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Statistical-Mechanical Theory of Transport in Fluids*
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A statistical-mechanical theory of transport processes in fluids of g components is presented on the
assumption that the macroscopic state of the system can be described by one velocity, one temperature,
and g mass-density fields. The formulation is based on the explicit recognition of the fact that there are two
relaxation processes in Ruids: one is the macroscopic process of attaining spatial uniformity and is repre-
sented by the hydrodynamical equations, whereas the other is the microscopic process of attaining internal
thermal equilibrium in small mass elements of macroscopic size and determines the transport coefBcients.
For instance, in dilute gases the microscopic process is the relaxation process in momentum space. The
coupling of the two processes is investigated to obtain the dissipative terms in the transport equations with
the aid of the correlation function method outlined in a previous paper. The hydrodynamical equations, the
equation of entropy balance, and the linear relations between the thermodynamic fluxes and afIjtnities are
thus derived with explicit expressions for the coe%cients of viscosity, thermal conductivity, and diffusion,
which are valid for liquids as well as for gases. The classical limits of these expressions, A ~ 0, are somewhat
different from those obtained by Green for classical mechanical systems.

l. INTRODUCTION averages of dynamical quantities which correspond to
macroscopic properties such as the pressure tensor and
the heat Row. The other approach, the correlation
function method. , is concerned with the direct deter-
mination of the change in time of the state variables
and the transport coefFicients are expressed in terms of
the correlation functions of equilibrium fluctuations of
the appropriate dynamical quantities. The explicit
introduction of nonequilibrium distribution functions
is not necessary. The above investigations, except that
of Green, belong to the first approach. The possibility
of the second approach can be seen in Onsager's work
on the reciprocity theorem' and a further development
of it.'

In the present paper we discuss a statistical-
mechanical description of transport processes in the
framework of the correlation function method outlined
in a previous paper, ' and we derive the hydrodynamical
equations with explicit expressions for the coefficients
of viscosity, thermal conductivity, and diGusion in

S TATISTICAL-MECHANICAL theories of trans-
port processes in liquids have been investigated in

a number of papers, ' ' with the purposes of deriving
the hydrodynamical equations from molecular dynamics
and of obtaining the transport coefficients in terms of
molecular quantities. There seem to be two funda-
mental approaches to these problems; one, the dis-
tribution function method, is concerned with the
explicit determination of nonequilibrium phase-space
distribution functions used in the formulation of
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Quids of g compos. ents without chemical reactions.
Furthermore we attempt to provide a statistical-
mechanical foundation of the thermodynamics of
irreversible processes in continuous systems. " The
derivations are developed with the aid of quantum
statistics, but the classical formulation can be deduced
easily. Ke consider Quids whose macroscopic state can
be described by one local velocity, one local tempera-
ture, and g local mass densities, and conhne ourselves
mainly to linear dissipative processes.

In Sec. 2, we describe the basis of the present theory,
and emphasize that there are two kinds of relaxation
processes in Quids; one is the hydrodynamical process
of attaining uniformity in coordinate space, whereas
the other is the microscopic process of attaining internal
thermal equilibrium in small mass elements of macro-
scopic size. With the aid of the fact that the relaxation
times for the two relaxation processes are, in order of
magnitude, quite diGerent from each other, we derive
a macroscopic equation for the change in time of the
local state variables such as the densities of molecules,
momentum, and energy. In Sec. 3, we investigate the
coupling of the two relaxation processes and find it to
be expressed by the sum of the products of two kinds
of quantities. One of these are the aBFinities, ' namely
the driving forces of the hydrodynamical process. The
other kind are dynamical Quxes whose averages in a
certain manner become the thermodynamic Quxes

conjugate to the amenities, and the autocorrelation
functions of equilibrium Quctuations in time of these
dynamical Quxes are related to the transport coeK-
cients. The time dependence of the autocorrelation
functions represents the elementary processes which
determine the attainment of internal thermal equi-
librium in small mass elements.

Section 4 is concerned with a statistical-mechanical
derivation of the irreversible production of entropy and
of the linear relations between the thermodynamic
Quxes and amenities, and with a general consideration
of the asymptotic behavior of the time correlation of
Quxes. In Sec. 5, the hydrodynamical equations and the
equation of entropy balance are derived, and the
physical pictures of the thermodynamic Quxes and the
entropy Qow are discussed.

In Sec. 6, the conservation laws for the local density
operators of number of molecules, momentum, and
energy are derived from the Heisenberg equation of
motion, and the explicit expressions for the dynamical
Quxes and the transport coeScients are obtained. The
last section is devoted to a brief summary, in which
the physical framework of the present theory is dis-
cussed, and to a brief comparison with the work of
Green. ' The application of the present theory to the
problem of thermoelectricity yields the same expression
for the static electrical conductivity as Kubo's theory"

' S. R. De Groot, Thermodynamics of Irreversible Processes
(North-Holland Pnbhshing Company, Amsterdam1952). ,

» R. Knbo, J. Phys. Soc. Japan 12, 570 (1957).

based on the linear response of thermodynamic systems
to mechanical disturbances.

,s
——Zs

—'e»( —pa„), (2.1)

(2.2)

where H is the Hamiltonian of the liquid, Ã~ the
number operator of molecules of component k, and 1/p
and po~ are, respectively, the equilibrium values of the
temperature multiplied by the Boltzmann constant and
the chemical potential of component k. Equation (2.2)
satis6es the relation

(H„,H}=0, (2 3)

where the symbol (, ) denotes the Poisson bracket
in the classical case, and the commutator divided by
(ih) in the quantum-mechanical case."

The nonequilibrium state changes in time toward the
equilibrium state (2.1) via, approximately, the local
equilibrium states specided by the local temperatures
p(x) and the local chemical potentials tt" (x),

pt ——Z ' exp — P(x)LE(x)—gs tts(x)ns(x) jdx, (2.4)
J 1

where E(x) is the internal energy density operator and
ns(x) the number density operator of molecules of
component k. The subscript t expresses the time de-
pendence of the macroscopic state parameters p(x),
tts(x), and the local velocity. "Integration extends over
the entire coordinate space of the liquid unless otherwise
indicated. The integrand is the grand canonical en-
semble applied to uniform small portions of macro-
scopic size, the order of magnitude of whose linear
extent / is very large compared to a microscopic
distance lo, for example, the mean free path of molecules
in the case of dilute gases, and is small compared to the
linear extent of the liquid I;

(2.5)

The physical basis for the validity of (2.4) is the fact
that each small mass element attains, approximately,
internal thermal equilibrium very quickly, say in a
short time interval 70, before equilibrium between mass
elements is reached. Here the following situation is

"D. ter Haar, Etemelts of Statistical 3Eechartics (Rinehart and
Company, Inc. , New York, 1954), Chap. VII."L. I. SchiG, Quuntgm Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), Sec. 23.

'4 The internal energy density E(x) contains the macroscopic
local velocity as a parameter. See Eq. (3.8).

2. GENERAL CONSIDERATION

We consider a liquid in a nonequilibrium state and in
contact with heat and mass reservoirs. The equilibrium
state which the liquid approaches can be described by
the grand canonical ensemble"
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7 p&&r„ (2.6)

important": the relaxation time, 7 „,for the macroscopic
state to attain complete equilibrium becomes longer as
the size of the system becomes larger, whereas rp is a
constant; hence we have

mined by the requirements

(&(*))=(&( ))(t)
(rt'(x))t ——(rt" (x))(t),

(1( )) =(1( ))(t)

(2.9)

since the linear extent of the liquid L is supposed to be
very large. The time 7.p can be defined, exactly, as the
average relaxation time for the spatially uniform small
mass elements of macroscopic size to attain complete
equilibrium when the interaction with the neighboring
mass elements has been cut ofF. In the actual Quids this
microscopic relaxation, however, is disturbed by the
inQuence of the neighboring mass elements, namely by
the coupling with the hydrodynamical process of
attaining equilibrium between mass elements, and forms
a quasisteady state. Therefore, the complete termi-
nation of this relaxation takes place only when complete
thermal equilibrium has been reached. In the case of
dilute gases, the microscopic relaxation becomes the
relaxation process in momentum space so that the
time Tp is of the order of magnitude of the mean free
time of molecules, " and the following approximate
relation can be obtained~:

/ o (f/1o)'. (2 7)

The relation (2.'7) leads to the fact that, when the
system is close to complete equilibrium so that the
measure of spatial uniformity / is of the order of the
linear extent of the system L, 7.„ tends to infinity in
proportion to L' as L ~ ~.The local thermodynamical
quantities P(x) and tt" (x) can thus be de6ned so that
the macroscopic description of nonequilibrium states
becomes possible. In order to be able to de6ne one
temperature for each mass element of the Quid we
neglected relaxation eGects such as the energy transfers
between the translational and internal degrees of
freedom of polyatomic molecules, and between the ion
and electron systems in the gas discharge plasma.

The average value of a dynamical quantity Ii is
given by

(F)(t) =Tr Fp(t), (2.8)

where p(t) is the density matrix of the liquid at time t.
The local equilibrium distribution is determined from
the precise distribution p(t) by the fact that, in parallel
to the kinetic theory of dilute gases, '~ the state parame-
ters involved in the local equihbrium distribution (2.4),
the local temperature, the local chemical potentials, and
the local velocity, " are to be considered to be deter-

's L. Landau and E.Lifshits, Statislicaf Physics (State Technical
Press, Moscow, 1951), Chap. I."H. Mori, Phys. Rev. 111,694 (195g). This will be referred to
hereafter as (II).

~ S. Chapman and Y. G. Cowling, The 3fathematiccl Theory of
Nouuueforru Gases (Cambridge University Press, Cambridge,
1939).

where the left-hand side of each equation denotes the
average with the local equilibrium distribution

(F)t Tr F——pt. (2.10)

The quantity j(x) is the momentum density operator
with which the local velocity is defined as in (3.7). The
precise distribution p(t) deviates but slightly from the
local equilibrium distribution,

t (t)=t +t'(t), (2.11)

Thus we obtain'
rC47 ~. (2.13)

p(t+s) = U(s)p(t)Ut(s), 0(s(r, (2.14)

U(s) =exp( —t'sH/5) = Ut( —s), (2.15)

where B is the Hamiltonian operator of the liquid used
in (2.2) and does not include the interaction with the
reservoirs. Use of (2.8) and (2.14) leads to

where
(F)(t+s)=Tr F(s)p(t), 0(s(7, (2.16)

F(s)= Ut(s)FU(s) (2.17)

is the Heisenberg representation of P following the
equation of motion

dF (s)/ds =F(s)= (F(s),H) . (2—.18)

It is worth while to observe here that (2.16) enables us
to investigate the change in time of the average value
of a dynamical quantity by following its temporal
development rather than the temporal development of
the density matrix, so that the second approach stated
at the beginning of Sec. 1 becomes possible.

As has been discussed in (I), the time differential of
macroscopic state variables appearing in the hydro-
dynamical equations is to be interpreted, from t'he
microscopic point of view, as a quotient of differences,

and it can be seen from (2.9) that the deviation must
satisfy the relation

Tr Qp'(t) =0, (2.12)

where Q is a linear function of E(x), ns(x), and j(x).
To determine the change in time of the average

value, we need the equation of motion for p(t) for
F(t)j.Since the liquid is supposed to be very large, the
quantities of interest are the local densities, such as the
densities of molecules, momentum, and energy, at
points very remote from the boundary of the liquid.
Therefore, we can neglect the interaction with the
reservoirs in the evaluation of the time dependence of
these local quantities in such short time intervals 7.

that
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namely

r'—(I")(t)=— ' ds (F—)(t+s),
Q T p ds

(2.19)

for the corresponding dynamical quantity Ii. The time
interval will turn out later to be such that

v-o«a&& r,. (2.20)

But for the present we assume only r((r„(2.13), as a
natural requirement. Equation (2.19) can be written
with the aid of (2.16) as

where

—(F)(t)=Tr Fp(t),
Q

1
p(t) =

i

ds p(t+s),
T 0

(2.21)

(2.22)

means the time-smoothed density matrix over the time
interval ~. Let us denote the deviation of the time-
smoothed density matrix from the local equilibrium
distribution by p'(t) ":

Then we have

P (t) =Pt+P (t) (2.23)

(2.24)

where
[Fj=Tr Fp'(t), (2.25)

namely the square bracket implies an average formed
with the p'(t). To derive the hydrodynamical equations,
we shall take as Ii the local densities mentioned before
(2.13). Then E consists of two parts:

F=Q+I, (2.26)

Since the macroscopic state parameters do not change
appreciably in the time interval v, the time average of the local
equilibrium distribution over the 7., p&, satisfies the relation
p~—p~. Therefore to this approximation p'(t) can be considered
from (2.11) to be the time average of p'(t) over the r.

such that Q is an operator satisfying the characteristic
relation of macroscopic quantities, (2.12), and I is an
operator characteristic of the microscopic processes
taking place in the system. By taking the time average
of (2.12) over the time interval r, we obtain"

(2.2'7)

The second term of (2.24) arises from the deviation
of the density matrix from the local equilibrium
distribution, and will be shown to yield the dissipative
terms describing the phenomena of viscosity, thermal
conduction, and diAusion. We calculate this term with
the approximation of linear deviation of the macro-
scopic state of the system from complete equilibrium,
regarding the first term, namely the ideal fluid equa-

tions" as the zeroth approximation. Use of (2.23) and
(2.14) leads to

f T

p'(t) = —p(t+s)ds p„—
gJO

'( s)
~

1——~U(s){H,P(t)) Ut(s)ds
&, E r)

+[p(t) —pt)

(2.28)

For further reduction of this equation we introduce the
following approximation. If one neglects the deviation
of the precise distribution from the local equilibrium
distribution, p'(t+s), throughout the time interval
s=0 to s=r, then the p'(t) vanishes' so that (2.24)
leads to the ideal fluid equations without any dissipative
terms. "Therefore we neglect the deviation at only the
initial time of that time interval,

[p(t+s)j. s——p„ (2.29)

and calculate contributions from the deviation de-
veloped, thereafter, according to the equation p(t+s)
=U(s)P, Ut(s). From (2.12) we see that p(t) and pt
describe equivalently the macroscopic state of the sys-
tem. Therefore it is physically clear that our distribution
which starts from the frozen state pf, approaches the
precise distribution rapidly as a result of the excitation
of the microscopic processes with decay time ~0 due to
the interaction between mass elements. In fact we can
consider that the difference vanishes after a lapse of
time of the order of v p, This follows from the fact that
the difference in the corresponding microscopic states
is removed by the spontaneous decay of the previously-
excited microscopic processes. In the calculation of the
over-all contribution during the time interval v., there-
fore, the error due to the approximation (2.29) can be
estimated to be at most of the order of magnitude of
(rs/r)

~
p(t) —

pt~ and hence can be neglected if r&)re as
in the present case. This is the physical basis for the
validity of the coarse-graining approximation (2.29).
Insertion of (2.29) into (2.28) leads to

( s)
p'(t) = ds~ 1——~U(s) dX exp[—X(H„+E)j

&(8 exp[A(H„+E) jp Ut(s), (2.30)

"The tirst term leads to b(F)(t)/et=((7)~ with the aid of the
relation (I)&=0, which results from (3.42). This equation will be
seen to lead to the ideal Quid equations without the dissipative
terms.

where we have rewritten the local equilibrium distri-
bution (2.4) as

pt=Z ' exp[—P(H„+It.')j, (2.31)

and made use of the identity"

P

{He P~) = ~ dX e ""{A—H)e""e e". (2.32)— —
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Equation (2.30) is of the order of the deviation of the
macroscopic state from complete equilibrium, E, so
that we can neglect the R factors in the exponentials
if we limit the analysis to linear dissipative systems
close to complete equilibrium. Thus use of (2.25),
(2.26), (2.27), and (2.30) leads to

%=[I]= ( s)
dsi 1——ie(I,R; s), (2.33)

where we have defined the function

(G)'= Tr Gpe. (2.35)

ln the classical limit, (2.34) becomes the correlation
function

C (I,J; s) =P(I (s)I)'. (2.36)

The asymptotic property of the correlation function
at s ~ ~ has been investigated by Kubo." In accord-
ance with (I), we simply assume here that 4(I,R; s)
vanishes in a time interval r, much shorter than r.
Then (2.33) becomes

[I]=I.(I,R)= C (I,R; s)ds. (2.37)

This assumption will be considered in Sec. 4. Equation
(2.37) is fundamental for the derivation of molecular
expressions for the transport coefficients of linear
dissipative systems.

The integrand of (2.37) can be reduced to the auto-
correlation functions of the dynamical Quxes defined

by (4.13). These correlations functions, as has been
shown in (II), express in the case of dilute gases the
relaxation processes in momentum space associated
with the Quxes, and decay approximately exponentially
to zero in times comparable to the mean free time of
molecules. The time interval ro defined just after (2.6)
can thus be in this case identified with r,. From the
following sections, this identification seems to be
possible also in the case of liquids. The integration in
(2.37) can be extended formally to infinity:

I.(I,R) = C (I,R; s)ds,
0

(2.38)

which is guaranteed, in general, ' by the fact that the
relaxation time r„becomes infinity by extending the
volume of the system to infinity.

The physical meaning of (2.37) will be investigated
in detail in the last section, but it may be worth while
to note some points here. The integrand may be con-

pP
C (I,J; s) =

~

dX(exp(XH„)I(s) exp( —XH„)J)'
0

=e(J,I ' —s), (2.34)

with the symbol

3. CALCULATION OF R

The quantity R appearing in (2.37), as pointed out
in the preceding section, expresses the coupling between
the microscopic relaxation process in mass elements
and the hydrodynamical process. This quantity can
be written from the definition of R, (2.31), as

where

R= {R,H}= Y(x)dx, (3.1)

F'(x) = [To/T(x) j{E(x)—P p~(x)N~(x)}, (3.2)

where T(x) is the local temperature and Te its equi-
librium value.

Equation (3.1) is expressed in terms of the rate of
change in time of the local densities due to H. For
simplicity, let us confine ourselves to the Quids in which
no chemical reaction is taking place so that the N~'s

are constants of motion with respect to H. Let x; and
p; be the coordinates and momenta of the center-of-
mass of molecule r', The mol.ecular expression for e~(x)
is given by

p~(x) =m~N" (x) = P m,5(x;—x), (3 3)

X~= IN~(x)dx, (3 4)

ra Note that we set np the initial condition (2.29) for the
ensemble of the system and calculated contributions from the
deviation developed thereafter to obtain (2.30) and (2.37).

sidered to express the microscopic relaxation in isolated
and spatially uniform mass elements discussed after
(2.6) and we shall refer to this as an unperturbed
relaxation. Let us now suppose a macroscopic process
described by the ideal Quid equations. " This process
couples with the unperturbed relaxation in the actual
Quids, and the mechanism in the dilute gas for instance
is the collisions between molecules from diGerent mass
elements. This coupling can be described by the
quantity 8 in our formulation and produces the
deviation of the density matrix from the local equi-
librium distribution which introduces the dissipative
terms in the hydrodynamical equations. "The relaxation
of the macroscopic state to complete equilibrium is thus
a consequence of this coupling. A further physical
consequence of the coupling is the continual excitation
of the modes of unperturbed relaxation in the small
mass elements which gives rise to a quasi-steady process
of attaining internal equilibrium in each mass element
in the Quid. The decomposition of this quasi-steady
process into a superposition of elementary processes,
each one represented by the time-correlation function
of the corresponding dynamical Qux, corresponds to the
mathematical approximation of restricting the devi-
ation from complete equilibrium to linear terms.
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where m; is the mass of molecule i, and the summation
runs over all molecules of component k. The local
momentum density is given by

j'(x) = p —,'{p,8(x;—x)+8(x;—x)p;}, (3.5)

where the symmetrized product has been taken due to
the noncommutativity of y, and the 8 function in the
quantum-mechanical case."The densities of mass and
momentum of the entire Quid are given by

p(x) =r, ~ p" (x) j(x)=Z~ j'(x) (3 6)

Let us consider the case in which the macroscopic
motion of Quids can be described by one velocity field.
(The discussion of liquid He II may not be possible
with this limitation. ) Then, the macroscopic local mass
velocity is defined by

(,~) =(j( ))(~)/( ( ))(~)
(3 7)=(j (x))~/(p (x))i

where the second expression is obtained from (2.9).
The internal energy density is defined by

E(x)=H(x) —j (x) v(x)+-,'p(x) v'(x), (3.8)

where H(x) is the local Hamiltonian density satisfying

p"(x)=-V j'(*),
p(x) = —V j(x),

H(x) = —V' J~(x),

dj(x)/ds= —V J;(x).

(3.16)

(3.1'/)

(3.18)

(3.19)

Therefore, use of (3.2) and (3.8) leads to

Y(x)= —(To/T(x)){V' J —v (V J;)
+-'v'V j—P~ (p~/m')V j'}, (3.20)

easily from the fact that, if 1/T(x) and H(x) are ex-
panded in Fourier series, then the components of H(x)
other than those with the same wave vectors as the
components of 1/T(x) vanish on integration in (2.4) and
(3.1). Therefore the 8 function appearing in the local
densities should be understood to be the "coarse-
grained" one; namely'

8(x;—x) = (1/L') Pl, exp[ik. (x,—x) ], (3.14)

I&. I I&. l I& I&2~/l, (3»)
where / is the average linear extent of uniform mass
elements defined in (2.5), and the components of k are
integers multiplied by 27r/L subject to (3.15).

As will be shown in Sec. 6, we have the conservation
laws for the local densities

H= H(x)dx.
where the time rate of the macroscopic state parameters

(3 9) does not enter according to the definition of F(x). The
second term, v (V J;), can be written as

The molecular expression for H(x) depends on the
details of the Hamiltonian. We take the form

v Vp+V [(J; p1) vI —(J—,*—p1):Vv,

N N N
H= P (p; /2m;+ e;(s,))+P P I;;(x;,s;; x;,s,),

(3.21)

where p(x) is the local pressure and J;*is the transpose
of the tensor J;. Equation (3.20) can thus be written as

(3.10)
F(x) = —V' Jr(x)+Z(x)+v(x),

where s; is a set of coordinates and momenta of the
internal motion of molecule i. Then we have

E(x) = P (y;—m;v)'/2m, +e,+-', P I;;

where

Z(x)= J.:X.+Ji Xr+Pi Jd'Xg',

TO p
Jr(x) =—J~ (J~ p1).v+2—v'i—

T ~ m'

(3.22)

H(x) = [E(x))v=0,

Xb(x;—x), (3.11)

(3.12)

T0 s
=—Jr+T Q Jg"+vT g n's'

~k k
(3.23)

which leads to (3.8). The translational kinetic part
should be read as an abbreviation of the symmetrized
product

(1/8m;){p,28(x; x)+2y, b(x, —x)p;"—
+8(x,—x)p,2}, (3.13)

in which p; is, in (3.11), replaced by the thermal
momentum p;—ns;v.

The macroscopic state parameters T(x), v(x), and
p" (x) have only macroscopic spatial nonuniformity so
that the associated local densities in (3.2) have only the
same macroscopic spatial dependence. This can be seen

—v(p' —p)

Here we have defined the quantities

J„=J,*—P1 —jv —vj+pvv,
X„=—(To/T) Vv~ Vv, — (3.25)

Tp
v(x) =v I (p p') Xr+ Vp+p—p'Xg'—

k

~
TO

~+j.—V-', e'+ (jv+vj —pvv): X„. (3.24)
T

'
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Jr——Jrr —(J;—P'I) v+-'v'j —Ps (h'/m") j",
Xz =V(Tp/T) —V lnT,

(3.26)

J s=js—psv,

Xe' ———(Tp/T) (V'p, '+s'V T)/m',
(3.27)

where )s"(x) and ss(x) are the local values of the
enthalpy and entropy per molecule of component k,
satisfying the relation

Therefore we obtain

(v(x))(t) =(o(x))(=0,

L~(x)]=o,

(3.36)

(3.37)

where, in deriving the second equation, (2.27) has been
employed.

Insertion of (3.21) into (3.1) leads to

(3.28) R= {Z(x)+o(x)}dx, (3.38)

The quantity p' appearing in (3.26) and (3.24) can be
an arbitrary function since it cancels identically. It-is
taken, however, to be

P'(x) = —E(x)+Ps I"(x)hs(x), (3.29)

since the surface integral of Jz(x) at the boundary
vanishes because Jr(x) is a flow due to H. Therefore
use of (3.36) and (3.37) leads to

so that the Js can be written, as will be shown in Sec. 6,
as

(R)= (Z(x))dx, (3.39)

where
Jp=q —Ps (h'/m') Jd',

q=LJrr]y; p, —,v

(3.30)

(3.31) LR]= [Z(x)]dx. (3.40)

(3.32)Z(x)=g f (x)X (x).

The quantity F(x) or R will turn out to be the most
important quantity in the investigation of the micro-
scopic processes associated with the hydrodynamical
motion of the system.

Equation (3.24) can be written as

~(x) =v {(P—P')Xr+Z. (p' —(p'))X"}
+ (j—pv) (Tp/T) V'-,'v'+ (jv+vj —2pvv): X„, (3.33)

where use has been made of the relations

means the quantity obtained by replacing p; by the
thermal momentum p;—nz;v in the molecular expression
for Jlr. The J„and Jes can also be exPressed in terms
of the thermal momentum, being invariant to Galilei s
transformation. The X's are the amenities in the thermo-
dynamics of irreversible processes. ""The averages of
J„,Jr, and Jz" with the time-smoothed density matrix
become the conjugate thermodynamic fluxes Lsee refer-
ence 24 and (4.11)];hence these dynamical quantities
will be called the dynamical Ruxes conjugate to the
amenities. For simplicity, let us denote the dynamical
fluxes by {f (x)} and the conjugate aKnities by
{X (x)};then (3.22) can be written as

(R),=0, (3.41)

which is combined with (3.39) and (3.22) to yield

(J„(x)),=0,
(Jr(x)),=0,
(Jd'(x)), =0.

(3.42)

These equations mean that the local equilibrium dis-
tribution cannot express any transport Rows.

4. IRREVERSIBLE PRODUCTION OF ENTROPY

To see the physical significance of the quantities J„,
Js, and Jds, we derive the irreversible production of the
total entropy, which will lead to a statistical-mechanical
derivation of the linear relations between the thermo-
dynamic Ruxes and affinities for linear dissipative
systems.

As has been discussed in (I), a statistical-mechanical
expression for the total entropy of the system is given by

We note here an important theorem which is charac-
teristic of the local equilibrium .distribution. Sy taking
the trace of both sides of the identity (2.32), we obtain

Vp =pk (rs') (Vts'+s'V T),
V Vg5 =VV: VV.

(3.34)

We notice that the quantity p' defined by (3.29)
satis6es the characteristic relation of macroscopic
quantities (2.12) and its average value yields the local
pressure:

S(t) = —k Tr p(t) input.

Let us write its change in a short time as

SS(t)=S,S(t)+5,S(t),

where

(4.1)

(4.2)

P()=(P ()) =(P ())(t). (3.35)
5tS(t) = —k Tr{p(t+r) —p(t) }inp~, (4.3)

s' Hirschfelder, Cnrtiss, and Bird, Molecular Theory of Gases
aid Lzqssids (John Wiley and Sons, Inc. , New York, 1954),
Chap. 11.

5sS(t) = —k Trp(t+r){lnp~+, —inp~}. (4.4)

Then insertion of the local equilibrium distribution
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(2.4) leads to

& S(t)=o(~')

where

biS(t) = dx{b'(E(x))—p p y p(x)8(Np(x)))/T(x), (4.5)

(4 6)

interval r, (2.29), and the linear approximation, the
fluxes [J (x)] are given by (2.33). Since the term i (x)
appearing in the expression for 8, (3.38), is of second
order with respect to the parameters expressing the
deviation of the macroscopic state from complete
equilibrium, such as the local velocity and the amenities,
it can be neglected in the linear approximation. There-
fore, with the use of (2.37), we obtain

and 9 means the quantities of second order in the
increments of T, tip, v, (H), and (happ) in the time interval
r Equa. tion (4.6) will be shown in the appendix. 8pS(t)
can thus be neglected in (4.2). Equations (4.5) and
(4.7) show that the entropy (4.1) is a state function
and, if one knows the hydrodynamical equations, then
the entropy production can be readily obtained. It is
worth while, however, to perform the direct calculation
of (4.3) without any recourse to the hydrodynamical
equations, because of the fact, in particular, that the
entropy production itself shows compactly the structure
of the transport processes taking place in the system.

The change in time of the entropy consists of two
parts:

SS(t)= b& ~S(t)+S&'&S(t), (4.8)

such that 8'&S(t) is the entropy supplied to the fluid

by the reservoirs and b"'S(t) is the entropy produced
inside the Quid by the transport processes. Such
additive separation is possible when the time interval
under consideration is subject to (2.13), namely r«r, .
Therefore, we can neglect the interaction with the
reservoirs in the calculation of the irreversible pro-
duction of entropy, and use of (4.3), (2.14), and (2.31)
leads to

8&'&S(t) = (1/Tp) Trp(t) {Ut(r)RU(r) R) ~ (4 9)

Comparison of (4.9) with (2.16) permits us to employ
the results from (2.19) to (2.24), to obtain the following
equation for the entropy production:

(bSi 1=—[~],
( bt);„Tp

(4.10)

(8S) 1
dx P [J,(x)]X (x).

( bt);„Tp ~
(4.11)

This shows that the quantity [J (x)] is the thermo-
dynamic flux conjugate to the aKnity X,(x).

We next consider the relation between the thermo-
dynamic Quxes and amenities in a linear dissipative
system. With the approximation of neglecting the
deviation of the precise distribution from the local
equilibrium distribution at the initial time of the time

where (3.41) has been used. Application of (3.40) and
(3.32) thus leads to

[J.(x)]=+
~

L(J '(x),J,'(x'))X (x')dx', (4.12)

where J '(x) denote those obtained by putting v=0 in
J (x);

J„'(x)=J;*(x)—pp I,
Jr'(x) =Jii(x) —Q p (hp"/m') j"(x),

J„RP(x) jk(x)

(4.13)

J P(x)dx.
J~

Then the linear relations (4.12) become

LJ-(x)]=K- V 'L(3-,3- )X- (x).

(4.15)

(4.16)

Therefore, applying Curie's law, "we obtain

LJ.(x)]= V-iL, (3.,3„):X„(x),
[Jr(x)]=V-'{L(gr,er) Xr(x)

+Q;L(3,3 ).X '(x)), (4.17)

[Jg (x)]=V '{L(3d,3r).Xr(x)
+P;L(gg",3g') .X„(x)).

For isotropic Quids, the phenomenological coe%cients

pp and hp" being the equilibrium values. Here we have
assumed that C(J '(x),J '(x'); s) vanishes in a micro-
scopic time r.. Thus the phenomenological coeScients
have been expressed in terms of the C functions of the
time fluctuations of the dynamical cruxes J '(x) in the
equilibrium state. These expressions satisfy Onsager's
reciprocal relations. '

The phenomenological coeScients have many sym-
metry relations other than Onsager's reciprocal rela-
tions, such as Curie s law and other isotropic relations,
according to the symmetry of the system. We discuss
these now brieRy. To remove the inQuence of the
boundary, let us suppose the linear extent of the Quid
to be infinity. Let us now assume that there is no
correlation between diferent small portions of macro-
scopic size in the equilibrium state in the sense that

L(J '(x),J '(x'))=8(x —x') V 'L(~~,g ), (4.14)

where the 8 function is defined by (3.14). V is the
volume of a portion, in the equilibrium Quid, very large
(but still very small compared to the total volume of
the fluid) and the quantity Q is defined by integration
of J '(x) over this portion:
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can be expressed in terms of a few parameters";

V ''(Q.*",3."'")=n(~**~we+'.w'w")

+ (» —3n)&*u&* w

V L(3T)QT) KTol)

V 'L(—Qg",Qr) = V '~(3r,3"")*=D'1,
V ''(3s', 3"')= V ''(3",3"')*=De''1,

(4.18)

where Q„*"denotes the x, y component of the tensor
3'„. The symbol q denotes the shear viscosity, p the
bulk viscosity, ~ the thermal conductivity, DI, the
thermal diGusion coe%cients, and DI, the constants
related to the diffusion coeKcients.

To investigate the asymptotic behavior of the C

functions, we consider the time Quctuations of the local
quantities J (x) and Q in the equilibrium state. Let
us here represent these local quantities by the symbols
I and J. Since the Quid is infinite, we can take

T&/7. „, T —+ ~, (4.19)

which permits the consideration of the following limit
process;

fgT

J=—lim — J(s)ds,
T~oo P J

(4.20)

which is the invariant part of J(s) and satisfies the
relation

fJ,H) =0. (4.21)

If C(J,I; s) approaches a dennite value as s~ ~, it
must be"

lim C (J,I; s) =P(JI)0.
8-+00

(4.22)

According to the statistical mechanics of equilibrium
systems, " we can expect, because of the interaction
between small portions in the Quid, that the small
portion passes through the neighborhood of each
microscopic state many times in a time interval T long
compared to 7-0 but short compared to v-„, so that in the
classical case

where q(x) is defined by

q(x) =Jr+&' (h'/m') J'", (5.4)

which expresses the Qow of thermal energy relative to
the local velocity. Therefore use of (3.42) leads to

(jk) (pk&v

(J;),=(p)vv+ pl,

(J~&' (H)v+pv, =
and application of (2.27) leads to

'k k

LJJj=r-J.*j,
EJ~j=Lqh+LJ *j V.

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

The hydrodynamical equations can be readily ob-
tained from (2.24). With Eqs. (3.16), (5.5), and (5.8)
we obtain the equation of continuity

(p')/atyV. ((p')V) =-V P."j. (5.11)

The diGusion Quxes satisfy the relation

ga Lh'j=0, (5.12)

as can be seen with the aid of (3.27) and (2.2'/), and
combination of the above two equations yields the
equation of continuity for the entire Quid:

&(p&/Bt+V ((p)v) =0. (5.13)

Similarly, use of (3.19), (5.6) and (5.9) yields the
equation of motion:

8((p&v)/Bt+V ((p)vv) = —V' P, (5.14)

S. HYDRODYNAMICAL EQUATIONS

The Qows of mass, momentum, and energy can be
written in terms of the dynamical Quxes defined by
(3.25), (3.26), and (3.27) as

j'=p"v+1 (5 1)

J;=—,'(jv+vj)+(J.*+PI)+-',(jv+vj —2pvv), (5.2)

J =Hv+q+(J. *+Pl) v+ ,'v'(j -pv),— (53)

J=(J&'=0,
where we have de6ned the pressure tensor4.23

where the second equality is obtained from (3.42).
This leads to

P(x) =p'l+LJ„'j. (5.15)

(JI&'=(J)'(I)'=0. (4.24)
Lastly Eqs. (3.18), (5.7), and (5.10) combine to lead
to the equation of energy balance:

Equation (4.24) is assumed to hold also in the quantum-
mechanical case. Then (4.22) leads to

lim C(J,I; s) =0, (4.25)

which permits us to expect that the assumption made
in deriving (4.12) is reasonable. It is a most essential
point, however, to show that the C functions vanish
in a short time comparable to 70.

b(H&//~t+~ ((H)v) = ~(I:ej+P.v). (5.16)—

If one neglects the terms containing the thermodynamic
Quxes, then the above equations become the ideal-Quid
equations.

For linear dissipative systems, the thermodynamic
cruxes are given by Eqs. (4.12), which can be reduced to
(4.17).and (4.18) for isotropic fluids. Thus insertion of
(4.1/) and (4.18) into the above general hydrody-
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Tr p, (x) =1,

S(t) = "S(x,t)dx.

(5.19)

(5.20)

Equation (5.20) is derived on the assumption that the
Boltzmann factors of different uniform small portions
of macroscopic size commute with each other. In
parallel to (4.3), we can obtain

8S(x,t)dx= —k Tr{p(t+r)—p(t) }input(x) (5.21)

for the change in a short time subject to (2.13). Since
Y'(x) is a local quantity at points remote from the
boundary, this can be written as

8S(x,t) = (1/Tp) Trp(t) {Ut(r) YU(r) —Y}.(5.22)

Use of (2.24) thus leads to

1—S(x,t) =—{(Y),+[Yj}.
8$ Tp

(5.23)

Therefore, substitution of (3.21) yields the equation of
entropy balance:

(Oi—S(x)+V (Sv)= —V
I
—I+g

Bt (r) (5.24)

as can be seen with the aid of (3.42), (3.36), (2.27), and
(3.37). Here we have defined the quantities

g(x) = [Z(x)j/2'p, (5.25)

0(x)=[Jrj+&(x) g p [J~'j(s'/m'), (5.26)

= [q1—2 [J"j(p'/m"). (527)

The term g(x) is the entropy production per unit
volume and agrees with the phenomenological treat-
ments. "Q(x) is the'flow of heat, namely the thermal
energy Qux other than the Qow of energy associated with
the diffusion processes. Equation (5.26) gives the
physical picture of the Qux [Jr); namely, it expresses
the Qow of heat other than the part associated with the
diffusion processes.

namical equations leads to the Stokes-Navier equations.
It should be noted here that the derivation of the hydro-
dynamical equations with the linear relations (4.12) is
independent of the definition of entropy (4.1).

Next we derive the equation of entropy balance,
which is not only essential in the thermodynamics of
irreversible processes in continuous systems, but also
useful to describe the motion of Quids. In accordance
with the total entropy (4.1), the local entropy per unit
volume S(x,t) is defined by

S(x,t)dx= —k Tr p(t) Inpi(x), (5.17)

where, with the notation of (3.2),

pi(x) =Z(x) ' exp{—[Y(x)/kTpjdx}, (5.18)

The phenomenological derivation' of the entropy
production is based on the application of the Gibbs
thermodynamic relation,

Ttis = tie+Pti(1/p) 2 & (p "/m")~ (p"/p), (5 28)

to the mass elements moving with the local velocity.
Here s, e, and p~ are the entropy and the internal energy
per unit mass, and the mass density of component k.
Equation (5.28) is equivalent to

T8S=8(E)—Pg ti'b(rt'), (5.29)

which is supposed to be applied to the fixed volume
elements. Equation (5.29) can be obtained from (5.21)
by inserting the expression for p&(x), (5.18), in parallel
to the derivation of (4.5) from (4.3).

L EXPLICIT EXPRESSIONS FOR TRANSPORT
COEFFICIENTS

The molecular expressions for the dynamical Quxes,
in terms of which the transport coefFicients are ex-
pressed, are obtained by deriving the conservation laws
(3.16), (3.17), (3.18), and (3.19) from molecular
dynamics. This is done with the calculation of the
commutators of the local densities and the Hamiltonian
(3.10):

dF/ds= F= [F,H]/ih. (6 1)

A. Conservation of Mass Density. —Since we have

dx;/ds =p;/m;, (6.2)

BN;;=—F;;, (6.3)
Bx;

B(x)= ipP P F@{8(x;—x)—b(x;—x)}. (6.5)

Expansion of the 8 functions in powers of r;;=x;—x;
leads to

h(x;—x) =B(x;—x)+r;; Vx,8(x;—x)+O[(a/l)'j, (6.6)

where higher terms are of the order of (a/l)'. The length
u corresponds to the mean range of the intermolecular
forces, and the gradient of the 8 function is of the order
of magnitude of the reciprocal of the measure of spatial

m;&(x;—x) =—V -', {p,5(x;—x)+5(x;—x)p;}, (6.4)

the equations of continuity (3.16) and (3.17) can be
readily derived with the expressions for the mass and
momentum densities (3.3), (3.5), and (3.6).

B. Consereatiori of Momentgm Density With the.—
aid of (6.3), (6.4), and. the dyadic relation p;V A
=V (p,A)* (the asterisk means the transpose of the
tensor), the time derivative of the momentum density
becomes

dj(x)/ds=B(x) —V Q; (1/4m;){p;p;5(x;—x)
+p,8 (x;—x)p;+ [p,8 (x,—x)p;]~+8 (x;—x)p;p;},

where
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uniformity t according to (3.14). In the limit of an
infinite system, (a/l) becomes zero and the higher terms
can be neglected. ' Thus we arrive at the conservation
law for the momentum density (3.19),and the molecular
expression for the momentum Aux is given by

J;(x)=g (1/4m;) {p;y;b(x;—x)+p;b(x;—x)p;

+[p;b (x;—x)P~]*+5 (x,—x)P;P;}

N
+-', P g r;;F;,b(x;—x). (6.7)

When the intermolecular forces are spherically sym-
metrical with respect to the translational relative
coordinate r;;, we have

and the second term as

f P' lb'
-,'r,"F;b(x;—x) ~

l
—+—

l

&m, mt)

(y' yj l
+l —+—

l F;;r;,b(x;-x) . (6.13)
Lm; ms)

J +p'l =[J& (x)]p „p,-m, v, (6.14)

q=[J~(x))p; p;-m, v, (6.15)

The molecular expressions for the dynamical Quxes
J (x) are obtained by inserting into Eqs. (3.25), (3.26),
and (3.27) the above expressions for the Rows of mass,
momentum, and energy. A simple rearrangement of
these equations leads to

(6.8) Je =[j (x))p; p; —m;v, (6.16)
so that the tensors J; and J„are symmetric:

(6 9)

N (pP zr qy;
J~(x)=pl +e;+-', P Ng l

—b(x;—x)
' &2m; t(~) )m;

N X (p; p+-'Der F'"l —+—lb(x; —x)
Im; mt)

+-', Q Q re'@b(x;—x), (6.10)

where the equation

I'g ——[e;,N@j/ih (6.11)

expresses the rate of change in time of the internal
energy of molecule i due to the interaction with molecule

j. Again, to have all operators Hermitean, each term
should be symmetrized; thus the first term should be
read as

(1/16m;i) {ppp;b (x;—x)+pub (x;—x)p;

+2y~p; b(x;—x)y;+2p; b(x;—x)y;p;+p, b(x;—x)pp

+b(x;—x)p;iy;}+e;-',{p;b(x;—x)+b(x;—x)p;}/m;

+x Q g{gep~b(x~ —x)+Nip'b(xi —x)yi
j(wi)

+pm@b(x;—x)+b(x;—x)p,n@}/m;, (6.12)

2' Here we have used the relation

—(I;;s(x;—x)}=)(u;;B(x;—x)+I;;b(x;—x)
S

+b(x, -x)m;;+s(x;-x)ic;;}.

C. Conser sation of Energy Density. The c—onser-
vation law for the Hamiltonian density (3.18) can be
obtained by calculating the commutator of the Hamil-
tonian density (3.12) and the total Hamiltonian. With
the aid of (6.6), we thus obtain

where (3.29) and (5.4) have been employed, and the
notation on the right-hand sides implies that pi is
replaced by the thermal momentum pi —nz;v in Eqs.
(6.7), (6.10), and (3.5). These equations yield the
molecular picture of the dynamical Quxes, and it can
be seen that the quantities J„Jr, and Je~ give a gen-
eralization of the dynamical Auxes obtained from the
kinetic theory of dilute gases."

Next we consider the coordinate-space integration
of the dynamical Ruxes, g, defined by (4.15). The
number of molecules of the very large portion V of
macroscopic size may be considered to be a constant
of motion as far as the short time intervals of the order
of the correlation time r, are concerned, and is denoted
by E'. Use of (3.42), (6.14), and (6.7) leads to the
equation of state

PoV=~i P (Ps)'/m, +~~ P P (F;, r;,)', (6.17)

which agrees with the result of the virial theorem. We
thus obtain

¹ ¹

3 = 2 (p'p' —(p'p') )/m'+-'2 2 (F;;r;;

in terms of which the viscosity tensor appearing in
(4.16) are expressed. Use of the isotropic relation (4.18)
and the definition of the time integral I., (2.37) and
(2.34), leads to

p~C
t

P

ds g'„*"Q.*&(s+i7il))'d),, xWy,
V~o 4o

(6.19)

q+-;vt= —' ds g„-g„*(s+ihx))'dX,
P Jo

~3 We mean by these the factors associated with the amenities in
the inhomogeneous term of the linearized Boltzmann equation.
See, for example, Eq. {7.3—26) of reference 2j..
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where we have made use of the relations

¹ y.
ar=ea —Z &o"—, (6.21)

(p )p~+p;
~

—+-', P P -', (N; I+r;,Fg)
i=i (2B$; ) pm; ~wj

—+—(N; I+F;;r;;) +-,' P P r;;I';;,
81i Pl i

(6.22)

where hp(') means the enthalpy per molecule of the
component to which molecule i belongs. Kith this
expression the isotropic thermal conductivity is given
-by

ds (g~*g~*(s+iAX)) dX. (6.23)
VTp "o "o

It should be noted that the second term of (6.21),
namely the difference of the conduction Qux from the
thermal energy Qux does not vanish even in the case of
one-component fluids and, as has been shown in (II),
yields an important contribution to the thermal con-
ductivity as a result of its Quctuations due to the
interaction with the surroundings. Application of (6.19)
and (6.23) to dilute gases "yields, in the classical limit,
the Enskog-Chapman expressions for the coefficients
of viscosity and thermal conductivity with the aid of a
certain approximation for the correlation functions
which becomes exact for the Maxwellian molecules.

In terms of the dynamical Quxes of diGusion,

(6.24)

the diffusion and thermal diffusion coefficients are now

expressed; use of the isotropic relation (4.18) leads to

Dkj =
3V4p

~c

ds (Qg& 3d"(s+iQ))pdX=D;p',
4p

t~e (e
ds (3r 3g"(s+iAX))pdz.

3V~p

(6.25)

We note here a simplification of (6.19), (6.23), and

(6.25), which is convenient for the actual evaluation
of the transport coefBcients. "The surroundings of the
large portion V in the equilibrium Quid may be regarded
as heat and mass reservoirs, so that the ensemble

average appearing in these equations may be replaced

by the grand canonical ensemble of that portion being

(6 20)
exp( —XH„)Q exp(XP„)=e "~3' e"~=3' (iB,)

Similarly, use of (5.4), (6.15), and (6.10) leads to

specified by the Hamiltonian and the number operator
of molecules of the portion, H' and S'~. As fax as the
short time intervals of the order of r, are concerned, the
Heisenberg time factors seem to be also replaced by
those with H'. The C function thus obtained satisfies
the symmetry relation (2.34), which is necessary for the
derivation of Onsager's reciprocity theorem. ' However,
it is not immediately clear whether this satisfies the
asymptotic behavior (4.25) or not, because the in-
variant parts of the dynamical Quxes with respect to
B' are, in general, not zero. It can be shown, however,
for dilute gases that the contributions of the invariant
part to the time dependence of the correlation function
can be neglected in the limit of E' ~ ~ (V —+ oo, but
lP/V= constant), so that the asymptotic behavior
(4.25) is satisfied. "

7. SUMMARY AND SOME REMARKS

In our formulation of the quantum-statistical theory
of transport processes, our particular intention was to
establish the hydrodynamical equations for linear
dissipative systems and to formulate the transport
coefficients in terms of the time Quctuations of the
dynamical Quxes in equilibrium ensemble. By dividing
the nonequilibrium density matrix into the local
equilibrium distribution and a deviation term, we
obtained the fundamental equation (2.24). This
equation led, with the aid of the properties of the local
equilibrium distribution, (2.12) and (3.42), to the
general hydrodynamical equations (5.11), (5.13),
(5.14), and (5.16). The quantities LJ' (x)j appearing
in these equations were shown, on the basis of the
expression for the entropy (4.1), to be the thermo-
dynamic Quxes conjugate to the amenities X . For
linear dissipative systems, the thermodynamic Quxes
were calculated from Eq. (2.37) which was derived with
the following assumptions: coarse-graining of the
density matrix, (2.29), at the initial time of each short
time interval 7. , validity of the linear approximation;
and separation of microscopic and macroscopic re-
laxations, i.e., the correlation times of the dynamical
fluxes J '(x) are very small compared to the macro-
scopic relaxation time of the system. Thus the linear
relations between the thermodynamic Quxes and
aflinities, (4.12), were obtained, and, with the assump-
tion (4.14), reduced to Eqs. (4.17) and (4.18) for
isotropic Quids. Insertion of these linear relations into
the general hydrodynamical equations led to the
Stokes-Xavier equations for isotropic Quids with the
molecular expressions for the transport coefficients,
(6.19), (6.23), and (6.25).

To see the physical framework of the present theory,
we investigate the physical significance of the quantity
8 which played an essential role in the present formu-
lation. This quantity came from the deviation of the
macroscopic state from complete equilibrium, R. The
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structure of this quantity can be seen from the equation

R=P J '(x)X (x)dx,

C (I,J '(x); s)X (x)dx,

(2.2)

since Q=O in (2.26) as can be seen from (5.1) and (5.3).
Thus we can say that the quantity 8 expresses the
coupling of the ideal Quid process and the unperturbed
relaxation in uniform small mass elements. This
coupling gives rise to the approach of the Quid to
complete equilibrium, and, at the same time, to the
continual excitation of the unperturbed relaxation.
This coupling ceases with the attainment of complete
equilibrium.

To obtain a more detailed picture of these situations,
we take a dilute gas of one component with spherically
symmetric forces between molecules. As has been dis-
cussed in Sec. 2, the relaxation processes in momentum
space couple with the hydrodynamical process due to
the collisions between molecules from diferent mass
elements, i.e., the dissipative mechanism. The relaxation
processes in momentum space can be described by the
spectrum of the master collision operator, whose
eigenvalues are the decay constants of the diR'erent

modes of relaxation. "As has been shown in (II), the

'4 Note that use of the relation (3.42), (Ja(x)l~=0, and the
definition of the square bracket, (2.25), lead to t J (x)j
=TrJ (x)p(t).

'~M. Kac, Proceedings of the Third Berkeley Symposium on
Mathematical Statistics artd Probability (University of California
Press, Berkeley, 1956), Vol. 3, p. 171; G. E. Uhlenbeck, Higgins
lecture given at Princeton University, 1954 (unpublished).

which is obtained from (3.32) and (338) with the use
of the linear approximation. Namely, R is the sum of
the products of two kinds of quantities; one are the
affinities, namely the driving forces of the hydro-
dynamical process, and the other are the dynamical
Quxes whose averages formed with the time-smoothed
density matrix become the thermodynamic Quxes."
The dissipative terms in the hydrodynamical equations,
namely the thermodynamic Quxes are the sums of the
products of the affinities and the correlation functions
of the dynamical Quxes, and hence express the coupling
of the macroscopic process represented by the ideal-
fluid equations" and the elementary processes repre-
sented by the time dependence of the correlation
functions. The unperturbed relaxation in small mass
elements discussed after (2.6) may be regarded to be a
superposition of these elementary processes, and
manifests itself in the acceleration of the state variables;
if we take for simplicity the case of the average velocity
v =0, then we have

d2

dynamical Quxes are approximate eigenfunctions of the
master collision operator, and the time dependence of
the autocorrelation functions of the dynamical Quxes
represents the corresponding modes of relaxation.
Therefore, from the discussion of the dissipative terms
in the preceding paragraph, the quantity 8 expresses
the coupling between the unperturbed relaxation
processes in momentum space and the ideal-Quid
process. Take a uniform small mass element and cut
o8 the influence of the neighboring mass elements,
and make the spectral analysis of the relaxation thus
obtained. Then we have only those modes of relaxation
which are excited due to the coupling with the hydro-
dynamical process. The excited modes turn out to be,
according to (7.1), those whose eigenfunctions are the
Quxes of viscosity and thermal conduction. We thus
arrive at the fact that those modes of relaxation which
are represented by the autocorrelation of the equi-
librium fluctuations of the dynamical Quxes are excited
in the hydrodynamical stage due to the coupling B.

The present theory should be compared with Green's
theory' on the same problem, and with Kubo's theory"
on the linear response of thermodynamic systems to
mechanical disturbances. "

Green's theory is concerned with the classical
derivation of the hydro dynamical equations. His
expressions for the transport coeKcients are given in
terms of the correlation functions in a similar way as
the classical limits of the present equations. However,
the averages involved are formed with the micro-
canonical ensemble, whereas, in our theory, they are
computed with the (grand) canonical ensemble. This
not only reflects the difference of approach, but also
results in a serious difference in the calculation of the
transport coeScients. For instance, the second term
of the thermal conduction flux (6.21) is missing in
Green's corresponding expression. In essence the
difference is as follows. Green assumes that the time
behavior of the state variables of a Quid is described by
a Markofhan random process. He shows that such
processes in aged isolated systems obey a Fokker-
Planck type equation, and he can derive the macro-
scopic equation of motion. We, however, begin with the
investigation of the change in time of the average
values of dynamical quantities in nonequilibrium Quids
in contact with reservoirs, and we derive the macro-
scopic equation governing the motion of the state
variables. Furthermore, our method has been formu-
lated to apply to the quantum-mechanical case.

26'It is worthwhile to note here an essential difference between
our system and the nonequilibrium system whose deviation from
equilibrium is produced by mechanical disturbances. The driving
forces of the latter system are the external forces, which can be
controlled directly by outer bodies and be changed appreciably in
small time intervals comparable to the average relaxation time of
the microscopic processes associated with the external forces. In
our system, however, the driving forces are state functions and
decay to zero due to the coupling with the microscopic processes,
the average decay time r, being subject to (2.6).
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Kubo's theory is exact in the sense that it does not
need the notion of local equilibrium and therefore avoids
any approximation like (2.29). Therefore, it is worth
while to compare both results in the case of electrical
conductivity to which Kubo's method is applicable. Let
us suppose that the Quid consists of an electron gas
(h=e) and ions (A=i) with the average velocity v=0.
Then we have, from (5.11), (5.16), and (5.25),

S(&)/at= —V. Lj j, 3(a)/at= —V EJ

&
I

To ftts)
)

(7.3)
g=—'CJ 3 X.—2 Ci'j.

r, l ms t.r) I'
r

where the energy flow J& has been used instead of the
thermal conduction flow Jz. The linear relations are
obtained from (4.16). In the case in which the ions
pursue lattice vibrations about fixed points, p, '=0 in

(7.3) and the linear relations become

e and ns being the charge and the mass of electron.
Equation (7.5) is the same as obtained by Kubo's
method. "This agrees with the previously-obtained fact
that the coarse-graining approximation (2.29) yields
only negligible errors.
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APPENDIX. DERIVATION OF EQ. (4.6)

Equation (4.4) can be written, by inserting (2.4), as

&o tt')
Prr]=I' ' L(3a,3') I

——V—
I&m r&

(7 4)

8sS(t) =It 1n(Zt+, /Z, )+ dx(8(1/T)(H(x))(t+T)

—&( /T) (j( ))(t+.)+&(-',"/&)& ( ))(t+ )
—Z. ~( '/2')( '( ))(t+ )), (A 1)

where 8(f) means the increment of f in r. The first
term can be written as

+I-(glr)3a) &r, ( 1
kin~ 1—— dx(8(1/T)(H)g —5(v/T) (j)t

u ~
which agree with the equations obtained in (I) and with
the phenomenological treatment of thermoelectricity. "
The electrical conductivity can thus be expressed in
terms
comp

+&(se'/&)(p)t Zs 3(tt'/&—)(I')t)+0(&') ~.

~8 In applying this method, suppose the system to be in contact
with a heat reservoir before the contact has been cut oG and an
electric field has been turned on, to obtain the average with the
canonical ensemble.

'r A. H. Wilson, The Theory of JIetals (Cambridge University
Press, Cambridge, 1953), Chap. VIII.

of the diffusion coeKcient, for a metal, the x, y
onent of the conductivity tensor is Therefore, by expanding this equation and inserting

into (A.1), we arrive at Eq. (4.6) with the aid of the
relations (2.9).

ds ' g„'g.'(s+itot)t))'dX, (7.5)
V im)


