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Six complete sets of readings were taken. These in-
cluded readings of three diRerent temperatures and of
both directions of the field. In all of the runs the cur-
rents to the two edge plates dropped rapidly to zero,
and were negligible for Qelds greater than 300 gauss.

In three sets of readings no variation in total plate
current was noted, except for the random error of 1.5%%u~

or less, as the magnetic field was increased from zero to
6000 gauss and then decreased to zero. Other runs
showed a slight decrease of 1.5 to 4% in total current.
This decrease was caused by losses of electrons after
emission. The overlapping of the plates was sufhcient
to insure collection of all electrons only when the 6la-
ment remained in or near its equilibrium position on
the tube axis. But under the force exerted on it by the
applied magnetic field, the ribbon was displaced from
its axial position, and a small fraction of the emitted
electrons escaped through the gaps between the plates.

This displacement problem is dificult to avoid when a
6lament is heated in a strong magnetic field.

The negative result that was obtained in several sets
of measurements taken under very favorable conditions
is interpreted as su%.cient evidence that no magnetic-
field eRect on the saturation electron emission exists, at
values up to the maximum of 6000 gauss which were
attainable in this experiment. We therefore conclude
that the discrepancy between Shelton's result and the
results of the earlier observations of Nottingham and
Hutson was not caused by any modi6cation of the
probability of emission by the magnetic field.
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A generalization of the random-phase approximation of the theory of Coulomb correlation energy is

applied to the theory of superconductivity. With no further approximations it is shown that most of the
elementary excitations have the Bardeen-Cooper-SchrieBer energy gap spectrum, but that there are col-

lective excitations also. The most important of these are the longitudinal waves which have a velocity

vs {-,L1—4)V(0)
~

V~ g}& in the neutral Fermi gas, and are essentially unperturbed plasma oscillations in the

charged case. Other collective excitations resembling higher bound pair states may or may not exist but do

not seriously affect the energy gap, The theory obeys the sum rules and is gauge invariant to an adequate
degree throughout.

I. INTRODUCTION

ECENTLY Bardeen, Cooper, and SchrieRer pro-
posed a theory of superconductivity' which has

been successful in explaining experimental results of
many kinds. The theory is founded on the idea that in
superconductors there is a net attraction between
electrons caused by the phonons. The ground-state wave
function used is a product function designed to have
the maximum number of pairs of electrons of zero total
momentum taking advantage of this attraction. This
ground-state function is

+,=gkt (1—hk)'+hAkt*c ki*j+.,

where%'„ is the vacuum, and c1, *is the creation operator
for electrons of momentum k and spin 0-. h~ is a number

~The 6nal stages of this work, and all of the manuscript
preparation, were done at the University of California, Berkeley,
California, during a very pleasant stay made possible in part by
a grant from the National Carbon Corporation.

' Bardeen, Cooper, and Schrie8er, Phys. Rev, 108, 1175 (1957).
We abbreviate this reference B.C.S. hereafter.

determined so as to minimize the energy. The approxi-
mations most necessary to the theory are the use of
screened Coulomb and screened second-order phonon
interactions according to the scheme of Bardeen and
Pines', and the neglect of all interactions except those
between pairs with zero total momentum and spin.

Bogoliubov' arrived at practically the same result by
an apparently different method, using from B.C.S. only

the zero-momentum pairing idea. He formed pairs by
introducing a new set of fermions, composed partly of
an electron with (k, spin up) and partly of a hole with

(—k, spin down):

Olgo =QgCgf —'VlcC

&kl +kC—kt+Sk~kt

and de6ned the ground state as the "vacuum" with

s J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
3 N. N. Bogoliubov, J. Exptl. Theoret. Phys. U.S.S.R. 34, 65

(1958)Ltranslation: Soviet Phys. JETP 34(7), 41 (1958)j; J. G.
Valatin, Nuovo cimento 7, 843 (1958).
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respect to the new set of "particles":

&xo &xo+g =O'J a &J a+g =0. (3)

By this trick he was able to eliminate certain terms in
perturbation theory which diverged, essentially because
of the presence of the attractive interaction which is
responsible for the binding of pairs.

It is easy to show that the B.C.S. state (1) and the
Bogoliubov state (3) are identical if

'N. N. Bogoliubov, J. Kxptl. Theoret. Phys. U.S.S.R. 34, 73
(1958) Ltranslation: Soviet Phys. JETP 34(7), 51 (1958)g.

s L. ¹ Cooper, Phys. Rev. 104, 1189 (1956).
s P. W. Anderson, Phys. Rev. 110, 827 (1958).
'K. A. Brueckner and M. Gell-Mann, Phys. Rev. 106, 3

(1957).
s K. Sawada, Phys. Rev. 106, 372 (1957); Sawada, Brueckner,

Fukuda, and Brout, Phys. Rev. 108, 507 (1957); see also J.
Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958).

Less obviously, the basic assumptions of the two
theories are actually very close, as are the "energy gap"
spectra of elementary excitations. ' Bogoliubov treats
the phonons only in second order, and his limitations
to the lowest-order energy and to the "most divergent
terms" (meaning those which cause binding of Cooper
pairs') are equivalent to the B.C.S. reduced-Hamil-
tonian assumption.

It was demonstrated' that the most serious question
in regard to. these theories is that the sum rules and
gauge invariance are not obeyed, so that a consistent
explanation of the Meissner eGect requires, at the very
least, that the whole interaction Hamiltonian be taken
into account. If this is done and the long-range Coulomb
forces are neglected, a new set of states of nonzero
momentum must be present in the energy gap, which
not only would have experimental eGects but might
well lead to large perturbations in the ground state.
When long-range Coulomb forces are included, the gap
again becomes empty, and one is led to the conclusion
that the success of the zero-momentum pair theories
may only be a consequence of plasma eGects.

Both for this reason, and because it seems optimistic
to assume that the collective and screening eGects
(which are vital even in determining the phonon
spectrum) will be necessarily unaffected by the radical
changes in the Fermi sea embodied in (1) or (3) (and
vice versa), it is desirable to have a theory of the ground
state of a superconductor which can simultaneously
handle these collective eGects in the best available
approximation, that of Gell-Mann, Brueckner, Sawada,
and Brout,"and yet lead to (1) or (3) and the Bardeen
energy-gap excitation spectrum. Such a theory is the
subject of this paper.

This theory also has a few by-products which com-
mend it as an alternative to the earlier ones. First, it
shows in a natural way why the restriction to a 6xed
number of electrons must be relaxed and how to handle
the projection back onto E=const; second, it is capable

of computing the correlation corrections to super-
conductivity —or vice versa —and showing that they
are small; third, it gives a good account of other col-
lective eGects such as phonons and higher bound pair
states; and finally, it seems to give a simpler and more
physical picture of the nature of the superconducting
state. The method we use may also have more general
interest as an approach to the many-body problem, in
particular in reconciling collective and individual-
particle behavior.

The basic, and almost the only, assumption is a
generalized form of the random-phase approximation. '
Sawada, Sawada et al. , and Brout' have shown that the
R.P.A. of Bohm and Pines and the diagram-summing
method of Brueckner and Gell-Mann~ both lead to a
certain set of linear eigenvalue equations or "equations
of motion" for the elementary excitations in terms of
the quantities

Pk, tr =Ck+g, o Cg tr.

Sawada and Brout' showed that the Gell-Mann and
Brueckner "high-density" assumption, that excited
particles interact with the unperturbed Fermi sea only,
is equivalent to a certain eGective Hamiltonian together
with altered commutation relations for the p's of (5),
which then lead to the equations of motion; they then
showed how to derive the energy and other results from
these equations. The same equations were arrived at-
without realizing how nearly full a solution to the
correlation problem they were —by Bohm and Pines, '
erst by physical reasoning and then by a method of
direct linearization of the full equations of motion. The
method of this paper is a natural generalization of this
last way of arriving at the "equations of motion" to the
case in which the unperturbed state is not the Fermi
sea but the B.C.S. state (1).

The high-density ("weak coupling" ) limit is the only
proven domain of validity of the R.P.A., and even in
that limit a consistent theory of superconductivity is
interesting. However, the R.P.A. gives results in the
correlation problem which appear to be satisfactory
even in the intermediate range, " and other entirely
different domains. "A full discussion of the domains of
validity of these methods is, however, beyond the scope
of this paper; in any case they represent the only
approach known to be eGective in studying collective
eGects in the many-body problem.

BrieQy, the Bohm-Pines technique linearizes the
full equations of motion by observing that in the Fermi
sea the quantities e&——C&*c& and 1—ea, =cj,c&*may have
Qnite "c-number" average values. These average values

D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). We shall
abbreviate "random-phase approximation" as R.P.A. hereafter."VVhen supplemented by a treatment of exchange terms which
falls rather naturally out of the more general method of the present
paper. See P. Nozieres and D. Pines, Phys. Rev. 109, 1009 (1958),
and Nuovo cimento (to be published); and especially Hubbard,
reference 8.

» F. Montroll and J. C. Ward, J. Phys. Fluids 1, 55 (1958).



1902 P. %. AN D ERSON

are taken as zeroth order, while the p~&=c~+g*c~ act
like first-order infinitesimals. In the B.C.S. state (1)
not only e& but b&*=c&*c &* and b& have c-number
averages, so that correspondingly we must derive
equations of motion for 6rst-order quantities c&+g*c &*

=bj,, etc. The unperturbed B.C.S. state is itself
determined, in our method, by 6nding equations of
motion for the b~*'s and n~'s themselves and taking
their stable solution; this is then equivalent to both the
B.C.S. and Bogoliubov de6nitions. Physically it means
that we construct the zeroth-order state so as to be
stable against the formation of any more zero-mo-
mentum bound electron pairs.

The most direct results of the theory are the solutions
of the equations of motion. These are the elementary
excitations, and they fall into two groups: individual-
particle-like excitations, the spectrum of which is
practically the same as the B.C.S. energy-gap spectrum,
but which include many of the effects of scattering; and
collective solutions.

The collective solutions are calculated for two cases.
The usual models implicitly ignore the long-range
Coulomb forces; we may call this the "neutral" case.
In this case there is, strictly speaking, no gap: we 6nd
a collective excitation of longitudinal type, which has
resemblances to a longitudinal wave as well as to a
bound pair of electrons of nonzero momentum, with a
velocity

The velocity 3 4p was obtained by Bogoliubov" and
is a kinematical eBect; the 1V(0)

~
V~ term represents

the e6'ect of interaction in this weak-coupling limit.
Other collective excitations, describable physically as
other bound-pair excitations orthogonal to the Cooper
bound pairs, may or may not exist depending on the
form of the interaction, but lie near or above the top
of the gap in any case.

In the physical case of the charged Fermi gas, the
longitudinal excitations have a spectrum identical with
the plasmons of the normal Fermi gas, and thus the

gap really exists; we see that the gap in a strict sense
is enforced only by the long-range Coulomb effects.
Fundamentally, also, in this case the R.P.A., with its
automatic separation of the equations of excitations of
different total momentum, may be expected to be more
accurate, because these long-range forces single out
momentum zero as having special properties. In an
appendix we go on to calculate the effect of super-
conductivity on the long-wave phonons, and show that
their spectrum is changed only to the order of the ratio
of electron to ion mass.

&Bogoliubov, Tolmachev, and Shirkov, Rem Method in the
Theory ojSttperoowdrtotiofty, (Academy of Sciences of the U.S.S.R.,
Moscow, 1958}.See also V. M. Galitskii, J.Exptl. Theoret. Phys.
U.S.S.R. 34, 1011 (1958) Ltranslation: Soviet Phys. JETP 34 (7),
698 (1958)g.

II. DISCUSSION OF THE INTERACTION
HAMILTONIAN

If the interaction between electrons is given, the only
approximation of the method is the R.P.A. The inter-
action responsible for superconductivity is, however,
the rather complicated interaction through the lattice
phonons, and fundamentally the calculation of this
interaction is outside the scope of the R.P.A. In this
paper we shall assume the essential correctness of the
results of Bardeen and Pines for this interaction. "

In a later paper this assumption will be justi6ed by
means of the renormalization methods of Hubbard. '4

Although this justi6cation is not a part of the present
paper, in view of its importance a brief qualitative
description will be given here. Hubbard shows, in the
free electron gas problem, that the effect of certain
apparently divergent terms of perturbation theory is
to replace each Cou1omb interaction between electrons
by a new, effective" interaction, which may be thought
of as having been modi6ed and screened by the fre-
quency- and wave-number-dependent dielectric con-
stant of the electron gas. '~

The effect of superconductivity, like that of the
Coulomb correlations, can be expected to be merely a
"smearing" of the properties of the surface of the Fermi
sea, while (as the present paper will show) there is no
serious effect on the collective modes, which primarily
determine the dielectric constant in the long-wave
region where the smearing might be important. Thus
in interactions of secondary importance to the R.P.A. ,
like exchange and phonon exchange, it is a good approxi-
mation to screen using a dielectric constant computed
according to the unperturbed R.P.A. (including of
course the phonon contribution's). The direct Coulomb
interactions, which have the major effect on the col-
lective modes and thus on the dielectric constant, must
on the other hand be left in explicitly in deriving the
excitation modes.

The procedure is thus a kind of successive approxi-
mation method, checked by demonstrating its self-
consistency. In stage (1), we imagine that we have
calculated the dielectric constant of the free electron
gas with phonons, using only the direct interactions in
the R.P.A. In stage (2), we recalculate the properties
of the free electron gas including the phonon and ex-
change terms. These must be screened by the stage (1)
dielectric constant because the corrections in stage (1)
are large (in fact formally divergent). Stage (2) is the
present theory of superconductivity, but also includes
Hubbard's' method for the second-order exchange
correction. In stage (3) we might recalculate the
dielectric constant from stage (2) and insert it in the

» See Bardeen and Pines, reference 2. See also D, Pines, Phys.
Rev. 109, 280 (1958), for a probably more accurate expression."J.Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957).

'~ See also Nozieres and Pines, reference 10.
'e See G. Wentzel, Phys. Rev. 108, 1593 (1957) for the calcu-

lation of phonons by the method of Sawada and Brout.



THEORY OF SUPERCONDUCTIVITY 1903

screened terms; however, this correction is small and
stage (3) is unnecessary. The resulting interaction is
similar to that of reference 2, although it must be
slightly complex to allow for real inelastic scattering;
the screening is not by a cutoG as in Bardeen and Pines
but smoothly decreasing, and the subsidiary condition
is irrelevant to the present scheme.

We shall, then, write down as our Hamiltonian the
Bardeen-Pines result. This already implies the relatively
minor (at this stage) assumptions of the free-electron
gas model for Bloch electrons and of the neglect of
transverse phonons, as well as of the residual, real
scattering interaction of electrons and phonons. It is

Here (5=1)
5C= K~+3Cv+3Co. (6)

KK ~ fkCk, O' Ck, rp
k, a

Xca', ~™a'+q,a o k+q, @car'. (8, )

X',g is a somewhat more complicated thing, because
(according to the above discussion) we must understand
its terms differently depending on whether we use them
as direct or exchange terms. We shall write down the
full Hamiltonian and simply understand that the ex-
change terms are to be screened:

5Cc= E Q 2qre'(k —k')-'
krak', 4i o,a'

Xca', r o gl+q, ~ o a +qrcgI, e~. , (9)

Fourier component of electron density Ructuation, and

f 2 —4s.nssg2M —1+~ 2

co, —+0 as s —+0.

(te, includes any interactions between the ion cores. )
One further point must be made with regard to (8).

An instantaneous space interaction is a function of
k—k' only; but the phonon (and actually even the
screened Coulomb) interaction is not instantaneous,
and must in some sense depend on the time difference
between the creation and destruction of the longitudinal
photon or phonon, or in Fourier-analyzed form on a
frequency variable.

Our approach is to understand the particles as being
embedded in a medium with a certain frequency- and
wavelength-dependent dielectric constant. The fre-
quency which enters is the energy diGerence between
the initial state and the intermediate state of the
particle system "after" the phonon-photon is emitted.
This is usually well enough approximated by e&—eI,

in (8). As we shall see in Sec. IV, the important thing
for gauge invariance and the sum rules is that there be
no q dependence in (8), which is ensured by the fact
that the initial and final states always have the same
energy, so that the difference from the intermediate
state, whatever it be, is 6xed. We shall take advantage
of this fact by discarding any apparent q dependence
wherever it may appear.

Thus our equations will always automatically satisfy
the basic sum rule L5Cv, p@$=0, which ensures that the
usual perturbation theory will give gauge-invariant
results. '

In (8), Bardeen and Pines give

Ms=vs'(1+6rrne'/k'ep) ',

where ~~' is the true electron-phonon interaction without
screening, approximately

vs™" 2qrZe'ik —'(n/M) &—

The actual values of these constants will be of little
further importance to us except in Appendix I.

In principle the description of our method implies
that the direct phonon interactions should also be
included, so that we calculate correctly both collective
modes, the phonon and the plasmon. To avoid com-
plication we do not do this in the main paper, but only
in an appendix. In that case for direct interactions one
must include the following two terms in the Hamil-
tonian:

III. IMPROVED TREATMENT OF THE B.C.S.
REDUCED HAMILTONIAN

The R.P.A. theory which we use might be thought
of as a generalization of the Sawada-Brout theory to
the superconductor. It also follows naturally as a
generalization of a certain slightly improved description
of the B.C.S. theory of the "reduced" Hamiltonian.
There exist in the literature elegant treatments of the
Sawada-Brout theory'"; since the alternative calcu-
lation of B.C.S. is new, and is of some interest in itself,
we present it here in full."

The first step of the B.C.S. theory is to neglect in
(8) and (9) all terms involving o and o' parallel, as well
as all terms with q/0. This step may be justified in
terms of the worst instability of the Fermi sea being
caused by binding of zero-momentum pairs, and the
considerations of reference 6 reinforce this point; but
since we intend to relax this assumption later no
extensive discussion is necessary. Then the Hamiltonian

5C;= —P (q~
—'v. '+q p'v. '*), (13)

where p and q are the phonon coordinates, p' is the s

"See Wentzel, reference 16.' A similar treatment has recently appeared in ¹ N.
Bogoliubov, J. Exptl. Theoret. Phys. U.S.S.R. 34, 73 (1958)
Ltranslation: Soviet Phys. JETP 34(7), 51 (1958)j, although
di6'erent in detail and interpretation.
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becomes

~azo=p ek(Nk+I k) —Z Vkk Ck*c-k*c-kck, (1')
k krak'

equivalent to the b's:

2$ k=1—nk —n

Sek+ZSyk bk
&

S*k SSvk uk.
(22)

where we have used the convention that an explicitly
IlegRtlve ' 11Rs R down spill and vlcc velsR. (Tllls
convention will be used hereafter in this paper. ) Vkk
is the resultant interaction obtained by subtracting the
screened Coulomb exchange matrix element from the
phonon exchange:

Mk k,Mk

~a—~a,

)&(screening factor). (16)

Basic to the whole theory of superconductivity is the
idea that, fOr Small enOugh (ek —ek.)', Vkk iS pOSitiVe

on the average. Pines" has discussed qualitatively
whether and when this may be true.

It is convenient to use as the zero of energy that of a
particular Fermi sea of E' electrons, Fermi level e~',.
and to sum only over k's with ek(2e". Then (15)
becomes

Seago ———P (ek—ez')(1 —ek —e k)

—p Vkkck*c k*c kck+ep'(N N')& —(17)

where
N=pk (ek+n k)

B.C.S. pointed out that the appropriate algebra for
dealing with (17) involved the operators

1, bk=C kCk, bk =Ck C k, and 1—(Bk+B k) (19).
Their importance lies in &he fact that in the subspace
defined by

nk —n k=—0 (20)

they are a complete set, while it is easy to show that
the lowest eigenstate of (1/) is in this subspace.

The properties of these operators become clear by
writing them [in the subspace (20)j in the represen-
tation in which the basis functions are (k and —k
empty) and (k and —k full). The operators (19)
conunute for different k, so only the k, —k subspace
need be written down:

empty full
empty( 1 0 )

!1—nk —Nk ——

full ( 0 —1)
(21)

~1 0) ~0 1q &0 0~
'=!,

o )! '"=!i. .]! '*=!, .)!
The further manipulation will be much clearer using
the following set of Pauli spin matrices which are fully

» D. Pines, reference 13.

These s operators are not to be confused with real
physical spin-operators; they act in an imaginary space,
where s component of spin up means "empty, " spin
down means "full, " and spin sidewise simply implies a
certain phased linear combination of up and down.

In terms of the pseudospins (22), the Hamiltonian is

3CR~= —2P (ek—ep')s, k —2e"P s,k
k k

—g Vkk (s.ks.k +s„ks„k ). (23)

Hk=2(ek —e")s+2Zk Vkk slk & (24)

where s~k is that portion of s perpendicular to z.
In the unperturbed Fermi sea, only the s component

is present, and each spin is either up or down, with a
sharp break at e~ Lsee Fig. 1(a)j. It is easy to see that
because of the small fields at e&, only a small V is
necessary to turn a few spins sidewise and make the

configuration

o Pig. 1(b) more stable: a "domain wall"
in k space with states rotating smoothly from "full" to
"empty. "

This configuration is determined in terms of the angle
8k between the new direction of the spin k and the s
axis by Hk!!sk.

s*k/s*k=«n8k=s(ek —e") 'pk Vkk sin8k. (25)
~ G. Heller and H. A. Kramers, Proc. Acad. Sci. Amsterdam

37, 378(1934);M. J. Kieingnd R. S. Smith, Phys. Rev. 80, 1111
(1951);P. W. Anderson, Phys. Rev. 86, 694 (1952).

s&E. P. Gross, Phys. Rev. 100, 1571 (1955).

The second term on the right changes only when the
total number of electrons changes, and may be ignored.

In the theory of magnetism such a spin problem is
attacked by the so-called semiclassical method, ""
which is actually a perfectly well defined quantum-
mechanical approximation scheme. The similarity of
this scheme to the "intermediate coupling" methods of
field theory is not widely appreciated but has been
mentioned by Gross." Later in this section we shall
discuss the scheme from a fully quantum-mechanical
point of view, but in the meantime we shall describe it
more or less from the semiclassical viewpoint. The first
approximation is to take the spin vectors sk and rotate
them into the best possible classical arrangement, i.e.,
parallel to the field acting upon them. This, we shall
see, is the same as taking the optimum product wave
function. In the next approximation one finds the small
oscillations about this classical equilibrium and quan-
tizes them; then the ground-state energy and wave
function are corrected for the zero-point motion of the
small oscillations, the basic assumption being that these
are actually small.

The field Hk which sk sees is, from {23),
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This may easily be shown to be the same as the B.C.S.
integral equation; the correspondence is

sin8k ——2[hk (1—hp) j&. (26)

It is also obvious that the product wave function of
B.C.S. is of the same form as our wave function: a
product of rotated factors, one for each k vector.

It is also interesting to make contact with the
Bogoliubov theory. To do this we consider the spin
components in the new direction:

(a)

s, k ——cos8ks, k+sin8ks, k,

s k= —sin8ks, k+cos8ks, k.

On the other hand, if we set

2$, k=1—(trks &ko+rrkt rrkt),

(27)

(28)

s)& s= is, (31)

the usual spin equations of motion are valid:

pC, skj= i(dsk/dh) = i(Hk X sk j. (32)

Now we allow each spin s~ to have, besides its static

~ Bogoliubov's fermions give a more complete excitation
spectrum for practical calculations. It is easily shown that in this
approximation /%Run, ixko )=xHkoko~, etc. The n's are the
"singles" of the B.C.S. theory, and all thermal etc. effects may be
caIculated using them alone.

in correspondence with the de6nition of s,k, and use

(2), we get

2s, k ——(uks —e&') (1—Nk —n k)+2ukttk(bk +5k).

This is the same as (27) if

COSH' = N))r,
—

VA. , SlI1tIry = 2QIcVp.

Thus the 6rst approximation gives exactly the B.C.S.-
Bogoliubov results. The 6rst approximation to the
excitation spectrum is obtained by taking the energy
to turn over the "spins" in the eGective fields III, .

2Ek= ~Hk~ =2((ek —ep')'+4(pk Vkk sin8k)'j&, (30)

which is the energy of excitation of "real pairs" in the
B.C.S. theory. "

An improvement on the B.C.S. theory comes when
we study the true excitation spectrum modi6ed by the
interaction between "spins. "First, however, we observe
that this improvement can be expected to change the
result for Kazz& only to order only 1/X. The reason is
that the Geld Hk, insofar as it involves the other spins,
is a sum over a number of the order of E other spins.
Thus we expect the quantum Quctuations to average
out, and the semiclassical theory to be nearly valid, in
contrast with the theories of reference 20.

In order to study the modified excitations we must
write down the equations of motion. This is most
simply done by observing that since the s&'s obey the
usual spin commutation relations,

FIG. 1. Configuration in the pseudospin analogy to the electron
gas. (a) Normal Fermi sea. Spin arrows'up represent empty states
Also given are the effective 6eld HI, acting on the spins, and its
absolute value. (b) The superconducting ground state, showing
the gradual rotation, like a domain wall, of the pseudospin vectors.

BHk=2+k Vkkbs, k. (34)

Let sI,' and Hk' be in the x-z plane; the components of
bs will be bs„and bs~ ~, the latter meaning the component
perpendicular to ss in the x-s plane. Then (33) is

8 (dsk„/dh) =Hk ask~ [
——8Hk cos8I.-,

h(dSk((/dt) = Hk'8Sk„+ ,'hHkv—. -(35)

Equations (35) are easily solved only if we make the
B.C.S. assumption that V~~ is a constant over a region
in k space, and otherwise zero. That case has been
worked out in detail by Suhl." Using Suhl's solution
as a guide, one can see some rather general properties
of (33) or (35).

The unperturbed, "individual particle" solutions
result from neglecting the 88~ term. Then bshe, simply
precesses about Hk' at the frequency Hk', which is the
energy of the "real pair" excitation. The great majority
of excitations are of approximately this form, because,
from (34), if only a few ask are large (V» is of order
S '), 8Hk is indeed of order E ' and may be neglected.
Actually, there is a solution of (33) between every pair
of unperturbed solutions, for which bs for some few
particular k's is of order Ã larger than all other 6s's.

Collective solutions may be de6ned as solutions for
which the sum (34) is replaced by an integral, which is
understood in a principal part sense; they will usually
lie outside the unperturbed spectrum. A collective
solution always comes at the frequency u=o. Such a

~ H. Suhl (private communication).

component sk', an increment ask. Then (32) is

8(dsk/di) [Hk x8skj+pHkxsk'5+I 8Hkx&skj, (33)

and the last term is neglected as nonlinear. Here
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solution has, from (35),

28sk„=bHky(H»') ', ask((=0. (36)

To check this we must be sure (36) is compatible with
(34). To do this we try

Equations (36) and (37) show that it represents a
uniform rotation of the whole "wall" about the pseudo-z
axis. Now the original XazD LEq. (23)j was axially
symmetric about z. The reason for this symmetry is of
course that

28s~„= ~ sinoI, . (37)
g tot g0 (39)

must be a constant of the motion, as particles are not
really created or destroyed.

On the other hand, the product solution in the semi-
classical, "naive" approximation does not have a
definite value of S,~t, because s,k does not commute
with the other components of si„which are assumed
constants of the rriotion. Correspondingly, the product
solution is not axially symmetric but picks a particular
direction in the x-y plane, which must be unphysical.
The» v=O mode is the free rotation of this solution about
the z axis. We can expect that proper inclusion of the
zero-point motion of the v=O mode will repair this
situation by projecting our solution onto the space of
S,~t=constant. In fact this can be verified using the
B.C.S. representation. An eigenfunction of the v=0
rotation about the z axis is just

Then (34) becomes

BHk&
= 2 C p k ~ Vk k ~ Sln8» ~

&

2H»'2 sin8»= 4e(e» —e»') tan8»,

by (25). Use of the value of H»' checks (36).
With the B.C.S. assumption that V~~ is a constant,

there are no other collective solutions of any interest.
More realistic V's may have other solutions, but these
will not lie low in the gap, at least in the weak-coupling
case in which V varies much only over an energy range
large compared with the gap, and thus with the energy
range of variation of the wave function. The demon-
stration of these statements follows.

It is a good approximation to assume the problem
symmetrical about ep, and then bs~„ is either an even
or an odd function of ~~—ep. If bs~„ is even, BH~„ is
finite and even, the second equation of (35) makes

bs~~~ even, thus bsI, odd and 8H~, =O. Similarly the
odd solutions have 8H~„=O.

Two types of solutions may occur: angle-dependent
solutions, physically like bound pairs of p, d, etc.,
symmetry; or s-like solutions orthogonal to the v=O
one. The lowest of the latter is necessarily the lowest
odd solution, because of (35) and (34) these obey the
equation

bS»2= L(H» ) v p cos8» Qk' Vk»IH»'I 8$k'2 ~

When V is roughly constant this is equivalent to

V~~ &I0
1=+ cos28»,

(H 0)2 p2

which may be quickly, verified to have its lowest
solution precisely at the top of the gap.

We may expect the lowest angle-dependent solution
to be an even one. The fundamental equation for the
even solutions is

L(H» )'—v $8Sk„——Qk. Vkk BSk „.
If V does not vary rapidly with. angle the sum on the
right will be quite small, and v must approach HI,'
closely to allow a solution.

It is physically obvious (also from the discussion of
reference 6) that any such solutions. which actually
occur in the gap are simply bound pairs of Cooper type
in excited states. We shall discuss the corresponding
QWO excitations in a later section.

The v=O solution could have been expected from the
irst, and serves a very useful- and important purpose.

f
de + .c. .(v) e p( ny), (40)

where 4's.o.s. (22) is the B.C.S. solution rotated to a
new direction p in the x-y plane. It can be shown that
(40) is

f+„=, dy e'" g [(1 h&)&e '«'+—h»&e'"'bk*+„, (41)
k

which quite clearly is just such a projection.
. A few final remarks will close this section. First, the
correction to the energy could be calculated,

(nk —n k)@0—=0,

bs, k+2—=0 (i.e., Bskj s»0),
(44)

and (43) assures that these conditions remain satis6ed
throughout the zero-point motion.

These conditions are the conditions that essentially,

(42)

just the diGerence of the perturbed and unperturbed
zero-point energies (a special case of a relationship we
will prove later). The largest part of (42) will be an
amount —HI,0 from the mode v=O; but the whole
correction is only of order E '. relative to the total
energy so need not be calculated.

Second, note the existence of two formal solutions of
the equations of motion:

(Xamn, nk —n kj=—0, (3!anD,bs, kj=0, (43)

where z' is the direction along which s~' points. The
assumed ground state satisfies
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so that
[X)x 7= vx )

X(X&0')= (l+E0) (X%'0'),

and our attempt is to calculate the v and the x" approxi-
mately by assuming the commutators to have the values
appropriate to some zeroth order 0'O'. There are, how-
ever, certain pair excitations which are not possible
from our unperturbed +0'. we cannot destroy electrons
in states which are empty, or create them in full states.
The procedure is consistent only if the equations of
motion are compatible with these restrictions, i.e., if
the conditions (44) are indeed solutions of the equations,
as we see from (43). We will show in the next section
that this is more generally true.

This point of view may be clearer if we see that (44)
may be expressed in Bogoliubov notation as

(nk0 nko —nkt*nkt)%0= 0,

(nkO nk0+nkl nkl)F0
(43')

A little algebra with (28) and (2) shows that this rather
convenient expression is the same as (43).

IV. RANDOM-PHASE APPROXIMATION TREAT-
MENT OF THE FULL HAMILTONIAN:

EQUATIONS OF MOTION

What we shall now show is that there is a single
approximation scheme, startirig from the full Hamil-
tonian and not paying undue attention to the q=0
part, which leads to the equations of the last section as
an integral part, while reducing to the usual R.P.A.
treatment of correlation energy and of plasmons in
appropriate limits. In fact, in the absence of phonon
attractive forces it is the same in principle as Hub-
bard's" inclusion of Coulomb exchange.

In this scheme, as in the second approximation of the
last section, we calculate equations of motion of quanti-
ties which are bilinear in the original fermion operators.
We generalize in two ways: we calculate the full
equations of motion, by commuting with the full
Hamiltonian; and we calculate equations of motion for
quantities with momentum Q as well as momentum
zero:

nonphysical excited states do not enter the problem.
Our calculation can be thought of in the following way":
starting from the exact ground state %0', we make all
possible zero-momentum excitations of pairs of elec-
trons, such as bbk%'O'. Certain linear combinations

x"=Qk (nk8nk+PkBn k+yk5bk+Sk5bk*),

satisfy commutation rules

k&k', q tr, e'

XCk', y' C k+q, e C k+q, yCk, (r&.

The full equation of motion of pKQ is

53:pxo7= («+ct—«)pxo

+ Z LV(K+Q, k)c-.
R, e,q

(46)

or
—V(K,k)c x+, .*c k~0, .cx+o*ck7, (47)

these Hermitian conjugates of our quantities have
momentum —Q.

These full equations of motion are of course useless.
However, what can be done is to linearize them, as
we have done in the preceding section for 3'.RED, and
as Bohm and Pines, ' and Sawada and Brout, ' have done
for the Coulomb problem. The linearization used in the
usual R.P.A. ignores the exchange terms, which are of
the form of the terms we discussed in Sec. III; but
there is no need to do so, as Hubbard has shown in a
slightly diGerent way, so Iong as the exchange terms
are correctly screened. The method of linearization we
use is straightforward in the extreme: each term in the-
interaction part of the equations of motion is a product
of four fermions, and thus a product of two bilinear
combinations b or p (or N) in a number of ways. We
assume that the state about which we linearize is a
B.C.S.-Bogoliubov product state, so that it may have
finite zero-order values of bk, bk*, or L1—(nk+n k)7.
Then we keep only terms which contain one of these
quantities.

When b and b~ are zero, the resulting equations are
those of Bohm and Pines with exchange added. '4 The
equations of motion for b and e themselves are just (32)
itself. We shall go on to discuss the solutions of various
kinds and to show that the individual-particle solutions
give just the B.C.S. spectrum, while the longitudinal
collective solutions are such as to insure the validity
of the sum rules and of gauge invariance, as suggested
in reference 6.

The full nonlinear equations of motion are of almost
no interest in themselves. We shall write down the one
for pKQ and theri show brieRy how the various terms of
the linear approximation follow from it. Then we shall
give the linearized equations of motion for all of the
quantities (45).

I.et us lump together the Coulomb interaction (9)
and the phonon term (8) with a common matrix element
V(k,k') (which is a function of k and k' only, for the
reasons put forth at the end of Sec. II). Then for the
Hamiltonian we have

P V(k,k')

bk =C k Ctck, 5k =Ck+O C

pk =Ck+Q Ck, pk =C k C k Q,

as well as bk, bk*, ek, and e k. Note that

(b")*=5;;, (.")*=.- .—;

(45)
L&,px'7= («+O—«)pxO+ZkLV(K+Q k)

)&pK k+ock*cx—V(K,k)pk Kcx+q*ck7.

~ The equations for pk are the Bohm-Pines equations; those
for b and 5, on the other hand, are the Bethe-Goldstone equa-
tions LH. A. Bethe and J. Goidstone, Proc. Roy. Soc. (London)
A258, 551 (1957)j.
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We have used p& for the Qth Fourier component of
density:

n~= Bus, u
k, a

(The second form above, though brief, is actually quite
inconvenient for calculations of all but the "direct".
term. )

If we sum (47) over K, and in the first interaction
term replace k by K+Q and K by k (both are now
duinmy variables), we see that the interaction terms
in [K,p@) vanish. Thus our equations of motion are
such as to automatically satisfy. the sum rules (this is
maintained .throughout) and the most important con-
sequences of gauge invariance. The equation of motion
(47) contains five types of linear terms:

[X,px@j= tunetic+ direct+ exchange self-energy

+exchange scattering+ superconductivity.

The kinetic-energy term is simply the first term:

(48)

X,.""=-,'P V(k, —k+q)e&, .e s+,„,
k, g, o

(51)

in (46). There is a phonon contribution here to V(q),
and it was this contribution which was the basis of the
old superconductivity theories of Frohlich and
Bardeen"; the assumption now is, however, that this
coupling is far too weak to have a visible effect. The
appropriate terms are as follows:

Self-energy: [K, "",px@)
= —px'~ P,[e, x uV(K+Q, q —K—Q)

—n, xV(K, q —K)j.

The "exchange scattering" terms are the exchange
terms which Hubbard includes by a device similar to
ours, and follow from those exchange terms (with
parallel spin) which contain p@'s:

Exchange scattering: [5C,px&j
(isx +x+Q) Zs ~s-x-Q'V(K+Q, q—K). (53)

Note the formal similarity to the direct terms (50), just

'~H. Frohlich, Phys. Rev. 79, 845 (1950); and J. Bardeen,
Phys. Rev. 80, 567 (1950).

Kinetic: [Xx)px j= (ex~a —ex)px . (49)

The direct terms are those terms which result directly
from the interaction with the components of fiuctuation
of electron density of wave number Q, i.e., from the
term V(Q)p@p @+cc. The linear part is, from the
second half of (47):

Direct: @CD,px@j= V& (Q)pu (ex Qz+Q), (50)

(We put the subscript D on V to indicate that only in
this term should the "direct, " unscreened interaction
enter; this is primarily a function of k—k'=Q alone. )

The exchange self-energy terms come from the usual
exchange terms,

as the exchange self-energy is similar to the kinetic
term (49). For small Q, (53) is negligible compared to
(50), and we shall neglect it because it has no relevance
to the superconductivity problem. However, for
consistency we must then also neglect the exchange
self-energy terms (52). That is justifiable as a "weak-
coupling" approximation.

Finally we come to the superconductivity terms.
These are of two types: "individual-particle" terms,
rather like self-energy terms, which come from the
B.C.S. reduced Hamiltonian [q=0, o'= —0 in (46)j;
and "collective" terms which follow from q= —Q,
o.'= —cr in (46). The terms are:

[51'z,Px'j= —(ex+g —«)px'i,

[51'x,bx~j= —(ex+ ex+u) bx'i,

[5Cx,bx~ 1= (ex+ ex+@)bxo.

Exchange self-energy: [K se",px&j

=ox'LZs V(K+Q, q-K-Q)~ „x,u
—V(K, q-K)e,+xj. (56)

These terms may be simply taken into account by
inserting into (55) an exchange self-energy

hex;.———Q, V(K, q —K)ex,
Direct: [KD,px@j= Uii(Q)p@(e x u—n z),

[51'a,bxuj= —Vii(Q) po(bx+bx+~), (5g)

[51'n,5x~j=Vn(Q)uu(bx*+bx+u*).

Supercond. : [Xs,px&j=gi, V(k,K)(b„+u*bx@
—bs bx@+bxbs'i —bx+u*b P). (54)

[We shall normally take Q small, so we neglect the
small difference of V(K+Q, k+Q) and V(K,k).j

. This method of presentation shows why the "super-
conductivity" terms have not appeared in previous
types of theories: they come in only when b and b~ are
treated as number operators are in usual theories. The
relationship —or lack thereof —of superconductivity
and ferromagnetism is also rather clear in this scheme.
Exchange interactions involving a repulsive inter-
electronic potential act like an attracti oe between
parallel spins —compare (53) and (50)—and the
resulting self-energy-like terms (52) are responsible
for ferroxnagnetism, if they are big enough to outweigh
the kinetic energy. The corresponding "superconduc-
tivity" terms are repulsive, whether between parallel
or antiparallel spins (as could be verified by writing
down equations of motion of c s gtci, t). The inter-
electronic attractioe caused by the phonons is thus
detrimental to ferromagnetism, and the interactions
responsible for ferromagnetism are correspondingly
detrimental to superconductivity.

Now we shall write down without further explanation
the linearized equations of motion for the remainder of
the pair quantities (45), classifying the terms as before.
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Exchange scattering:

[Se,pz&]= —(n z u —n «)
XQ, V(K+Q, q—K)p, z g'i,

Pe, ,b i]=b P,p, ,&V(K, —q—K—Q)

+bz+g Z, V(K+Q, —q —K) (59)

XP—K—Q—q )
Q

[:fe. ,bx ]=—b«*p V(K, —il —K—Q)p z u
—bz+o*Z, U(K+Q, —q —K)p K &,&.

Superconductivity:

[~s,PK~]=Z V(K,k)(b *bxu —bk+gbxo

+bx+gbko —bx*bP),

[~.,b"]=K. V(K,k) [p"b.+ .&b... (60)—(1—nz —n z o)bk'i],

[~s,bz@]= g—k V(Kl&k) [bk+@*pz'O+bk*pz@
—bP(1—n z—nz+u)].

It is clear why this method can be called a "random-
phase" method: it has the eGect of decoupling ex-
citations of different momentum Q, because the only
zeroth-order quantities have zero momentum. For this
reason the Q=0 equations are decoupled from the rest,
and are in fact almost exactly those of Sec. III. We
can thus write down the Q=O equations without
distinguishing zeroth- and 6rst-order quantities.

Pex,nk]= [sex,n k]=0,
61

[~Krak] 2&kbk j [~Krak ] 2&kbk j

[3C. -",nk]=[BC -",n k]=0,
62

Pe kwlf bk]= 286kbk Pfex8~lf bko] —2bkkbkO

The "direct" terms all vanish because Vo(0) =0. The
exchange scattering terms have coalesced with the
exchange self-energy (62); they would reappear, if we
separated out first-order eGects, as terms involving
o.,k'8(beak) (this is why a consistent treatment must
include both or neither exchange terms). Finally, the
two parts of the superconducting terms coalesce, also
to reappear upon applying 8's as in Sec. III:
pCs, nz]=pk V(k, K) (bk*bz —bkbz*) = [Ks,n z],'

(63)
PCs,bz]= —Qk U(k, K)(1—nz —n z)bk,

pCs, bz*]=gk V(k, K) (1 nz n—z)bk*—

Using the definitions (22) we find, as we expect, that
(63) may be written

[~scuzz] — &(+vxszx +xzsvx) y

(63')
pcs, s.«+is„z]=s,z (H.«+iH„K).

These equations may be thought of as determining the
zero-order values of the quantities b, b*, and e:

~bk'~ = —' singk, (1—nk —n k)'=cosgk.

Henceforth we write bl, for bI,', etc., so that .the b's and

& u =2k (iikpP+Pk pko+ykbko+bkbk'i), (64)

such that

because then
[BC,x.o]= vx.u,

Q=& ~p

(65)

(66)

will be an excited eigenstate of energy Eo+v. To find
the v and x„Q it is a valid scheme to replace the com-
mutators by time derivatives, and assume all quantities
have frequency v.

The v give immediately the most important ob-
servable phenomenon, the excitation spectrum. The
properties of the ground state must be found more
indirectly. Since the system is one with time-reversal
symmetry, we can expect —and do find —that the
secular equation is a function only of v', so there are
eigenfrequencies &v. If 0'p is the true ground state,

x „Q+p—=0 (67)

[it will be useful later to note that x P= (x„@)*],and
this is the simplest expression of the modifIcation of
our assumed ground state 4p', the product wave
function, by the zero-point motion. In the absence of
scattering terms (67) is trivially satisfied, being simply
the condition that particles cannot be destroyed in the
vacuum, or created within the Fermi sea; but the
coupling terms make (67) a definite modification of the
product function.

In Appendix II we will show how to compute the
energy using the x,Q's, and particularly the condition
(67). In the simple cases of the pure plasmon theory,
or the theory of the B.C.S.%RED, the energy is corrected
simply by the sum of the zero-point shifts of the fre-
quencies v, but that requires that the Hamiltonian as
well as the equations of motion be separable into parts
identifiable with the separate momenta Q, which is not
in general so. The more general expression for the energy
correction which we give in the Appendix is very com-

n's appearing in the equations without superscripts are
just numbers.

Thus, except for the exchange self-energy terms,
which we explicitly neglected in Sec. III, (61)—(63) are
identical with the equations of the spin model of the
B.C.S. theory.

Equations (61)—(63) demonstrate the first feature of
our method: that the equations of the B.C.S. theory
separate out automatically as the zero-momentum
component of a random-phase approximation. The
B.C.S. equations have also the eGect of determining the
stablest ground state about which to linearize the rest
of the theory.

This connection with the B.C.S. theory of the last
section shows us the meaning of the equations we have
called "equations of motion. "Our attempt is to And a
complete set of "elementary excitations" x„Q involving
pairs of particles, and having momentum Q, analo-
gously to the zero-momentum excitations of Sec. III:
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plicated and usually can be only approximately
computed.

In the next section we will discuss the actual solutions
of Eqs. (48)—(60); here we are concerned with various
generalities about them, and particularly their con-
nection with other theories. For this purpose we might
examine their structure more closely.

Let fxQ, (f')xQ be any of the quantities pxQ, pxQ,

bxQ, or bxQ, and f' be any of the zeroth-order, zero-
momentum quantities. The equation for fxQ contains
two general types of terms: self-energy-like terms like

(55), (56), and the first two terms on the right in (60),
which have the form

(f')xQ Z~ I'fo" (68)

and scattering (or collective) terms such as (58), (59),
and the last terms on the right of (60), which have the
form

(69)fxo Z~ I"(f')P

These two types of terms come from two types of
terms in the Hamiltonian: the self-energy terms (68)
come from terms

(7o)

2 f"(f~')*, (71)

and result from commuting f~ Q* (k'= ~K or
+(K+Q)) with fxQ to give the zero-order fxo, the
remaining k-sum being the sum in (69).

Just as in the last section, there are two possible types
of solutions: "individual-particle" and "collective. "
Individual-particle (i.p.) solutions have only one or a
few fkQ finite, so that terms of type (69) are of order
1/X relative to terms (68). Thus the frequencies of all
individual-particle modes are correctly given by %RED,
which is the basic reason behind the success of the
B.C.S.-Bogoliubov theories. As Bogoliubov has shown,
energies of type (70) may be rewritten in terms of self-

energieS Of the tranSfOrmed FermianS O.zp, o,zl, and in
that scheme the cz's act like independent particles. Thus
also for independent-particle modes with QWO our-

scheme is fully equivalent to B.C.S.-Bogoliubov. On the
other hand, the scattering as mell as any collective modes
require the inclusion (at least) of all terms of type (71).

'

There is one last point to be made about the formal

which are (aside from tunetic energy) the exchange-type
self-energy and the B.C.S. reduced Hamiltonian. That
is, the term (f')xQ in (68) comes from commuting fxQ
with one of the two f's in (70) having k or k'= &K or
&(K+Q), the remaining sum giving the self-energy
sum of (68). Thus the reduced Hamiltonian gives all
terms (68) correctly (aside from excha. nge self-energy,
which was neglected in B.C.S. as well as Bogoliubov,
as a weak-coupling assumption). On the other hand,
the scattering terms (69) come from terms in the
Hamiltonian

structure of the theory. To.understand the difhculty,
let us take the simplest case of the unperturbed Fermi
sea, and for definiteness take E(kv,

~
K+Q

~
)kv. We

have equations for four excitations (we give also the
corresponding excitation for the general case in terms
of Bogoliubov operators):

pzQ ~

y Q

pzQ ~

gzQ-

v=GK+Q 6%+0~ o'z+Qp 0'zl )

(ox+Q+ox) +0~«i «+Qs,
v= ~z —~z+Q+0 ~&zpo'z+Ql)

v= &xyQ+&x) 0 ~ +x+Qo «0 ~

(*, ).=«+Qo ~xoQg (72)

are eigensolutions. We know this to be identically so as
far as the self-energy terms (68) are concerned, but
must prove the theorem in regard to the coupling terms.

This is easily done. In terms of the n's, the only
finite zero-order quantities are

(~xoaxo*)'= («i«i*)'= 1. (73)

The collective terms come Lsee (71)7 from commutators

(L(fxQ)*,«+Qo*«o7)', (74)

but by simple enumeration we And that none of these
commutators can result in quantities (73), so that
(74)=—0. Then there are no coupling terms in the
equations of motion of az+Qp*nzp, or for that matter the
COrreSpOnding —v quantity nz+Ql o.z&. ThiS prOVeS the
theorem: the equations of motion are compatible with
the requirement

because

(~+ Q)-+o=
&z+Qo 0'zo

%p =—0,
&Z+Ql Zl

(75)

L~ (~+ Q)-7= ~ (vxQ)-(*~')-.

The analogous requirement in the spin theory was of
course (43'), and that analogy shows us the nature of
(75) as opposed to the similar (67). (75) is a linearized
version of a kieemaA'eel condition, automatically satis-
fied by the equations of motion; we do not know the
nonlinear equivalent, although it must exist. On the
other hand, (67) is simply a defming condition for the

The v's of course come in & pairs, and obviously (67)
is satisfied for b and p. In the coupled theory, there will
still be two conditions (67) on the ground state elimi-
nating the new coupled version of 5 and p.

There is as yet no condition built into the theory to
eliminate the nonphysical positive frequenc-y quantity
b. The product wave function, of course, automatically
satis6ed

&zQ+op=o,

but we have no guarantee that th s condition is main-
tained throughout the motion, once coupling is intro-
duced. This means that we have to prove the theorem
that even in the presence of coupling the "unphysical
modes"
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ground state, which is not satisfied even in in6nitesi-
mally excited states, and also divers in that it de6nes
a true change in, the wave function from the simple
product result. Equation (75) says kinematically that
the motion involves owly the simultaneous excitation of
pairs; while (67) expresses the dyrsarrsical extent to
which this occurs in the ground state. (75) will be a
useful result in 6nding the solution of our equations.

Now let us briefly note the second limiting case: that
(48)—(60) reduce to the R.P.A. theory of Coulomb
correlation in the normal case in which bI,'=bI, *=O.
The Sawada-Brout theory corresponds to keeping only
(49) and (50) $(55) and (58)), and to including the
eBect of exchange only by perturbation theory. As
Sawada shows, in terms of diagrams this amounts to
summing, besides exchange diagrams to second order,
all diagrams of the form of Fig. 2(a).

Our theory in its complete form, including the
screened exchange terms (51)—(52) f(56) and (59)), is
an equation-of-motion equivalent of the diagram
method of Hubbard, which is more accurate than
Sawada-B rout.

This method sums automatically also all the diagrams
of the form of Fig. 2(b), in which the interaction lines

for the exchange scatterings themselves imply complete
sums of terms like Fig. 2(a). A more complete dis-
cussion of the relationship of this method to other
treatments of Coulomb correlation and other many-
body problems" will be given in a later publication.

V. PARTIAL SOLUTION OF EQUATIONS
OF MOTION

In this section we shall attempt a discussion of the
solutions, and particularly the collective ones, of the
equations of motion (49)—(60). As we pointed out in
the last section, the individual-particle modes will

automatically agree with the B.C.S.-Bogoliubov theory;
we shall, however, verify that also. Let us 6rst write
down the equations, making use of the following
abbreviations, and neglecting the exchange terms
(which have the effect fundamentally of simply altering
slightly the kinetic energy and the direct' scattering
terms, without changing their character) throughout:

cexQ = ez+Q ex) 0xQ exyQ+ exi

—Iz——Pa V(K,k)bg ——Pa V(K,k)by*,

sKQ —sK+Q sxp sKQ —1 sK sx+Qo

(77)

Here we have chosen, with no loss in generality, bI,——b&*

(the domain wall in the +x direction). Iz is then half
of the x component of H~, and is de6ned to be positive

"Note the presence in Eqs. (60) of terms like

(I—ex —re z Q)baQ,

by means of which the scattering of excited pairs of electrons or
holes in the presence of the Fermi sea may be calculated. Thus
these equations reduce to the Beth'e-Goldstone ones for the case
of the normal Fermi sea.

k 4+ q
k

k~+q
)

k, +q
I

annnrvw, COULOMB

q INT ERACTlON

ELECTRON il HOLE

kits+

k+q

(b)

2. Perturbation-theoretic diagrams summed by the
random-phase method. Plain arcs represent electrons and holes,
wavy lines Coulomb interactions ("longitudinal photons"); the
momentum and momentum transfer, respectively, are given next
to the lines. (a) Typical chain-type diagrams summed by the
Sawada et al.-Eront equations. (b) More general diagrams
summed by full method. Use of dielectric constant screening
causes exchange interactions (like that labeled s) to imply full
sums of diagrams like 2(a).

(V is negative). With (77), we get

I ~&pz ) +zQpz VDP rszQ Ix+Qbz +Ix5x
+bz Qx Vbg —bx~Q Qg VbaQ, (78a)

[K,px )=—coxQpx +Vip nxQ —IzbzQ+Iz+Qbz
+bz+Q Qt Vbg —bz Qg VbaQ, (78b)

L~»x )=—"*Qb* —VDpQ(bz+bz+Q) —Ixpx
—Ix+QpzQ —sxQ Pa VbaQ, (78c)

(~»xQ) = IlxQbxQ+ VnpQ (bx+ bz+Q)

+(Ix+QpxQ+I~xQ)+«Q g, V5aQ. (78d)

Here we have V= V(K,k) for brevity, and V&= Vz(Q).
The time-reversal feature of (78) may be seen by

noticing that if we take paQ= (pp)*, b= (b)*, (78b) is
(78a) and (78d) is (78c). Interpreting PC,f) as if, this
means that (78) connects the real parts with time
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derivatives of imaginary parts and vice versa; thus it
is basically an equation in (d/dt)s. Our method of
solution will be to derive the two second-order equations
for the (say) imaginary parts. For instance, we write
down

[~, p» +p» ]=oi»Q(p —p)» —(Iz+Iz+Q)
X(b—b)K (bK+bK+Q) Qk V(b —b)P, (79)

[~ [X (P P)K ]j=~o»Q[~ (P+P)K ]
—2VDrc»Q[X, PQj—(IK~Q —Ix)[~, (b+ b)KQ]

+(b —b,Q)I~, Z. V(b+b) Qj (80)

In (80) we substitute from (79) and the corresponding
equation for b+b, except in the last sum, which is most
conveniently left in its present form:

[X,pe, w»Q ]]= v'w»Q ——[~o»Q2+ (I»~Q Iz)']w»Q
2(6—»+QIK E'KI»+Q)yz —2VDN»QII

—[(o»Q(bx+bz+Q)+s»Q(I» —I»+Q)] Zi Vyg
+ (b»—b»+Q)B»Q. (81)

Here we have made some further abbreviations:

of which those with the —sign are exact solutions
because of (76), but must. be discarded because of (75).

Now we shall go on to discuss collective solutions.
To avoid complications we make some assumptions
which are valid in the weak-coupling limit or in the
"cutoG" theory of B.C.S. in which V is a constant. In
some cases we assume small Q, the case we study
primarily (for large Q the overwhelming majority of
pair excitations of momentum Q are obviously un-
affected by superconductivity).

We assume Iz I indep——endent of K, as it will nearly
be if cp(&(oD. pKQ will be small except within Eo of the
Fermi surface; then we can assume

P& V(K,k)yP=AQ independent of K. (86)

We shall And that the most important collective
modes have y even; in that case

[X,Pz V(b+5)»Q]= —Pz VQ»Qy»Q=BQ (87)

is also zero. However, for the sake of completeness we
shall retain BQ, also assuming it to be a constant with
varying K. Then the Eqs. (81) and (83) become

~zQ= pg —pk

B»Q= [~, Qk V(bp+bp)];
= [~~p ]=Q x ~zQwi Q.

This last equality is the all-important sum rule. '
The equation for y&Q is obtained similarly:

(82)

(v MKQ )w»Q= —2Q&KQIy»Q 2viiBKQI—IQ

o~»Q(bx+b»~Q)AQ+ (bz —bz+Q)BQ, (81')

[v' —(Q»Q'+4I') ]y»Q = —2(o»QIw»Q
—2Vn (b»+ b»+Q) IIQ+ [Q»Qs»Q

+2I(b»+bz+Q)]AQ —szQB3Q. (83')

bz+bxpQ ~KQ

&o»Q (b»+ b K~Q)
—s»Q (I»+Q —I»)

, (84)
QKQs»Q+ (Ix+I»+Q) (bz+ bx+Q)

the collective parts of the two Eqs. (81) and (83) are
simply proportional. This is the result of the condition
(74)—(75): one solution factors from the secular
equation.

Second, we derive the spectrum of the individual-
particle solutions. This too we know must come out
right, but we shall do it as a check on our reasoning.
Leaving out the collective terms, the secular equation is

QKQ + (IK+Iz+Q) v 2(IKEK+Q I»+Quiz)
7

2(IK&x+Q I»+Quiz) oi»Q + (Iz+Q I»)' —v'

which indeed has the solutions

(vx )'= [(«'+Ix')'~ («+Q'+I»+Q')']', (85)

v'y»Q = [QKQ'+ (I»+Ix+Q)']yxQ
—2 (IK6»yQ I»+Quiz) wzQ —2 VD(bz+ bzpQ) IIQ

+[Q»Qs»Q+ (Ix+Ix+Q) (b»+b»+Q)]
Xgi, VyÃ —s»QBxQ. (83)

First note that, because

bK—bKgQ

To take advantage of (84), let us define

a&KQ (b»—b»~Q)
4 KQ =2')IIQ+ (bx+b»~Q)AQ — BQ. (88)

+KQ ÃKQ

Then (81') and (83') may be rewritten

('v' —~»Q') w»Q+2~»QIy»Q = —~KQC KQ,

[v —(QKQ +4I') jyzQ+ 2o~»QIw»Q

= —(b»+ b»+Q) &»Q.

(89)

We,may solve by multiplying the erst by 2coKQI, the
second by (v' —oi»Q'), and subtracting, or vice versa.
In that case we get

([v'—(Q»Q'+4I')][v' —~KQ I
—4o~»Q I'-) y»Q

= —[("—»Q )— KQ~KQ (b»+b»+Q) ']
X (bx+b»+Q)c»Q.

With the collective terms (the right-hand side) left out,
this equation must have the solutions (85), and so the
left-hand side must simply be

[v'—(v»Q)'j[~ —(vz')-']yz',

where v»Q is the physical (positive-sign) root of (85)
and (v»Q)„ the unphysical, negative-sign one. The only
way, then, to satisfy the requirement (76) is for
[v'—(v»Q), 2] to be a factor on both sides; canceling
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this factor out, we obtain

L"—(~K')')yx'= —(bx+bx+u)C'*'.

By a similar procedure we can also arrive at

[p' —(vx@)')wx& = —ex' x&.

(90)

(91)

where after some algebra we define

f=Zk ~kafka[(»')' —") ',

g=Pk (—V)eke cos'[—,'(8k 8k+@))[(~ku)'—v') ')
(97)

h=pk (—V)(bk+bk+u)[(iku)' —i')—',

&=gk ~kg'(bk+bk+u)[~' —(~P)') '

[So far we have not used our simplifying assumptions
in any essential way, and (90) and (91) could be used
to obtain complete spectra of collective modes if the
resulting integral equations could be solved. )

From (90), (91), and the definition (88) of C, we can
form the sums II, 3, and 8, and arrive at the integral
equations which determine the frequencies:

11'={Zk ~k~mk~[(» )'—~') '}2VDII'

+{Pka&k&P(bk+bk+g)[(vku)2 —v ) '}A@
—{Qk cokQ(bk bk+u)[(vp) —v ) '}B@. (92)

Au= {Zk V(bk+bk+Q)[(~k )'—~) '}2VDII

+{2kV~ku(bk+bk+Q)'»u 'L(»')' —~) '}A'
—{Zk V(b.'—bk+u')Nku '[(»~)'—~') '}Bu, (93)

B = —{Qk VQku(bk+bkpu)[(iku)' —v')—'}2')II i

{Qk V~kgflkQ(bk+bk+Q)»Q

X[(v ~)'—i') '}A@+{QkVQku

X (bk' —bk+u')~kg '[(»u)' —+) '}B . (94)

(92)—(94) are a set of three simultaneous linear
equations in II, A, and B. Symmetry about the sphere

l
k+(Q/2) l

=hp makes the cross-terms coupling B to
A and II vanish. Thus there are, as in the Q=O case,
two independent types of collective solutions: the odd
ones involving B&, corresponding to bII, in (33) finite
(limq pB@~bII ), and the even ones, with finite A@

and II@ (like the 8II„s l otiuos)n. The odd solutions obey
(94), which by use of (84) is

I=K. (—V)f~kusku[(»')' —") '

As in the Q=O case, all solutions lie in or close to the
continuum, and approach as Q ~ 0 the corresponding
solution of (34)—(35).

As for the "even" solutions, our assumptions have
been equivalent to the U= constant assumption which
eliminates any higher bound states for Q=O. These
higher states may also exist for QAO, for physical U's,

but we shall ignore them, simply observing that p, d,
etc. states, or if you like, transverse and more com-
plicated collective waves, may exist but will be near
the continuum, and their energies will approach the
corresponding Q=O energies as Q —+ 0.

This leaves the coupled Eqs. (92)—(93) to determine
the physically important longitudinal collective modes.
The dispersion equation is a determinant

The collective modes have entirely diferent behavior
depending on whether we consider the charged or
neutral cases. In the charged case, VD is singular and
large, II is the important variable, and f determines
the frequencies; in the neutral case A~ (a variable
which closely resembles the "rotation" of Sec. III) is
the important variable and g mostly determines the
frequency. We shall analyze the two cases separately.

1—g= 2V/h. (98)

In the limit Q=O, this has, aside from the individual-
particle solutions, only the v=O collective mode which
we discussed in Sec. III; g=1, v=0 leads to precisely
the equilibrium condition for the ground state. Our
task here is to get the dispersion of this mode to lowest
order in Q. For this purpose it is adequate to expand h

and I to lowest nonvanishing order in Q' and v', and g
to erst order:

h—gk (—V) sin8k(vk') '= 2I pk (—V) (~k') ';
t——pk ark@' sin8k(vkp) '

=——',hg'Q'm —' Pk sin8k(vkP) ';
(99)g-=1+"Zk (—V)(»') '

+{P,(—V)(., )- o. [-', (8„,—8,))
—2[2k (—V)(»') '+2k (—V)(»+u') ')}.

The calculation of this last difference follows:

}=Qk (—V)I '(sin8k+sin8k+Q) [cos (p (8k+@ 8k))
Xsin8k sln8k+@ —

~ (sin8k+ sin8k~Q)')
= —Pk (—V)(4I) '(sin8k+sin8k+u) '

X (sin8k cos8k+u —sin8k+Q cos8k)'

—=—Zk (—V)~ku'(»') '

Thus the dispersion of this mode is given by

Case I. Neutral Fermi Gas

This case is defined by Vz& ——const as Q —+0 (we
might as well let VD ——V, the ordinary interaction).
Since f~ Q', 1 2VDf —1 in the—long-wave limit except
very near a vku; in a principal-value sense, f is small
everywhere. This limit of small Q is the interesting
region, since in reference 6 we proved that in this case
states with Q —& 0 lie at the bottom of the energy gap;
thus we use a perturbation procedure suited to this case.
Since also l~ Q', in all terms except 1—

g we can make
approximations; in particular, we neglect f and get

1 2')f—
2')h 1—g

=0) (96)
1—[I+~2k (—V)(~k') '—Zk (—V)(»') '~kQ)

=2V[—2I pk (—V)(»') ')[pk ~kg' »n8k(i'k') ')
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01
v'= ',vp'-Q'L1+ 4I VQg sineg(vg') ']

=-;vv2Q2I 1—41' (0) I
V I]. (100)

Apparently the "phonon" velocity 3 &vp is strictly a
kinematical "ideal gas" effect, the 1V(0)V correction
being a result of the coupling to the direct interaction
in the present weak coupling case. The kinematical
term has been obtained in a diferent way by
Bogoliubov. '~

Case II. Charged Fermi Gas

In this case
VD(Q) =2v.e'Q ', (101)

and in the important Q~ 0 limit, the cross-coupling
2V~lh as well as the term involving f are rather large
constants unless v is large. First let us satisfy ourselves
that there are no low-lying collective modes. For such
modes v could be neglected in estimating 1 and h; we
calculated in Case I that lh(v=O)=I '1V'(0) V(~qQ') so
we And

2Vg)/h(v=O) —ar 'I—'E(0)V))1

Thus the collective mode with v=0 near 1—g=0
disappears without trace; we can only hope for a
solution at very large v. We expect such a solution to
lie near ~„;we shall And there that now /, h, and g are
small and in them we assume v=co~. What we then seek
are the corrections to co~ of lowest order in the energy
gap 60= 2I.

Near co„, g is small, if we assume that the exchange-
phonon interaction, when averaged over attractive and
repulsive regions, is small compared to the direct
interaction. In any case 1—g is only coupled in by small
terms, so we can neglect g and write

1 2VDf=2Vg)lh—. (102)

Thus, in conclusion, the predictions of reference 6
are in large part borne out: that the charged Fermi gas
has no low-lying collective modes because of the strong
plasma eGect, while the neutral gas has a low-lying
branch. The present weak-coupling theory gives no
correction to the plasma mode, and derives a phonon-
like mode for the neutral case with a small interaction
correction. The presence of the interaction correction
represents a de6nite improvement of the present
method.
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APPENDIX I. INCLUSION OF DIRECT
INTERACTIONS WITH PHONONS

In the actual physical superconductor there always
remain a group of excitations in the energy gap: namely,
the lattice phonons. According to our discussion of Sec.
II, it should be feasible to study the eBect of super-
conductivity on the phonons by introducing explicitly
only the direct electron-phonon interaction; if the
phonons are not seriously perturbed by the difference
between normal and superconducting states, then their
contribution to the dielectric constant, and thus to the
superconducting interaction V, can be studied as though
the electron wave function were normal.

Clearly it is only important to include phonons in
the physical, charged case; the neutral case is of possible
physical interest only in such problems as He' or the
nucleus, where there is no lattice.

The inclusion of phonons simply involves including
among the excitations of momentum Q the coordinate
and momentum qQ and PQ, and the terms of (12) and
(13) involving these:

Near v=40v, Q=O, We haVe

2')lh= —2Vz&(Q~ 44~Q'4e„' sineg)

X(PgI VI40v 'sinek)
= —2v+(40QQ')4„40v 44I2I v

I

(~.~+~')Q= (pQp-Q+fQ'qQq-Q)

(qQp Qvo'+q—-Qp vQ'*) (A1)

The equations of motion for the new variables lead
(103) rather simply to

The correction to f may be calculated as follows:

f= v 'Pg (ogQNgQ ——cov--'Pk (agQegQ(vP)',

so that

2Vnf=40 'v '—(40m(P)av2Vnco,
—4

Xp g 44gQa»Q
—'(v&Q)'

=o)„'v '+2vg)(co), Q4)A„co, 44I2I vI—(104)

We see that the corrections in (103) and (104) cancel,
leaving the plasma frequency as Q —+0 unchanged,
even to the very small terms which we are calculating;
It seems likely that the dispersion of the plasma mode
is also unchanged, since co„must be the same also for
large Q.

I X*,PzQ] =—qQvQ'(« —«+Q)

pC;, PzQ] =qQvo'(mz —«~Q),

I BC;,bzQ] =qQvQ'(bz+bz+Q),

PC;, 5zQ] =—qQvo'(bz+bz+Q).

(A3)

The extra, terms (A3) lead to an extra term on the right
of Eqs. (81) and (82) for w and y:

L~i+3-vh) L~4p rvz ]] 2~pQvo «Q~

LaC,+X,g, I 3'„yzQ]]=»pQvQ'(bz+bz+Q).

I x,pc,pQ]]= fo'pQ+24vQ'*IIQ. (A2)

Now we must calculate the effect of BC; in (A1) on the
various electron coordinates. The results are
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fQ' v' —2ivQ'* 0
2i vqf 1 2Vn—f I =0,

—2zvg h 2')h 1—g

(A6)

where the symbols f, g, h, and I are the same as they
were in (97).

The result for the normal metal would be the limiting
case of (A6) in which lo and l are zero, decoupling AQ,
and vkQ —v OikQ in f Then the. secular equation is

41 vQ'I'f
&norm fQ +

1—2Vilf
(A7)

This is exactly the same as the secular equation [his
(7a)j of Wentzel, "if we note that our f is his f, ; our
vo', his p, ; our Vil, his X,. Using (14) and (11),we find

v'=0)Q'+ (4n-ne'Z'M ')
1—2')f

Thus the e8ect of including the phonons appears
(appropriately, since the phonons are collective
variables) entirely as an extra term in the collective
part CxQ of Eqs. (%)) and (91);we must define a new
CKQ which is given by

(bx—bx+Q)
C xQ=2V~IIQ+ (bx+bx+Q)~Q-

QKQ SKQ

—2ivQ'pQ, (AS)
while PQ is related to IIQ by (A2).

Again we 6nd that symmetry about the Fermi
surface allows us to decouple BQ from the rest of the
equations, so we may assume BQ zero. Then we are
left with a three-by-three set of equations for IIQ, AQ,
and pQ instead of the two-by-two determinant (96).
The calculation is so similar that one needs only to
write down the 6nal determinant:

quency is to remain similar lh/(1 —g) must have the
correct value. Fortunately, in the "neutral case"
calculations of Sec. V we have the values of /, h, and
(1—g) in the appropriate limit, and we get

=-2~(0)1 1+(
(&kQ )Av~

(A10)

Since phonon frequencies are quite small relative to
cokQ, this agrees well with the normal value (A8). The
velocity change caused by superconductivity, given by
the last term, is of order no/M or 10-'. Whether this
is physical depends on whether our calculation is really
accurate for these very small terms.

Pote added in proof. Dr —A. W. . Overhauser has
pointed out to me that an eBect agreeing with this
correction in order of magnitude and sign was measured
on Sn and Pb by B. Welber and S. L. Quimby, Acta
Metallurgica 6, 351 (1958).

APPENDIX G. TOTAL ENERGY CALCVLATIONS

As Wentzel has pointed out, in the simple Sawada-
Brout method the energy change caused by the inter-
actions is given simply by the change in zero-point
energy summed over all the excitations. Unfortunately,
even the inclusion of phonon and photon exchange
effects complicates this simple prescription very much.
We shall show brieQy here how the energy might be
calculated on our method, but since it is relatively
unimportant physically —representing only a small
change from the B.C.S. result —we shall not make any
attempt at evaluating it. This appendix is included
primarily just to show that the equation of motion
method is a complete and satisfactory substitute for
the diagram method, for the energy as well as for the
excitation spectrum which it exhibits so naturally.
Since this is the purpose, we condne the calculation to
the case of an ordinary space potential:—Olo'+-0, (m/M)Z'vg'Q', (Ag) V=ZQ V(Q)~Q*uQ, (A11)

using the fact that f= 2E(0). Thi—s is a well-known
result in this approximation. ~

Now we shall study the effect of superconductivity
on the phonons. Adding i~@'V~ ' times the second
column to the first simplifies the determinant to

fo' —v2 —21vo'1'Vi& '
ivQ'/ Vi&

0

2$8g'
1—2VDf

2')h

0
=0,

I—g

which, expanded, is

v' —Olo' ——21vQ'1'Vil '(1—2Vil[f+ih/(1 —g)g} ' (A9)

In this form the analogy with (AS) is clear: we have
simply replaced the damping factor (1—2VDf) ' by
(1—2VD[f+/Il/(1 —g) j} '. In the normal case, f is a
constant and the singularity in VD makes the second
term the large one; now f~ Q' and if the phonon fre-

and then the potential energy (the kinetic can be
obtained by the trick of integrating with respect to
e) is

P.E =ZQ V(Q)(~Q+O, ~Q+0) (A12)

~k+QO &kl Pv (ikvZv+mkvZ —v)v

Olk+Ql&k0 Qv (nlkv+v ikvZ —v) ~

(A14)

The essential point of the method is to expand, pQ in
terms of the eigenexcitations x„(64) (we shall work
entirely with momentum Q alone, so we omit the Q
index where possible hereafter) which we expand
[instead of (64)j for convenience in Bogoliubov form:

Sv Qk (7ivk&k+QO Otkl +Pvk&k+QlQk0)v
A13

&-v Qk (gvk~k+QO akl 1ivk&k+Ql+k0) ~

We also shall need. the inverse transformation



1916 P . % . A N D E R S 0 N

Simply by substitution of (A14) in (A13) we get

Qk (X,klk, +P„knZk„) =8.. (A15)

Let us dehne two quantities which relate p and x„,
and which could if necessary be written out in terms of
the expansion coefficients:

U, = (x8 o,p+o) = (+o, (x„*p—px, *)+o);
A16

Q, V,x„=p.

Second, we expand (A18) by means of (A14). Then if

=Qy g k.Xvy

we have

(v—vkO)tk. = (») 'fi(k) O k, = —(v1vku)ritk. . (A22)

The only remaining task is to study 4 ~&. To show
what might be done with this let us take the simple case
of Sawada-Brout, where

Since

V(Q) Z U.V' (A17)
(A20) becomes0

Then clearly the term in the energy (A12) for mo-
mentum Q is

C ko =2V (Q)II@.

(x.+o,II'%o) = vU. , (A23)

$U„ is zero for v&0 by (67).)
We find that the equations of motion, together with

(A15), give us a relationship for U„P', . Suppose, for
example, that we assume that (90) and (91) are the
correct equations of motion. A little manipulation leads
us to the following equations for the e's:

X,k= fi(k) (v —vk'i)-'U„V (Q),.'= -f.(k) ( + ")-U, V(Q),

while, using (A16) and the definition of II@,

q g, =2VvF„

so that (A22) becomes
v~kyQO &kl vk ~k+Qo ~kl + (1/»)fi(k)C'k, (A18a)

VQ'k+Qi(Zko — Vk Qk+QiQko —(1/2v)fi(k)c'ko) (A18b)

where fi(k) is the complicated but known function

fi(k) =COSLo (ek+O —ek)lL&k+&k+O7

+sinL-,' (0k+@—ek)]rikq. (A19)

cVote added ie proof 6 Ric.—kays. en has pointed out
to me that Eqs. (A18) are in error, and that only their
consequence

LV (Vk ) j(ook+Qo Dkl A + ikl~ok )~ofl (k)c'k

is valid. The principle of the energy calculation is not.

affected by this error, and also (A24) is still correct.
Now we can derive equations both for the X's and

the I's from (A18). We take the average value in the
ground state of the commutator of x.* first with (A18a)
and then (A18b). This gives

&.k (v —VF) = (2v) 'fi(k) (xP'o,c'k +o),
(A20)

tivk (v+ vkO) = (») 'fi (k) (x,+o,c'k~o)-

lk.= VF, (v —vko) ',

riik„———VF .(v+ vkO)
—'.

Then (A15) gives us our desired relation for U„V, :

U P' Qk V'(Q)fio(k)L(v —vko)
—o

—(v+ vko) ')= 1 (A24)

Eventually this leads to exactly the simple result of
Sawada, when we insert the correct value of f, (k).

In the more general case 4,k does not consist of II@

alone. In any soluble case, however, it consists of a
6nite number of sums like A & and 8 which we must
perforce consider as constants, and the solution of the
problem involves finding a linear equation set like
(92)—(94) connecting the parts of C. If this is so we can
solve (92)—(94) for the A~, 8@, and any further such
sums in terms of H; then the only change in the theory
is a redefinition of the k- and v-dependent quantity
fi (k), which will have to contain factors coming from
the solution for C in terms of II.


