed in our alpha-particle
model.

As an expression of the alpha-particle model, we
adopt the following molecular-type wave function for
Be':

C (I,M, Ir) = L(2I+1)/16z'$'51($)(yn(9')Dsr, „r(O)
+(—1)'-~4 „(9')D~r, .'(O)j (2)

3 Nilson, Jentschke, Briggs, Kerman, and Snyder, Phys. Rev.
109, 850 (1958).

3' F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 27, 77
(1955)."D.Kurath, Phys. Rev. 101, 216 (1956)."R.Summers-Gill, Phys. Rev. 109, 1591 (1958).'S. Glashow and W. Selove, Phys. Rev. 102, 200 (1956);
J. Dabrowski and J. Sawicki, Acta Phys. Polon. 14, 143 (1955),
and Nuovo cimento 12, 293 (1954).

"A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 26, No. 14 (1952).
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where I is the total spin, M the projection on an
external z axis, lr the projection on the body axis (which
joins the two alpha particles), j and 0 are the neutron
angular momentum and its projection on the body axis.
Let xi and x2 be the coordinates of the centers of mass
of the alpha particles and x„ the neutron coordinate;
then

$= ~xy
—xs ~, 9—:x„—s (xr+xs)

(primed quantities signify that angles are referred to
the body system), and O~ symbolizes the Eulerian angles
for the alpha dumbbell. The wave function is separated
into neutron motion (specified by pn), vibrational
motion )specified by (R. (P)1 and rotational motion
Lindicated by the symmetric-top function Der, „r(O~)j.
The second term in (2) makes the wave function
symmetrical under exchange of the alpha particles.

We shall assume that the vibrational wave function,

(R($), is concentrated at the equilibrium separation of
the alpha particles $=2R. The equilibrium distance is
estimated to be =4.6&10 " cm from comparison of
the energy spacings in Be' and Be' to the familiar
rotational formula,

initial and final states. For a spinless projectile, Tb is
then

T,=g,(t,&+&)(X & & ~8(x —x;) )X,&+&).

Here, i labels constituent particles of the nucleus, p
the incident particle, (t;&+&) is the appropriately sym-
metrized matrix element of the two-body scattering
amplitude Lsee Eq. (I.20) for a precise definition).
X,&+& represents a plane wave plus an outgoing (+) or
incoming (—) solution of the scattering of the incident
particle by those constituents of the nucleus not
labeled by s Lsee Eq. (I.9)j.

For the case of Be', described by an o.-particle model,
there are only two scattering amplitudes. These are t„
and / )we drop the bracket (+) for convenience of
notation) which represent, respectively, the interaction
of the projectile with an alpha particle and with the
extra neutron of the nucleus. There are then no particles
in the nucleus not labeled by the index s in Eq. (5),
and consequently X,(+) and Xb( ) are the free-wave
solutions for the projectile (the phenomenological
potential, U, representing an interaction with a core,
is zero):

E=h'LI (I+1)—Io (Io+1)g/2 &,
(y) g2', kP X27@) X (—) —giko Xyg)b b. (6)

where 8=—2JtI R' is the moment of inertia. We assume
that the neutron wave function may be written

pn(p') =p„(l, -', 0—re, n
~ j, 0)f/(p) i'p "(9)X1". (3)

This may be easily generalized to the case of Nilsson
wave functions, " where j is not a good quantum
number, by insertion of the expansion coeQicients C;, &"

so that

yn(y') =P;, & C;, P P„(l, —,', 0 re, n
~

j—, 0)
Xfi(p) &&" "(9')X/". (3a)

For the rotational band built on the ground state of
Be', we have

j=l+-', =0=a= os.

III. CALCULATION

The cross section for inelastic scattering from state a
to b is"

~e.= (2w/»)
~
»o

~

s~e)

where orb is the density of final states and ~ is the
relative velocity of the incident particle and target
nucleus. We derive in the Appendix expressions $Eqs.
(I.17), (I.18), and (I.20)j for the scattering amplitude,

Tb, where in addition to the impulse approximation, "
it is assumed that the two-body scattering amplitude

may be factored outside the spatial overlap integral of

"M. Gell-Mann and M. L. Goldberger, Phys. Rev. 9I, 398
(1953).

'r G. F. Chew, Phys. Rev. 80, 196 (1950); G. F. Chew and
G. C. Wick, Phys. Rev. 85, 636 (1952); G. F. Chew and M. L.
Goldberger, Phys. Rev. 87, 778 (1952).

Here C, b is given by Eq. (2) and

Te,=(Ce~t exp(iK (-,'(—-'op)j

+/ exp[ —iK (-', g+-'op)j

+t„exp(8iK 9/9) ~C,), (7)

since x,=R, , +-,'g —
—o,9, xs ——R, ——,'g ——

oy, and x„
=R, +(8/9)y, where R, is the center of mass of
Be'. In what follows, quantum numbers referring to
state u will be unprimed, and those referring to state b

will be primed.
To evaluate the matrix T'b„ the plane wave is

expanded in spherical harmonics with K chosen as the
direction of quantization in the fixed frame. Functions
of the neutron relative coordinate, p', referred to the
body axis, are expressed in terms of functions of the
coordinate, g, referred to the Axed frame, by means of
the representations of the rotation group. The integrals
are then evaluated; geometrical sums over magnetic
quantum number are evaluated with the aid of Racah
algebra. " The square of the scattering amplitude,
summed over final spin and averaged over initial spin
orientations, may be written as

(8)

"We are indebted to Dr. G. R. Satchler for pointing out the
simplification:

L(2/+1) (2/'+1) j (/, /', O, O
~
I.,O) W(/, j /', j'; —',,I)
=-:L1+(—1)'+' 'jU, j', l, —llL, o),

where S' is a Racah coefficient as de6ned, for example, by M. E.
Rose, ELementary Theory of Angular 3fomentum (John Wiley and
Sons, Inc. , New York, 1957), Chap. VI.
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where

(2I'+1)(2j+1) e 1 1+(—1)'+' n

(2j'+1) 2A+1 2

Eq. (8), appears rather complex but simplifies when
applied to specific types of excitation. In what follows,
we consider excitation of (A) rotational, (B) vibrational,
and (C) single-particle states.

X(—i)'(2L+1)(j,L,s,ol j', s)(f~ I j~(ItP/9) If~)

X (i)"L1+(—1)"j(2)t+1)()~,I.,O&0
I
Ao)

X('I j~(I~(/2) I
01)f(I' I, —",slA, Q—0')

x (j, I., —n, n —n'I j', —n')

x (&, I., 0, 0—0'
I A, 0—0')

+ (-I) '-&'(I', I, .', .IA, 0+0')

(A) Excitation of Rotational States

Rotational excitation is characterized by the require-
ment that Q=Q' and that there be no change in parity
of the neutron wave function. We shall assume that
the dumbbell is stiff enough to centrifugal stretching
so that (R'= (R. To avoid unessential complications, we
have restricted ourselves to the case where j and 1 are
good quantum numbers (which is true for Be'). Equa-
tions 8a and Sb now become

X(—i)'(2I+1)(j L s OI j s)(f~l j~(sItP) If~)t.(0I'I 0I)

() ()
x(j, I., —n, n+n'I j', n')

(2I'+1)I
X(), I., O, Q+0'IA, Q+0')}, (Sa)

even 2A+ 1
(2I'+1)(2j+1) & 1+(—1)'+' n

X (i)'(j I s OI j'*-:)(f~
I
j~(SIMP/9) I f~)

x((I', I, —s', ~II., Q —n')

x(j, I., —n, n —0'Ij', —n')

+( 1);-r (I I, s', sir. , n+0')

X (j, I., —0, 0+0'
I
g', 0') ). (Sb)

The term A~ arises from the interaction with the
alpha-particle dumbbell; such an interaction also per-
turbs the neutron motion relative to the dumbbell and
is evidenced by the second line of Eq. (Sa). We remark
here that such "shaking" of single nucleons through
coupling with a collective mode of motion will be
present whenever the projectile interacts with such
collective modes; it is essentially a center-of-mass eGect,
however, and should become progressively less impor-
tant with increasing nuclear mass. The term X~, arising
from the interaction with the neutron, can be easily
generalized to several particles outside the core and
Nilsson orbitals);. one merely multiplies (7b) by the
product C; &"C,'& "', sums over j, l, j', l', and coherently
adds the amplitude from each orbital. LThe Clebsch-
Gordan coeflicients in Eq. (8) have been so chosen that
no additional phase factors are required. ]The argument
SEp/9 must be appropriately modified according to the
masses involved. The second term in the brackets of
(Sa) and (Sb), multiplying the factor (—)&' r', is due
to the symmetry of the wave function, Eq. (2); only
when the neutron angular momentum transfer, I., is
larger than or equal to 0+Q' will this term contribute.

The expression for the cross section, as given by

$ The contribution to the scattering amplitude from interaction
with single nucleons in a deformed target has also been calculated
recently by J. Sawicki, Nuclear Phys. 7, 503 (1958) and by H.
Matsunobu and S. Voshida, Progr. Theoret. Phys. (Kyoto) 19,
599 (1958).

X (i)"(2&+1)()t,I,O,O I
Ao)((II I j),(s'E()

I
0I)

X((I', I, —~, slA o)

x (j, I., —n, o
I j, —n) ()„I.,O,OIA, O)

+(—1) &'—r'(I', I,K,sly. )20)

x(j, I-, —0, 20I j, n)(&,L,0,20I&,20)), (9a)

1+(—1)n
its ——bs, r,(2I'+1)l t„

X (i)'(j,L,s,o I j,s)(f~ I j~(8&p/9) I fi)

X((I', I, —s, ~l I-, 0) (j, I., —0, Ol j, —0)

+ (—1)&
—r'(I', I,s,~

I
I.,20)

x(j, L, —0, 20I j, n)). (9b)

(b) The vibrational wave function is so concentrated
around $=2R, so that

((R, l j&(!Eg)I
dl)= j,(ZZ).

(c) ItIs is small compared to As. We shall discuss later
the validity of these conditions. The cross section then
has a form similar to the simple ASM expression:

where
d0 a 2X' My

dQ 5 e

Xj)P(EE), (10)

Let us consider the cross section when the following
additional conditions are true: (a) The "shaking" of
the neutron has negligible eGect, i.e.,
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We note that "do /dQ" is not the elastic cross section
for projectile-alpha scattering; co& is the energy density
for the projectile-Be collision and the matrix element
of t is evaluated between plane wave states which do
not conserve energy in the two-body collision

I
see Eqs.

(I.18) and (I.20)]. Thus the experimental two-body
cross section (laboratory system) at the same incident
energy provides an estimate of "do /dQ" which has
merit only at small scattering angles. What "do. /dQ"
is for large momentum transfers is a matter of specu-
lation at the present time. We also observe that whereas
there is a kinematical limitation placed on possible
scattering angles in elastic projectile-alpha scattering,
there is no such restriction implied in "do /dQ. "

The angular momenta for Be are believed to be
j=Q=s= ss, 3=1.Let Eq. (10) be exPressed in the form

cld 0)

P 8),j&'(ER),
dQ dQ

(12)

then the values of B~ for various X are given in Table I.
We now consider the range of validity of our simpli-

fying assumptions. (a) The "shaking" of the neutron
is not important for small momentum transfer because
of the factor 9 occurring in the argument of jl.. To
determine the detailed eGect of neutron shaking, let us
calculate the cross section for the specific rotational
transition I=aa~I'=as when only assumPtion (c) is
adopted:

dcT do sine
12 R 6I.

dQ dQ x

X(f, I j,(Ep/9) I f,)'(1+~)'. (14)

Thus the rapidly oscillating diRraction structure from
the term in x is modulated by slowly varying terms
expressing the neutron "shaking. " The magnitude of
these latter terms may be easily estimated when three-

do "do "72 (Ep)—fi jsl I fi
dQ dQ '7 ( 9 )

X f(fjt I j.(*)—lyLj. (~)—(10/7) j (x)

+(18/7)j4(~)] ItR)'

+s((R I j4($)—(2/7)yl js(x)- (10/11)j4(x)

+ (35/22)js(x)]!(R)') (13)
where

*—= sE& and y=(filjs(Ep/»! fi&/(fil jo(Ep/9) Ifi).

The eGect of neutron shaking will be of most interest
when Ep&12; for such values of E it is justi6able to
use the large-argument approximation for jz, i.e.,
j&,(x)=x 'sin(x —)ts./2), in which case Eq. (13) be-
comes

TABLE L coefficients Bi occurring in Eq. (12).

QX

5/2
7/2
9/2

72/7
40/7

4

12/7
72/7

180/11
~ ~ ~

40/11

(~i j.(«/2) I ~)

e

x&4

(hto) '* ~"
I

1koi
exp ———(y —1)' ji(ERy)dy, (17)

I

where y=—f/2R, ns=N j'i&o/2A'= (2R) '(Ato/2e), Are is
the energy spacing of vibrational states, e is a rotational
energy=k'/(4M R') =-', Mev for Bes and Be'. We have
no reliable prescription for determining Aor,. if we assume
that the 6.13-Mev state in 0" and the 7.65-Mev state
in C" correspond to dilatational vibrations of an alpha-
particle structure, ""naive classical arguments lead to
a two-particle vibrational energy, Ace= 4.3 and 6.2 Mev,
respectively. For Ace=4 and even 8 Mev, however,
numerical integration of Eq. (17) shows that the matrix
element is considerably damped below j&, (ER) for
moderate momentum transfer. As an example the
magnitudes of computed matrix element of js(x) when
Ato=8 Mev and 16 Mev, and j&(ER) are plotted as
functions of EE in Fig. 2. From this graph we see that
in order to explain the sharpness of the oscillatory

There is a misprint in these matrix elements as given by
Levinson and Banerjee" (Part 1, Eq. (47)g; the denominator of
the exponential should be 4 instead of 2.

dimensional harmonic-oscillator functions are used to
describe the neutron motion. We obtain"

(fi lj s(Ep/9) I
fi)'(1+&)s=expI —

~ (Eb/9)'], (15)

where b is defined through
I fi) r exp( —r'/2b'). For

the speci6c case of 40-Mev alpha particles on Be', the
center-of-mass value of k 2X10+"cm ', while b should
be of the order 2X10 " cm; thus Eq. (15) is approxi-
mately expL —(4/9)'(1 —cos8)]. The reduction of cross
section due to neutron shaking is not negligible for
angles larger than about 90', but is not catastrophic
even at the largest angles.

(b) To investigate effects due to the zero-point vibra-
tions, let us assume that (R(g) is represented by a
simple harmonic-oscillator wave function centered
about $=2R:

(R($) = (4r'/s-t) exp{——,'n'(g —2R)'). (16)

The values of n' that we choose will be large enough so
that we can extend all integrals over the range —~
($(oo. The vibrational matrix element is then
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J,(KR)

and

(J (x))
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.25

.20
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.05
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Qy(i)"L1+ (—1)"j(2K+1)(X,L,O,OIA, O)

X ()I„L,0, 0—O'
I A, 0—0') ji, (x) . (23)

The factor L1+(—1)"j guarantees that L and A are
of the same parity; for large x, Eq. (23) becomes

SlDX

ZI 1+(—1)"3(2~+1)() )L,O, O
I A)0)

X(), I., 0, 0—0'IA, 0—0')

sine
(2A+1) I 1+(—1)i+~]bn, n (24)

by the completeness relation for Clebsch-Gordan coefB-
cients. Similarly the symmetrization term in Eq. (Sa)
always vanishes in this approximation. Thus, we have
the selection rule that 0' must equal 0 in order to have
appreciable single-particle excitation from the "shaking"
mechanism. The cross section for single-particle exci-
tation at large angles then has the following simple form
(after summation over A):

do "do " (2I'+1) (2j+1)
2 ((R'

I
sinx/x

I
(R&'

d0 d0 (2j'+1)
X IZi( —s)'lI:I+(—1)'+' 'j(2L+1)(jL s Ol j' s)

X(j, L, —0, oI j', —0)(fi I jr, (&p/9) Ifi&l' (25)

For Bes there is only one 0=( p orbital and this
presumably defines the band based on the ground
state; therefore, the only other reasonable 0'= 2 single-
particle states will be d states. With the further assump-
tion that j'= —'„ the large-angle cross section into such
a state is given by

do "do "288
(f.I ji(&p/9)+ js(&p/9) I

fi&'
dQ dO 25

X(8,' I
siilx/x

I
(R&'. (26)

(C) Single-Particle Excitation

Transitions to states characterized by a neutron
wave function, pn, differing from that of the ground
state may be induced by collisions with the neutron,
Eq. (8b), or by collisions with the collective mode of
motion, which couples to the neutron motion. In the
former case, arguments similar to that of Sec. A(c) show
that the cross section for single-particle excitation
should be appreciable only in the forward direction
(small E). In the latter case, the neutron "shaking" is
effective only for large E as it arises from the non-
coincidence of the center of mass of the collective
motion and that of the nucleus. A considerable simpli6-
cation can be achieved in the expression for A~ in the
region of greatest interest, where ji(x) can be repre-
sented by x ' sin(x —zrX7r). The Portion of Eq. (Sa)
which involves X is

The cross section displays the rapid oscillations of the
interaction with the collective mode, modulated by the
square of single-particle matrix elements, which increase
with increasing momentum transfer.

IV. DISCUSSION

I et us 6rst review the experimental information
concerning inelastic scattering from Be', which comes
from studies with 48-, 43-, and 21.6-Mev alpha parti-
cles,"""24-, 10.8-, 15.1-, and 8.9-Mev deuterons, "" 43

and 31-, 12-, and 10-Mev protons. 4~4' In all cases. the
2.43-Mev level is strongly excited; the 6.8-Mev level
is prominent for bombardment by 48- and 43-Mew
alpha particles, 24-Mev deuterons, 31- and 12-Mev
protons; 48-Mev alpha particles and, less certainly,
31-Mev protons excite the 11.3-Mev state. The 1.7-Mev
level, be it a 6nal-state interaction or true state, 4~ is
difFicult to excite; it has been seen with 21.6-Mev alpha
particles, 10.8-Mev deuterons, and 12-Mev protons.
Similarly the 3.1-Mev level has been weakly excited by
21.6-Mev alpha particles, 10.8-Mev deuterons, and
possibly 43-Mev alpha particles and 24-Mev deuterons.
For angles less than 75', the data with 43-Mev alpha
particles exclude cross sections for excitation of the
1.8- and 3.1-Mev levels greater than 10% of the 2.43-
Mev cross sections; at larger angles there is some
indication of excitation of the 3.1-Mev state, which
suggests the possibility of single-particle excitation via
the shaking mechanism (Sec. III C). There is no
unambiguous evidence for a transition to the 4.8-Mev
level.

Angular distributions have been measured only for
2.43- and 6.8-Mev excitation. The cross section to the
6.8-Mev state due to 31-Mev protons, o.s.s (31.3-Mev p),
has a maximum around 50' (c.rn. ) but otherwise shows
little structure; when this maximum is fitted to the
first maximum of Eq. (12) (where I' is assumed=sr),
then g is found to be approximately 4.8X10—"cm.
Similarly the cross section to the 2.43-Mev state,
os.4s(31.3-Mev p), shows a maximum at 45'; the corre-
sponding R is 4.1X10 " cm (if I'=-,'). Both of these
radii are quite large. According to the simple Eq. (12),
the ratio os.43/os s at the first maximum should be 1.64;
in fact o.s.43(31.3-Mev p)/o's. s(31.3-Mev P) is around 4.
However, since the simple formula given by Eq. (12)
does not fit the curve too well and since the radii needed

40 G. W. Farwell and D. D. Kerlee, Bull. Am. Phys. Soc. Ser.
II, 1, 20 (1956), and Cyclotron Research, University of Wash-
ington, Annual Progress Report, 1956 (unpublished); D D. .
Kerlee, thesisUnive, rsity of Washington, 1956 (unpublished).

4'Rasmussen, Miller, Simpson, and Gupta, Phys. Rev. 100,
851 (1955).

«J. W. Ha&'ner, Phys. Rev. 103, 1398 (1956).
4'T. S. Green and R. Middleton, Proc. Phys. Soc. (London)

A69, 28 (1956).
44 R. Britten, Phys. Rev. 88, 283 (1952); Beneveniste, Finke,

and Martinelli, Phys. Rev. 101, 655 (1956).
"H. E. Conzett, Phys. Rev. 105, 1324 (1957).
«S. W. Rasmussen, Phys. Rev. 103, 186 (1956).

W. Miller, Phys. Rev. 109, 1669 (1958); Bockelman,
Leveciue, and Buechner, Phys. Rev. 104, 456 (1956).
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FrG. 3. Inelastic scattering of 48- and 42-Mev alpha particles to the 2.43-Mev level of Be'. The experimental curve at 48 Mev has
been multiplied by a constant of 2.4. The experimental curves at 42 Mev labeled 42' and 42b correspond, respectively, to no excitation
of the 3.1-Mev level (unresolved) and maximum possible excitation of this level. The theoretical curve. is that obtained from Eq. (12)
with a constant "doa/dQ"=66 mb/sterad and a radius of 5.5)&10 " cm. The 48-Mev curve should be credited to Summers-Gill, not
Vaughn.

to match the experimental peaks for the two levels are
diferent, this discrepancy is not surprising. We remark,
nevertheless, that the discrepancy cannot be attributed
to neglect of the neutron interaction, E~, since the ratio

¹s(I'=—',)/¹s(I'=—,') =1.g.

The energy and angle dependence of "do /dQ" may be
partially responsible for the difference between experi-
mental and theoretical results; we note that the elastic
cross section, of protons on alphas (even though not
directly related to "do. /dQ") is fairly energy- and
angle-dependent.

The angular distribution to the 2.43-Mev state
obtained with 12-Mev protons is strongly peaked for-
ward and shows no fit to an ASM-type formula. Such
behavior appears to be characteristic of protons with
K&10 "cm. Banerjee and Levinson" find that distor-
tion of the incident and final wave functions critically
a6'ects the angular distributions of protons in this
energy region.

Cross sections to the same state due to 24-Mev
deuteron bombardment show more angular structure.
The locatioris of the first two maxima are given by

Eq. (12) with a radius R=5.6X10 "cm. The corre-
sponding "da. /dQ"=13 mb at the first maximum.
15.1-Mev deuterons lead to an angular distribution
which has insufhcient structure to analyze.

The most interesting angular structure is apparent
for inelastic alpha-particle scattering. The differential
cross section with 48-Mev incident alpha particles
shows 4 maxima; there is an almost quantitative match
to Eq. (12) (with constant "do /dQ"=50 mb/steradian
and for a radius 8=5.4X10 " cm). Alpha particles of
43 Mev lead to a similar pattern, shifted slightly to
larger angles. A comparison of the experimental results
at these two energies with Eq. (12) and a constant
"da /dQ" is shown in Fig. 3. It is not clear how to
predict "do. /dQ" from measured alpha-alpha elastic
cross sections. Not only is "do /dQ" far "off the energy
shell" except at small angles, but also the observed
elastic cross sections for energy around 40 Mev are
quite energy and angle sensitive. ' The total elastic
cross sections, which are of the order 500—1000 mb, lead
to "average differential cross sections" which are
consistent with "do,/dQ" —50 mb.

With respect to this collected data, , the alpha-particle
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model has the following virtues: (1) The varying ease
with which different levels are excited finds a natural
explanation: strongly excited levels belong to the
rotational band built on the ground state and are
reached by collective transitions; weakly excited states
have diGerent neutron orbitals and are excited either
through a direct interaction with this single particle or
through a "shaking" via the core interaction. The
meager experimental information leads us to refrain
from speculating about possible single-particle orbitals.

(2) It is relatively easy to obtain the large magnitude
for the cross section to the 2.43-Mev state. The relevant
alpha-particle "cross sections, " "do /dQ,

"are uncertain
but should be ample. We note that the constructive
interference of the scattering from both alpha particles
of the dumbbell contributes a factor 4 to the cross
section.

(3) Sharp structure of the angular distribution is
consistent with a large cross section; the possible
sharpness is associated with amplitude of the oscillations
about the equilibrium distance in the alpha bond rather
than the penetration depth of the projectile.

There are, however, some serious discrepancies be-
tween our calculation and observation: (1) The equi-
librium radius suggested by the energy levels of Be'
and Be', E—2.3)&10 ", is decidedly smaller than the
radii appropriate to the angular distributions, (4 to
5.5) X10 "cm. This defect may well be a calculational
deficiency. The size of the alpha particle should have
considerable bearing on the elementary projectile-alpha
particle interaction; this inQuence, however, has been
disregarded in our calculation since the factorization of
the scattering amplitude outside the overlap integral
is equivalent, in a sense, to use of a zero-range projectile-
alpha particle potential. We naively expect that intro-
duction of a hard-core radius, E&„ in the two-body
interaction will lead to eGective radii in the angular
distributions of the order R+Rq„but we have not
succeeded in formulating this modification. "

(2) The oscillations of the alpha bond must be very
small [oscillator width 1/n=2E(2e/duo)'&1X10 "cmg
to avoid unwanted damping of the angular distribution.

By making the impulse approximation, we have
neglected the inQuence of nuclear binding forces on the
two-body interactions and also "multiple scattering"
(or equivalently, distortion of the incident and final

projectile waves by all particles in the nucleus, except
the one it is interacting with). Distortion was not
necessary to produce oscillatory angular distributions
but nonetheless should modify our simple plane-wave
results. In lieu of performing a distorted-wave or
multiple-scattering calculation, we can only make the
empirical observation that. distortion eGects appear less

important with decreasing wavelength. The neglect of
nuclear binding forces may not be justified for the

' An alternative explanation of the large radius is that the
interaction is still collective but is better described by an ellip-
soidally deformed optical potential.

alpha-particle model: A large, highly concentrated
attractive potential, W($), is necessary to achieve a
near-rigid dumbbell; because of the operator E; in the
Green's function cp, , the commutator [W,cp;t+&j [see
Eq. (I.12)$ will not be small compared to W.

Inelastic scattering from other light nuclei, particu-
larly the nuclei C" 0" Ne" and possibly Mg~, may
be discussed in terms of the alpha-particle model. If
the more complicated vibrational modes are neglected,
rotational and dilatational excitation cross sections can
be obtained as simple generalizations of the preceding
work. We postpone detailed comment on these cases
but would like to draw attention to one aspect of
experimental angular distributions: Superimposed on
the oscillating angular distribution of inelastic alpha
particles is an increase at backward angles. " We
would like to suggest that this is a manifestation of
exchange scattering between the incident and target
alpha particles. The relevant two-body exchange
amplitude [see Eq. (I.20) J becomes, in Born approxi-
mation, 1'V(r) exp(ikp'. r)d'r. The final momentum,
ko', decreases slowly with increasing angle and thus
should lead to an increasing exchange amplitude. A
similar backward increase is observed in the elastic
alpha cross section for Ne" (with the oscillations now
in phase with the inelastic angular distribution); such
back-angle scattering may have the same origin, since
the contribution from the usually rapidly decreasing
diGraction cross section should be small at backward
angles.

In conclusion we would like to point out that the
calculations of this paper can also be applied to high-

energy electron excitation; indeed, . the use of plane
waves is then a good approximation and the elementary
interaction is a known quantity. "

Hp=K+W(x;) =K„+QK,+W,

where E is kinetic energy and S' is internal potential
energy. Assume that the interaction between the
incident, particle and nucleus can be represented by the
real potential

y+ V=P V, (x„,x,)+ U(x„), (I.2)

where V; is the potential between the incident particle
and ith nuclear particle and U is a phenomenological

'P Seidlitz, Bleuler, and Tendam, Phys. Rev. 110, 1080 (1958}.
~ L. I. Schiff, Phys. Rev. 92, 988 (1953}.

APPENDIX. DERIVATION OF CROSS SECTION
FOR DIRECT PROCESSES

Consider a nuclear system with constituent particles
1 ~ j ~ E and an incident particle, p. In the absence
of any interaction between the incident particle and
the nucleus, the total Hamiltonian is assumed to be
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Goldberger" have shown that

T'b. =(cblUlx. "'&+(xb' 'I vl+-'"'&
potential representing an interaction with all the other
nuclear particles, S&~ j)M. For example, particles
1 ~ M might be the "valence" nucleons while U

represents an interaction with the core.
Denote the initial state of the system, with the

incident particle well separated from the nucleus, by
C„where

=(o&iU~~x. &+')+(xg~ ~ )'

V V x,(+&, (I.8)
E—K—W—U —V+ie(I.3a)pC'a EC'ay

Rnd

4o= e' o *)'yo(X.)

where &((+) represents the plane wave plus outgoing (+)
or incoming (—) wave solution of the scattering prob-

(I 3b) lem when V=0; i.e.,
1

The corresponding final state is C~, where X,(+& =C,+ Ux (6)
E—E—W&i c

(I.9)

and

HpCg= ECy,

C b
e'"o——' *i'yb(x, ) exp(iK X)

(I.4a)

(I.4b)

where co& is the density in energy of final states and v

is the relative velocity of the incident particle and

nucleus. The transition amplitude, Tb„ is given by'

with X defined as the center-of-mass coordinate of the
nucleus.

The cross section for a transition from state a to
state b is"

2x' My

~b.=——
I Tb. l'

'v

We note that the phenomenological potential, U, is
Hermitian in this derivation.

The first term of (I.8) is the exact transition ampli-
tude when V=O. Such a term may contribute to
inelastic scattering into states of collective nuclear
motion through distortions of the nuclear surface. In
the present work, however, we shall be discussing
alternative mechanisms and hence drop this term from
the transition amplitude.

The second term of T~, can be separated into a
term representing the impulse approximation plus
additional terms representing the "error in the impulse
approximation" and multiple scattering corrections.
Let X,'+' be expanded in plane-wave functions of
particles p and i:

x.(+&= P Ik„,l,)(1 „,k, lx.(+&). (I.1o)
kq, ki

T -=(4'
I
v+UI+. "&), (I.6) With the notation Ei=h'k '/2m„+k'fb'/2m;, we define

where 0', (+) is the solution of the integral equation

1 and+ (+)=fr + (V+ U)+.(+&. (I.7)
E K W+ie— — t.(+)= V.~.(+) (I.11b)

(o,(+) = 1+ V;, (I.11a)
Ei Ky K—; V—;+i—e

where t;(+' is now the two-body scattering operator.
In a straightforward manner, Gell-Mann and Then the second term of T'I„can be written

(
1

&('b(—) Q, ],(+)+V [U+W, (o,(+&]
'b E KW U —V+—ie' — —

r 1
+I 1+V

~
(y—y,.)(,.t+) —y) y, (+I) (y $o)

E—K—W—U—V+i e)

This equation is similar to one derived by Chew and
Goldberger" and differs from Eq. (21) of this reference

only through inclusion of eBects due to both the internal

potential, S', and the phenomenological potential, U.
The term in (I.12) containing the commutator gives

"the error in the impulse approximation" and its size

has been estimated by Chew and Wick" to be of the
order of 3, times o-[U+ W, &o,j, where 7 is the "average

collision time. " The occurrence of the commutator
means that the correction depends on the change of
the potentials during a two-body collision rather than
on the magnitude of the potentials. This correction
term for the impulse assumption and the last term in

(I.12), which represents largely multiple-scattering
corrections, will be neglected in following work. Ke
shall consider in the discussion section whether such
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neglect is justified when intermediate-energy projectiles
are scattered by a nucleus described in terms of the
alpha-particle model.

With the above "impulse approximation, " the tran-
sition amplitude becomes

T.=P P P (& &
—'ik„',k,')

i ky', k~' kj,k~

&((k„,k;
i
x, i+&)(k ',k

i

t;&+&
i k„,k;). (I.13)

The elementary two-body scattering conserves mo-
mentum so that

(k„',k it, i+~ik„,k,)=b(k, '+k, ', k,+k,)
X(k„', k,+k„—k„'i t,&+&

i k„, k,). (I.14)

Assume now (a) that the variation of the above
scattering amplitude with the momenta contained in
states X &+& and X~& ' is small enough so that the
scattering amplitude may be approximated by a mean
amplitude, ' and (b) that the appropriate mean ampli-
tude is that obtained when the struck particle is
initially at rest and the projectile is characterized by
mean momenta, x„and x„', i.e.,

(k„', k,+k„—k„'i t, i+& ik„, k;)
=(x,', x„—x,'i t, ~+&

i x„,0). (I.15)

In cases where the phenomenological potential U is
zero, x~ and x„' become the free momenta ko and ko',

respectively. The rather strong assumption (a) is
necessary to factor the two-body amplitude outside
the overlap integral of initial and Anal states. In partial
defense of this assumption is should be pointed out
that in the limit of Born approximation the nonexchange
scattering amplitude depends only on the momentum
transfer, k„—k„'. Unfortunately we do not have direct
experimental information about the two-body scattering
amplitudes for momentum values of most interest since
these amplitudes may lie far o8 the energy shell. This
will be the case, particularly, if the scattering is back-
wards from a target particle of mass equal to or lighter
than that of the projectile (e.g., n on n). Thus the
amplitudes deduced from two-body elastic (a,n), (a,n),
and (n, n) scattering, which lie on the energy shell,
can be used as only very rough guides. Our ignorance
therefore forces us to regard the factorization assump-
tion (a) as one of the weaker links in the derivation.

With assumptions (a) and (b) the transition ampli-
tude is

7',.=P,( „', „—„'it;i+~ „,0)

(&b& '
i
k„', kg+4, —k„')(k„,k;i X.&+'). (I.16)

ky', k~,kg

Using the completeness of the momentum eigenfunc-
tions, we obtain

Tg. P,(x,', L,—x„'i t;i+'
I x„0)——

y(x, &-&
i
S(x„—x,) i

x„&+~). (I.17)

The above equation is sometimes considered as the
impulse approximation; we have seen, though, that
some further nontrivial assumptions are needed in
order to obtain such a simple expression.

It is pertinent to comment here on the relative
virtues of the impulse approximation and the Born
approximation, which has also been frequently em-
ployed in theoretical treatments of direct scattering.
LThe Born approximation in the distorted-wave formal-
ism is simply obtained by dropping the last term of
Eq. (1.8).'] It is well known that the Born approxi-
mation may give unreliable estimates of the scattering
amplitude for two-body collisions, particularly at low
or moderate energies when the potential is such as to
give a bound state, which is indeed the case for nuclear
particles. In this respect, the impulse approximation is
a definite improvement since it employs an exact two-
body scattering operator. On the other hand, part of
this gain is illusory: the relevant scattering amplitudes
do not conserve energy in the two-body collision; thus
they cannot be deduced reliably from measured two-
body elastic collisions, as discussed earlier. To sum-
marize: The Born approximation provides a calculable
but probably erroneous value for the scattering ampli-
tude; the exact two-body scattering amplitude appears
in the impulse approximation, but it is difficult to
evaluate.

When i and p are the same kind of particle Lwhich
can occur in (p,p') and (n,n') scattering when the
nucleus is described by the shell model or (n,n') scat-
tering when the alpha-particle model is adopted',
modifications must be made in the above derivation.
It is also desirable to include explicit dependence on
spin and isotopic spin. The result is that Eq. (I.13)
remains unchanged except that the two-body scattering
amplitude is appropriately symmetrized. We find Lsee
Eqs. (I.24) and (I.25)j

(t,&+&) ~(k„',k, 'i t, i+&
i k„,k,)a(k,k„'i t,~+&

i k„,k,). (I.18)

The + sign holds for spin-0 Bose-Einstein particles,
the —sign for spin--, Fermi-Dirac particles. In the
latter case, to simplify notation, k designates the spin
and isotopic spin as well as the momentum. If E,E,E'
are defined to be the space, spin, and isotopic spin
exchange operators, Eq. (I.18) may be written more

compactly in the spin--,' case as

(t,&+') ~ (k,', k,
I (1—&*8 &')t,&+'

I km, k;). (I.19)

The factorization of the exchange contribution to
the two-body scattering amplitude is not as well

justified as is the case for the direct term; in the limit
of Born approximation, the exchange scattering ampli-

tude is very definitely a function of k;. If nonetheless

we make the previous factorization, assumptions (a)
and (b), and make use of the conservation of mo-
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mentum in the two-body collision, we obtain

Tb, =p, ((Xb&
—

&

~
b(x„—x,)(il~', x~—x~'~ t,'+&

( x~, 0&
~
X.'+&)

+(X,&
—'

~

&& (x„—x;)P P'
X(1&„—v.,', x„'

~
t,&+&

~
x„,0) i

X.&+&&). (I.20)

In this equation, we drop the notation of Eq. (I.18);
k refers only to momentum so that the matrix element

( „', ,—~„'~t,&+&~ „,0)

may be an operator in spin and isotopic spin matrices
of i and P. X,&+& is unsymmetrized in projectile and
target, i.e., X,&+& =u, &+& (x~)g, (x,).

The proof of (I.18) and (I.19) is straightforward:
Assume that the nuclear wave function lt, (x,) is
already appropriately symmetrized or antisymmetrized
in M equivalent particles. Then the symmetrized
eigenfunction of Ho+ 0, that is X,'+', can be written

X,&+&=(M+1) b p(—1) 'I, &+'(xl)

Xga(xl' ' 'Xl l~ Xi+1~ ' ' 'Xbl+1)

which becomes, for Fermi-Dirac particles,

Ix.l'+'&= lk(xl)&lk(X)&(k. lm-'"'(xl)&

X(k(x~) ~p, (x;,xi, xl, x~+,)&
(—1)' '+&' ' if j(l
(—1)' '+&' if ') t

(I.23)

where for convenience k here designates spin as well as
the momentum. For Bose-Einstein particles, all sign
factors are (+1). The final-state wave function,
X&(

—', can be similarly expanded with the notational
change (t, j, k„, k ~ /', j', k~', k').

If /' does not equal either l or j, the matrix element
should be extremely small; when both bound and
continuum particles are described by an independent-
particle model with the same central potential and when
small center-of-mass effects are ignored, the matrix
element vanishes by the orthogonality of initial and
final wave functions. If l'=l and one chooses j'= j,
the sign factors in initial and final wave functions are
identical regardless of the order of 1 and j. If /'= j and
one chooses j'=I, the sign factors must diRer by (—)
in the Fermi-Dirac case. Since

= (M+ 1)
—b Q 1 X 1&+& (I 213

Qb(x;,xl' 'Xl—i)xi+1' ' 'xX+1~ k (x,))(lib' '(Xl) ~k (Xl))
1 — I

where 8~=0 for Bose-Einstein particles and / —1 for
Fermi-Dirac particles; x denotes spin and isotopic spin
coordinates as well as spatial coordinates. Since the
particles are equivalent, it is not now correct to consider
U and V as functions of just x„and x~, x;, respectively;
rather, for the lth term in X (+), U is to be considered a
function of x& and similarly

V= Q V(xl,x,).

Thus in the impulse approximation, the contribution
to the transition amplitude arising from collisions of
the projectile with the equivalent particles in the
nucleus is

(M+1) '(p Xbl & '
~ p p t(xl,x;) i

X,l&+'). (I.22)

We can make the following expansion:

i
x, i&+&)=

i k„(xl)) i k(x,))(k„(I,&+& (xl))
X (—1) '(k(x, ) ~g, (xi, xl 1&xi+1, x»l+1)),

is equivalent to

(ltb(xl, xi, xl i,xi+1 x»+1~k'(xl))(lb& '(x;) ~k'(x;)),

Eq. (I.22) becomes

(M+1)—'P Q
$,j kq, ky' k,k'

X(lt b(x, ,xi xl i,xi+1 x»1+1)
~

k'(x,))

X(k(x;)
~
lt&~(x;&xi xl i,x&+1 x»1+1))

X(eb&-&
( ky')(k, ( N. &+&)((k„',k'i t(xl,x;)

~
k„,k)

—(k',k '~ t(xl, x;) ~ k„,k)). (I.24)

Because of the symmetry of lt, and lt&b, Eq. (I.24) can
be written

g p p Qb(xi xl&1)ik'(x;)&(Nb&
—&~k„')

j=1 ky, k~' k,k'

X(kl, ~
I,&+&)(k(XJ)

~
lt, (xi xN))

X(k ',k'i (1—P'P P')t(x„,x;) i k,k). (1.25)


