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Electromagnetic Effects in Meson-Nucleon Scattering~
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The dominant part of pion-nucleon scattering is charge independent. In view of the apparent discrepancies
in the dispersion relations for meson scattering, it is desirable to investigate the effects on meson-nucleon
scattering of including the electromagnetic interaction in an otherwise charge-independent theory. The
calculation, which is performed in the static-nucleon, one-meson approximation of Chew and Low, is divided
into two parts. In the first part, the effects of the charged-neutral meson mass difference, which is assumed to
be of electromagnetic origin, are calculated. In the second part, other electromagnetic effects involving one
virtual photon are calculated in the "Coulomb approximation, " in which the effects of transverse photons
and of graphs in which the incoming and outgoing meson lines are crossed, are ignored. A formula is given by
means of which the three meson-proton differential cross sections may be analyzed in terms of the six
charge-independent s- and p-wave phase shifts which would occur in the absence of the electromagnetic
interaction. Aside from simple Coulomb and kinematic effects, the most important effect in m+-proton
scattering can be expressed as an alteration of the J= -,'phase shift for that state such as to sharpen the (3,3)
resonance and move it to a higher energy. The meson mass difference effect and the Coulomb effect contribute
about equally to produce a phase shift alteration of about 2' at its largest.

I. INTRODUCTION

General Remarks
''T is well established that the major features of
~ - processes involving the interaction of nucleons with
each other and with pi mesons are charge independent.
There is, for example, evidence favoring charge inde-
pendence of nuclear forces from the measured energy
levels of light nuclei, ' from proton-proton and neutron-
proton scattering data, ' and from reactions involving pi
mesons. ' To observe the charge independence one must
first take into account the eGect of the Coulomb force,
since, although it is relatively weak, it is a charge-
dependent force. It is thus widely believed that the
fundamental strong meson-nucleon interaction, thought
to be responsible for nuclear forces as well as for proc-
esses involving the scattering and production of pions,
is exactly charge independent, and that all observed
deviations from charge independence must arise from
the electromagnetic interaction.

It is the purpose of this investigation to examine the
eGect on pion-nucleon scattering of including the
electromagnetic interaction in an otherwise charge-
independent meson theory. Electromagnetic effects in
meson scattering have been of particular interest re-
cently because of the apparent discrepancies, pointed
out by Puppi and Stanghellini, 4 between experimental

meson scattering data and the Goldberger dispersion
relations. ' The effect of the charged-neutral meson mass
difference and the Coulomb effect on s-wave scattering
have been calculated phenomenologically by Noyes. '
The e6ect of the meson mass difference on the dispersion
relations has been calculated by Agodi and Cini, ~ and
the effect of the Coulomb held by Agodi, Cini, and
Vitale. ' A more recent discussion of electromagnetic
eGects on dispersion relations has been given by Chew
and Noyes. ' Effects of the meson mass diR'erence com-
puted in a manner similar in some respects to that used
here have been reported by Chiu" and by Greenberger. "
Except for the work of Chiu and Greenberger, recent
papers are concerned with the electromagnetic e8ect on
the form of the dispersion relations, rather than with the
nature of the eGect itself.

The Method
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nucleons, mesons, and photons, respectively. In the
interaction Lagrangian (2) we have taken the charge-
independent pseudoscalar coupling of the pseudoscalar
meson field to the nuc1eon field, and the gauge-invariant
coupling of the mesons and nucleons to the electro-
magnetic 6eld. This Lagrangian (1) is a function of the
coupling constants, e and g, which appear in Ly, and of
the experimental masses, p+, pp, and m, of the mesons
and nucleons which appear in L~ and L&, respectively.
(For this calculation we consider the proton and neutron
masses equal. ) We assume that the charged-neutral
meson mass difference is all electromagnetic, which
means that the bare meson masses, p+—Bp+ and pp —8pp,

are equal when the electromagnetic charge e in L~ has its
experimental value.

We now separate the electromagnetic sects in meson-
nucleon scattering into two parts. We first solve the
scattering problem using the Lagrangian (1), but with e

set equal to zero. This Lagrangian will not lead to
charge-independent scattering since the charged and
neutral meson masses that appear in it are not equal.
The problem is relatively simple, however, since the
electromagnetic field variables are not present. This
problem is treated in the static approximation in Sec. II
using the effective-range approximation of Chew and
Low. 's The connection between the Lagrangian (1) and
the Hamiltonian (3) of the static approximation, par-
ticularly with respect to the connection between the
coupling constants, will be discussed with the numerical
results of the meson mass-dift'erence eGect.

There is no reason to think that this eGect will be the
most important electromagnetic eft'ect in pion-nucleon
scattering, for if the charge e is turned on once more,
there are many processes which can occur involving the
emission and reabsorption of a virtual photon which
have nothing to do with the meson self energy. All such
processes should be considered, but this is too diKcult to
do at present. We consider in Sec. III that part of these

Designation Initial state (scatters into) Final state

TABLE I. Charge representation scattering processes. The paired
scatterings have the same amplitude due to charge symmetry and
the charge-exchange scatterings are equal due to time-reversal
in variance.

processes which we refer to as Coulomb processes. In
this Coulomb approximation we ignore the effects of
transverse photons and the eGects of graphs in which the
incoming and outgoing meson lines are crossed. The re-
maining eGects are of two types. First, there is the
"simple Coulomb efkct, " which adds to the nuclear
scattering amplitude the amplitude for a simple scat-
tering of the meson by the Coulomb field of the nucleon.
EGects more or less equivalent to this have been calcu-
lated by Ashkin and Smith, "Van Hove, ' and Solmitz. '~

Second, there are "rescattering eGects" in which the
meson undergoes both Coulomb and nuclear scatterings.
Calculation of these rescattering sects requires a more
detailed knowledge of the meson-nucleon interaction. It
is then hoped that the meson mass-difference e8ect
together with the Coulomb eGect will be the major part
of the entire electromagnetic eGect in meson scattering.

IL THE MESON MASS DIFFERENCE EFFECT

The Hamiltonian

The eGect of the charged-neutral ~-meson mass differ-
ence on the scattering of mesons by nucleons is calcu-
1ated using the Chew-Low-Wick'~" formalism. Follow-
ing the notation of the paper by Chew and Low, "
referred to hereafter as C-L, we take as our Hamiltonian

(3-a)
where

(3-b)

(3-c)
and

This divers from the Hamiltonian in C-L in two es-
sential ways. First, the possibility is allowed that the
unrenormalized coupling constants for charged and
neutral meson emission may be diferent. Second, the
relation between coj, and k is diferent for charged and
neutral mesons, the relation being &os= (ps'+k')'. The
sum over k is to be done using states of definite charge,
p~ then being the mass of the charged or neutral meson
as the case may be.

The expression for the scattering matrix follows in
exactly the same way as in C-L and we have

where

(6)

7f +0
m.o+p

"G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956),
referred to in the text as C-I .

The Low equation can also be derived in exactly the

"J.Ashkin and L. Smith, Carnegie Institute of Technology
Report, 1952 (unpublished)."L.Van Hove, Phys. Rev. 88, 1358 (1952).

'~ F. T. Solmitz, Phys. Rev. 94, 1799 (1954).
's G. F. Chew, Phys. Rev. 95, 1669 (1954)."F.E. Low, Phys. Rev. 97, 1392 (1955), referred to in the text

as L.
"G.C. Wick, Revs. Modern Phys. 27, 339 (1955).
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same fashion as in C-I and we have

&.'(~)&.(~) &.'(N)T. (22)
&.(P)= Z— . +

~ . E„0i—& 20— E~+Qi~

Ke define as in C-L

r„t(~)T,( )t„()=-Z +E„—s E„+z

(7)

where matrix multiplication is indicated and [h(s)] is
the matrix (12) without the factors of p and q.

Since isotopic spin will be nearly conserved except
near threshold, it will be useful to know the connection
between the matrix [h7 in the charge representation
(14) and in the representation in which states of definite
isotopic spin I and its s component I, are used. The
scattering processes are then shown in Table II.

We use state vectors

so that
T,(p) = lim t„(s).

~cuy+ie

1
0 =11,2J),.0.

0 p&

1 = ~3,2J), 0 = ~4,2J). (15).0.
As a result of using the modified Hamiltonian (3), the

theory is not charge independent. The theory is, never-
theless, still charge symmetric since we shall assume that
the unrenormalized coupling constants for the coupling
of neutral mesons to protons and neutrons are equal,
and that the proton and neutron masses are equal. Of
course the coupling constants as well as the masses of
the positive and negative mesons are assumed to be
equal.

—v2 o.
U= —v2 1 0

V3 0 0 &3
(17)

Aside from the factors of pq, the matrix of amplitudes in
this isotopic representation, indicated by [h j, is related
to the matrix of amplitudes in the charge representation
[h] by

[hler=

U[h)U '
where

The One-Meson Ayproximation

In the one-meson approximation we set, in analogy
with Sec. IV of C-L,

t-(s)= —
(q) (P)2 ( ~ .) '[Pqh()J (10)

In (10), the quantity [pqh(s)$ is a matrix connecting
the states in terms of which the scattering is to be
analyzed. Since the angular momentum J is conserved,
we consider states of definite angular momentum, the
states J=—,

' and J= ~ being designated by 3 and 1, re-
spectively. In this representation, h is a diagonal matrix
with respect to the angular momentum. Thus for
purposes of computation one may use the angular
momentum projection operators introduced in C-I,.

Because of the factor pq in (10), and since isotopic
spin is not conserved, it is convenient to use states of
definite charge. The scattering processes are then shown
in Table I.

If we use state vectors

This result may be obtained by writing [hrj in terms of
projection and exchange operators as in C-L where only
projection operators are needed, and then calculating
the matrix elements between the appropriate charge
states.

Now as in C-L the function t, ~(s) has a pole at the
origin, of residue

(fit ).(f/u) 02~&(p)&(q)(~&~0) '
X(~ p~„e.qr ~ g~,~.y~„). (18)

We now observe that the factors of p and q included in
(10) are just matched by the factor qp of the residue so
that each matrix of amplitudes [hi) and [h2$ in the
charge representation has a pole at the origin, of residue

—
0 (fit ) 0' V&(f/t )+(f/t ) 0

[Ai)= 5~(f/t)+(f/t)0 2(f/t) '—
0 0

0
0

0(f/t )+'. —
(19)

0
0

2 (f/t )+'&

0~(fit )+(f/t ) 0

0
0

0 0'
0 —l0,2J)~ 1 —

I r 2J)& 0 = I+, 2J), (11a—c)
[A ]= -242(f/„)„(f/ )o

0(f/t )o'

0
we have

p0q0h0, 2J POq+he, 2Z

[pqh(s) $= p+q0h, 2z p+q+h, 2z 0
0 0 P~qph+, 2g.

(12)

where p0= (&o„2—ti02)' and p+= (0i22 —@~2)&. Equation
(12) may be simply expressed by introducing diagonal
matrices

respectively. The set [Ai] refers to J=22 and the set

Designation
Initial state
I Ig (scatters into)

Final state
Ig

TABLE II. Isotopic-spin representation scattering processes. The
exchange scatterings, 2 and 2', occur with the same amplitude due
to time-reversal invariance.

so that

po 0 0 qo 0 0"
0 p+ 0, [q]= 0 qp 0, (13).0 0 p+. .0 0

[pqh(s)3= [pj[h(s) j[qj,

4
3
gl
2

a2

~1
~1
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EAoj to J=2o. The coeKcients of f+ and fo aPPearing
here are the renormalized, unrationalized coupling con-
stants defined by

comes possible if we now introduce a new matrix

Eg(s) 3=~'fh(s)?', (27)

h;, (s) =P A.pB;;h, , p( s), — (21)

where

A~g ————„Aga= —„A3g=—„A33=3,
1 4

~00= ~—+ ~+— 1
y

~ee' ~e'e

(22-a)

(22-b)

and the rest of the 8's are zero. As in C-L, the A's and
8's satisfy the relations

and

Q A pB;;A p„B;i,=o,"o;i„
P,i

Q A„pB;;A;,p= —A;. .

(23-a)

(23-b)

From the definition of t,~( )sEEq. (8)jand its relation
to To(p) EEq. (9)j, we may write

i„„t(E„)t,.(E.)
t,„(co„)=—P +crossing terms . (24)

E GO~

That part of the sum with E„=O gives the pole (19)
already discussed. In the one-meson approximation we
include in addition only those terms with E„=co . Then
converting the sum to an integral by using g„~J'd'e/
(2m) ' and tide= co„dko„, we obtain from (24) the following
integral equation for the matrix fhj:

1
fh(~.)j= f~l/~. +-

It(N)I'doo , (25)
GO~ M p Z6

plus crossing terms which can easily be computed using
(22). Matrix multiplication is indicated on the right-
hand side and the superscript dagger means the
Hermitian conjugate of the matrix. We see from (25)
that the matrix fhj satisfies the relation

& fhj=l(fhh —fh7)= I I'fh7fpj'fh3, (26)

which is the analog of the unitarity condition in C-I..

The Reciprocal Matrix

Further simplification occurs and an CGective-range
treatment in complete analogy with that in C-I. be-

f«'i(fo, e qo.oiPoP)= fo(N, ~ q~ooip), (20-a)

f+'"(0o, q Ao')=f+(N. ,~ q+Np), (20-b)

where 1t o is the state vector for a physical nucleon and
I is the bare-nucleon spinor.

The crossing theorem of C-L leads to the relation

EAB(g(s)) '3= —Lg(—s)j ', (32)

the imaginary part of which is

AB(fgt(s) j ' &mfg(s) jfg(s)j ')
= —Lg'( —s)j '&mfg( —«)]fg(—s)j ', (33)

since the transformation AB does not alter the
Hermiticityof the matrix. Then from (30) we see at once
that

f&(~.)j=Eg(—~.)7EAB(fg'(~.)j 'fpl'fg(~~) j ')3
&&Eg(—~~)7 (34)

The inclusion of this term in the equations for fgg, (29)
and (30), makes that equation a set of nonlinear coupled
integral equations for the amplitudes.

The Renormalized Coupling Constants

In the discussion of the numerical results of the meson
mass-difference effect, we shall consider the e8ects of
various possible alternatives concerning the unrenor-
malized coupling constants. Before presenting these re-
suIts, however, we shall consider the efkct of renor-
malizing the coupling constants. By using the method
developed by Cini and Fubini" we explicitly show that

'o M. Cini and S. Fubini, Nuovo cimento 3, '164 (1956).

where this equation means that the matrix product
fggfh] is to equal s ' times a unit matrix. We now
examine the properties of fg(s)g. First we note that the
pole of fh(s) j at the origin implies

Lg(o)j=f~j ',

the matrix reciprocal of fh.j. The unitarity condition
(26) is quite simple. It implies

&mfg(~.)3=~(I~I'!~.)fp]', (29)

where fp) is the diagonal matrix defined by (13).Thus
we can write, in analogy with C-L,

In(p)l'
«fg(~)l=f~3 '——P„i' d~. , fpl'

CO& 0)& M

+ d~n, f&(~.)3 (3o)
In(p)l'

0) p CO@ CO

Here P indicates that the principal value of the integral
is to be taken and EP(co„)j is a matrix function which
can be determined from the crossing theorem. We write
the crossing theorem (21) as

fh(s) j=EAB(h(—s))j, (31)

where we must remember A Bdoes not operate on h( —s)
as an ordinary matrix. Then we have
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the renormalized coupling constants are completely
determined by the unrenormalized coupling constants.
The relations between them involve integrals of the
reduced scattering amplitudes over the meson energy.
From these relations one can estimate the effect of
renormalizing the coupling constants. The relations also
lead to certain conditions on the amplitudes themselves.

In the charge-symmetric meson theory which we are
considering, there are five renormalization constants as
opposed to the two constants of the Chew-Low-Wick
theory. These five are dered by

(A, rofo') = (1/po) (~- romp)

(0o, Ao') =(1/p+)(I-, ~N(),

(0o ego')= (1/pz) (~- a.N()

(Po,r,o „Po ) = Z() (N, rzo.,us),

(A, +aAo')= Z+ (~-, ~e.~p).

(35-a)

(35-b)

(35-c)

(35-(j)

(35-e)

fo= Zo fo(o),

f+=z+f+'".

(37-a)

From (7) it follows, as in C-L, that

T„t(q) To(p) = 2—zri Q„B(E„—(o~) T~t(N) T, (rz). (38)

Then using (6), (8), and (9) we get

&on(s') &o.(s)=2ezZ —~(E- ~o)
X g„V„()g.(-))g„(-),l,(')P.), (39)

where s —+ (o,+io in the first term, s ~ (o~+io in the
second term, and the expression holds for ar„=co,. Since
f,„(s) is a Hermitian matrix function of s, we have
Lh(s) 1=Lh(s*) jt as in C-L. Thus (39) can be written
using (4) and (10) as

4zLp] ImLh(~„) jLqq
= (f(.)")/p). (f(.)")/u). 2 ~(&-—~.)

X (fo,a pr„p„')(f„,a (1r,po).
— (40)

Using the unrationalized coupling constants, we may
now write

ImLh((o„) jCo)„
m ~~p

(f(o)q ( f(o) )
{(4'o, a'prie'q&qWo)(p „(p

&-(&o a Pr Ao )(A—a qr Ao)) (41)

In the paper by Cini and Fubini the two renormalization
constants are

1/p+= 1/po ——1/pi, and Zo=Z+—= 1/pz. (36)

These relations among the renormalization constants
should be approximately true in our case. From (20a,b)
we see that

Z-Qo r~a Ao )(fo,a qrAo)
=ZQ, (b, o+io;„,r;) (p q+ia pX j) (42-b)

In these expressions the subscript pXq indicates the
meson typei of o;~,. The matrix elements of (41) may
now be computed, and if we use the notation

3.(» t' p l
Imh, .(~)d~, (43)

( f(o)) (f(o)) J „
where p and q are the two meson types indicated by the
subscript designation i (see Table I), then (41) may be
written

Ho, i=1+2/pi —3Zo',

Ho, o= 1—1/pi,

H, ,=H. ,=v2(—1/„—2Z„+ 3Z,Z,),
H =H =%2(—1/p +Z ),
H, i= 1+2/pi+ 1/po+ 2Zo —6Z+,

H, 3= 1 1/pl+ 1/po Zo&

H~, i= 1+2/pi —1/po —2Zo,

H+, o 1—1/p, —1/p——o+Zo.

(44)

Since (36) is approximately true, it is convenient to
introduce small quantities de6ned by

ro= 1/po —1/pi

r+ ——1/p+ —1/pi,

2'+= Z+—Zo.

(45-a)

(45-b)

(45-c)

We now consider as our five renormalization constants,
Zo, 1/pi, s+, ro, and r+, and we discard terms quadratic
in the last three since they are small compared to the
erst two. It is clear at this stage that the quantity of
interest, namely s+, can be obtained in terms of the
8; 's. It is also clear that relations exist among the
B;, 's that do not involve the renormalization constants
since there are eight equations and only five constants.
We shall now write (44) in a different form which shows
more directly the deviation from charge independence.

Since isotopic spin is nearly conserved, if we change
our H; 's to the isotopic representation using (16), the
following relations which are exactly satisfied in C-L

where the first term on the right comes from the closure
property of the 1t „( ), and the second term is the correc-
tion to the 6rst due to the o(E„—o),), which does not
permit the ))|„( ) to include the real nucleon states. The
caret indicates a unit vector.

We wish to write the right side of (41) in terms of bare
spinors and thus reduce it to our operator notation. We
need

(Aa pa qr. rAo)
=p qbz, o+(z/p, )b„oa pXq

+(z/P„xo)P qo'z, or' Z»«—a PXqo'z, or', (42-a)
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will be approximately satisfied here:

H4, ,1—H, , 31——0,

&4, x'—&3,x'=0)

H4g —Hg3 —0

H, ,r 0

H2, 3I——0,

(50)f/f&P~= Zp 0.6——5.
We then have

s+/Zp= [—3 /s(12 sZP)] Im ~' [(p/f"&)+'(h+, &
h—

, ~)
J„0

(46-c)

(46-d)

(46-e)
2(p—/f ")p'hp, ,)d(u (5.1)

where the second subscript is 2J and the erst is the
isotopic designation (see Table II). We now write Fqs.
(46) exactly, in terms of the charge representation
H;. 's. Using (44) and (45), we get in the same order as
(46a-e)

This quantity (51) is a measure of the meson mass-
difference eGect on the renormalization of the coupling
constants since, from (37) and (45),

This may be considered an equation for s+ since the
constant Zp has been calculated in the Chew-Low-Wick
theory by Miyazawa" as

(46-b)

H+, s—-', Hp, s—s42H, , s
—-',H, s

,rp+-,'r+-', z+, —(4-7-a)
(52)

H+, —sIIp g
——ssVZH, , g

—sH
= —s«+ sr++ (g/3)z+,

II+, g
——',Hp s+-,'v2H, s——,'H

= —(5/3) ro —sr++ as+,

s&2Hp g
—sH, ,—-',v2H

= —sV2rp+ s&2r++ sV2s~+3v2Zps+, (47-d) 3/(12srZps) =0 19. (53)

From (51) it appears likely that s~/Zp is quite small.

(47 1 )
We shall show in fact that it is probably less than
The smallness of (51) is easily seen. First, all of the
amplitudes involved are "small" experimentally up to
energies well beyond resonance. Second, the coeKcient
is a small number,

-'sv2Hp s—-',H, ,—-'sv2H, s

s&2rp+-spar~ —-sv2z+. (47-e—)-
Including two more equations

2H~, a+H~, s+3H, s= 6 (1—Zp),

H+, s+H, s+Hp, g= 3 (1—Zps),

(47-f)

(47-g)

makes the seven equations (47) equivalent to the eight
equations (44) with the renormalization constant pq

eliminated. Various relations follow at once from (47).
Particularly simple is the relation obtained by com-
bining (47-a) and (47-e). This gives

Numerical Results for the Meson Mass
Difference Effect

We wish to determine how the cross sections for
meson-nucleon scattering are affected by the charged-
neutral meson mass difference. We examine the mass-
difference eGect on the reduced scattering amplitudes,
[h], given by (27), (29), and (30). We use the effective-
range approximation of C-L which consists of setting

«[g(~))=P) '—~[r(~)), (54)

and then ignoring the co dependence of [r(co)). We write

H~, s—2Hp, s+H, s
——0. (48) [&(~.)]=. . . (55)

[~) '—~.[r)—s(l ~ I'/~. )[P)'
This means that if the unrenormalized coupling con-
stants (f&P&/p)+ and (fis&/p)p are equal, the following
relation is exactly true even though the charged and
neutral meson masses are not equal:

This relation could not have been anticipated from
considerations of the charge symmetry of the theory
alone.

We now return to our original purpose in this section,
finding the eGect of renormalizing the coupling con-
stants. A relatively simple expression for s+ is obtained
from (47-b) and (47-d) as follows:

The charged-neutral meson mass difference will then
appear in [A), which depends on the renormalized
coupling constants, in [r], and in [p), since the mo-
menta of charged and neutral mesons are different at a
given energy.

We shall erst show that the effect on [r) is small.
From (30) we see that [r) is the sum of two terms. The
6rst term is a principal-value integral which we ex-
plicitly evaluated as a function of &u for [p)~ pp
= ((v,'—pp')-'* and [p) —+ p~= ((o,'—p„s)-:, and for two
values of the cutoff energy. The e8ect of changing the
cutoff energy in this term, which must be done if the
cutoB function n is a function of the momentum, is to
produce only a 0.1% difference in the terms for charged
and neutral mesons. The effect of the factor of [p)s in

H+, s—2Hp. s+H-. s= —12Zps+ (49) ~ H. Miyasawa, Phys. Rev. 101, 1564 (1956).
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this integral is somewhat larger. For co (1.9p the integral
is larger for neutral mesons and for co& 1.9p the integral
is larger for charged mesons. For 1.5p(co&2.5p the
eRect is always less than 33%. The second term in [rj
is an integral involving H(&v„) given by (34). This
integral is too complicated to evaluate, but the factor
of p3 and the nonvanishing denominator should make
the high-energy part of the integral, where we expect
little deviation from charge independence, the most
important part. Thus we expect the meson mass-
diRerence eRect in [3j to be small and we shall ignore
this e6'ect.

Next we shall show that the meson mass-diGerence
eRect on [Aj is probably small. There are two possible
causes for a difFerence between the renormalized coupling
constants for neutral and charged mesons. First, the
bare coupling constants will depend on the Lagrangian
that is postulated. We are using (2) as our interaction
Lagrangian. The relation between the unrenormalized
pseudoscalar coupling constant g&3~ of (2) and the
coupling constant (f&"/13) of the interaction Hamiltonian
(3) and (4) is

(f"'/I ) =g"V2~, (56)

where m is the nucleon mass. The coupling constants
g('& must be equal for charged and neutral mesons since
all deviations from isotopic spin independence are
assumed to be of electromagnetic origin. Thus the
quantity (f&3'/g) is taken to be the same for neutral and
charged mesons and the difference is all due to the eRect
of renormalization. There are electromagnetic eGects
other than the meson mass difference which produce a
renormalized coupling constant difference. However,
these sects are zero in the Coulomb approximation
considered in the next section (see Appendix A).

To calculate the meson mass difference eGect on the
renormalization, we use (51) for the quantity z+/Z3.
The "small" amplitudes, h, 3 of (51), are not known
with sufficient accuracy for experimental results to be
of any use in evaluating (51).Thus we use the eRective-
range formula (55). The value of [tj is also not known
for the J=—,

' amplitudes, and thus in order to get an
estimate of the possible size of (51) we take [rj=0.
Since the fractional coupling-constant difference will

turn out to be small compared to the mass difference,
we may ignore the eRect of the [Aj term in the eRective-
range formula (55), for the amplitudes needed in (51),
and consider only the effect of the [pj3 term. Under
these conditions the integral of (51) may be explicitly
evaluated, and a numerical integration shows that

b[hj (mass diRerence)=i[hjb([pj')[hj,
where

0 0
b(pj3) =3ppbp 0 ——,

' 0
.0 0

(59)

(60)

Here p= (&v~3—p3)» and we have set
~

z'= 1. For pur-
poses of simplification and because it should give the
largest eGect, we consider only the I= 2, J=-,'part of
the amplitude [hj in (59). Then we have

and from (16)

0 0 0
[hip» j= 0 h3 3 0

.0 0 hg g.

v2 0
[hg=;j=-; v2 1 0 h3,

.0 0 3.

(61)

(62)

The other a,mplitudes can easily be included in the [hj
of (59), but with only the (3,3) state we get the simple
result

t0 0 0
b[hg»j= —2ih3, 33PPby 0 0 0,

, 0 0 1,
(63)

with only the x+-proton scattering amplitude in the
J=-,' state altered. Then, since

h3, 3=e"» sinb33(1/p'), (64)

we have for this amplitude, corrected by the meson
mass-difference eGect,

h~, 3=e""' sinb33(1 g/3') 2ipbye'—""sin'633(1/p')
= e'~3»+~+'~ &~ sin[833+6 3(333)j

&& (1+2&be/P)/77 (65)

where the magnitude of the amplitude is increased and
the phase shift is changed by an amount

not include this effect but shall indicate after the next
paragraph how it may be calculated.

Finally, we consider the eRect of the [pj3 term in the
denominator of (55). Since only the charged-neutral
meson mass difference has significance we choose p, the
bare mass (as far as electromagnetic effects are con-
cerned), in such a way as to give the eRect in the
simplest form. This choice is

P=P+ abP=Po+3bP (58)

We now set [hj=[hj+b[hj, where [hj is the reduced
scattering amplitude obtained when the meson masses
are p. From (55) we see, for b[hj(([hj, that

z+/Zo = —0.002, (57) 6+, 3(tn) = —2(phd/p') sinb33 cos833. (66)

verifying the statement at the end of the section entitled
"The Renormalized Coupling Constants. "This is sufri-

ciently small that the effect due to (57) will only change
the cross sections by 1% or 2%. Because it is not large,
and because of the uncertainty in the method of
computing the coupling constant difference, we shall

The effect of this term is to sharpen the 3,3 resonance in
the m+-proton state and to increase the magnitude of the
amplitude,

If the coupling-constant difFerence were known with
suQicient accuracy to warrant its inclusion, its eGect
could be calculated in the same approximation as that
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we get

6/hq=;] (coupling constant difference)

=co„LhjPXj 'BLA7LXj 'Phj These equations are the same as in L, except for the
extra terms which arise in an obvious way from the
extra terms in our Lagrangian.

Proceeding as in Sec. III of L, we may derive the
integral equation to first order in e' in the one-meson
approximation:

0 0 0
~nh3, 3'(I /f)'~(f/I ) o o o (6g).0 0

so that the only effect is to increase the (3,3) phase shift
for m+-proton scattering by an amount

used above. In fact, if we use where

(f/p) = (f/p)++ 38(-f/p) = (f/p) p 3—8(f-/IJ), (67) g, (x) = (—~'—~')y (x)
=6'vp~eP ~~'4'+&0 A 3A e'0—~~ "~up, opo, 33

+(2' ~y;, „+ed~,„y,)o,,3 (71)

~,.(f)=-( ./ ')(~/f)'~(f/ )

After discussing the Coulomb e6'ect we shall write
down expressions for the cross sections for elastic m.+ and

scattering on protons and for charge-exchange scat-
tering. In these expressions we shall include two other
simple kinematical eBects of the x mass difference.
First, the p-wave scattering amplitudes Lsee (10)—(12)j
contain a factor pq which will be larger for charge-
exchange scattering than for elastic scattering at a given
energy. Second, the cross sections themselves contain a
factor q/p where q and p are the momenta of the
outgoing and incoming meso ns, respectively. This
factor, which comes from the incident Qux and the
density of 6nal states, will increase the charge-exchange
scattering.

III. THE COULOMB EFFECT

The Integral Equation

We proceed in the manner of Low, '~ referred to here-
after as L. Using our interaction Lagrangian (2), we may
write down the result for the Smatrix for scattering of a
meson of momentum q and type i to momentum q' and
type j, the nucleon going from momentum p to p',
analogous to equation (1.11) of L:

(p'q, 'Isl pq, )

=( i)' ~dx—dy(km~;) &e 'q~'"q

x(p'I &{e;(y) e, (x)) l p)

dx(4 ~,.)-~e-'&~qo*

X(p'l &{6;,&.(*)y.(x)+2y;(x)y;(x)) I p&

—ie' ~dx(4co~q )
—

&e
—'&q-q'&

X(P j&{&"(x)&„(x)oik3ojk3))P&

(P'q
I ~'(0) l p&

8', ~A. +q)(4. +;,&4.)
(2~')'- ~(p'+q') ~(p')—

(e. , ~,~;)(e;,8,&.)-

~(p q') ~(p)+—'
1

I
d'q" d'p"

(2' q )' " (2qr)3

(P"qo"
I
8

I
p'&*(P"qo"

I &*IP»(p"+q" P' q')— —
X

pp +cop» —
pp +(dq~ kl—

(P"q "I ~'IP'&*&P"q "I »Ip)~(p"+q" P+q')—
po +~q"—po+~ q

+e(2~q)-~(p'~ (»q.'+&,)&~~ p&p 3(72)'
The term arising from the e' term of (71) has been
omitted since it involves the two electromagnetic field
operators at the same space-time point and is a meson
mass renormalization cancelled by the counter term.
(72) is exactly the same in form as in L except for the
last term, which corresponds to the incoming and
outgoing mesons interacting at the same space-time
point with a photon.

We now make the usual static-nucleon approximation
and also the approximation in the last term of (72),
which we call X,» that the photon which interacts with
the scattering meson also interacts with the static
charge distribution of the nucleon to produce Coulomb
scattering of the meson. Then in the notation of C-L,
(72) becomes

T"(o)T.(o) T'(o)T.(o)
T„(q)= — +

dpq3 T,t(qp) T (I)
(2qr)3 ar„ppq iq— —

+ie~ dx(4~~ ) &e *'&q '&*

X(P'I &{(q +q")&„(x)i.,;3) I P&, (70)

T"( )T.( )

~++~q

+X,„, (73)
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TABLE III. Table showing the proton electrostatic potential V(r).
a '= (2/3)X0.49(10 "cmg'.

a&r

0
0.4
0.8
1.2
1.6
2.0
2.4

(a&r)-I

2.5
1.25
0.8333
0.6250
0.5000
0.4167

(&t~)~(r)
a&

1.127
1.071
0.9274
0.7586
0.6103
0.4977
0.4164

(~l )&()
(a~r) '-

ak

1.429
0.3226
0.0747
0.0147
0.0023
0.0003

la)

where p and q are initial and final meson momenta and

FIG. 1. Graphs representing the four terms of (77) for the
Coulomb scattering of a meson by a nucleon. The solid line
represents the nucleon, the dashed line the meson, and the wavy
line the photon.

Xs.= «e'rs(~. —+~s)(&~~.) '
The solution to this equation is

dsx e'&s—s& *V(x) (74) (~If)DI p~~shs'+I ~IV(fl p)~.h."
(rl p) =LvlH —Z

l CO~ GO~
—

GO~
—ZC

T„(q)= (q I p)h, ' (for e-independent part), (75-a)

&-=Lel pH,

e—7'.(v) =(c
I p)

de
(75-c)

For the h's, which are essentially the same as those of
the previous section, the subscript refers to the meson
energy and the superscript to the isotopic type, In this
notation our approximate integral equation may be
written

(v Ip&=l:alps
& v I

f ) (f
I p) h '+ (v I

f)(f I p}h '*
(76)

Go) co q Z6

V(x) being the electrostatic potential due to the nucleon
charge distribution. We now take the derivative, with
respect to the electromagnetic charge e, of Eq. (73).The
left-hand side is then the quantity which we desire. The
6rst term on the right involves the derivative of the
single-nucleon expectation of the operator 6,. This
term is zero in the static-nucleon, Coulomb approxima-
tion which we are making, when the meson mass eGects
are properly eliminated, as we shall show in Appendix A.
The second term on the right will make the equation a
linear integral equation for the quantity on the left. The
last term, finally, is the inhomogeneous term of this
integral equation.

We solve this integral equation in an approximation
in which we ignore the crossing terms both in d/de of
(73) and in the e-independent part of (73).This may be
a reasonable approximation since the crossing term
seems to be less important than the noncrossing term in
the charge-independent theory, particularly for the (3,3)
state. In solving the approximated integral equation we
use the simplified notation

(qlh)Lhll](ll p)(u, shq&h, '+Z. . . (77)
&& MpM~(Mi (dq —ze)((ds —

Gals
—se)

(vl p)h. '=
(vp) (vlf)(f p) lhi'I'

7

co) co q ZE

(7g)

(qp) being the no-meson term. Thus (77) gives us the
Coulomb corrections to meson scattering.

The Simple Coulomb Scattering Term

The first term of (77) involves adding to the nuclear
scattering amplitude the Born approximation to the
amplitude for the Coulomb scattering of the meson by
the charge distribution of the nucleon. From (74) we see
that for this, as well as for the rescattering corrections,
we need to know V(x), the electrostatic nucleon po-
tential. From the Hofstadter" experiments on electron-
proton scattering we know that the proton has a root-
mean-square charge radius of 0.7X10 " cm, and a
Gaussian charge distribution gives a good fit. The
proton potential is then essentially 1/r times the normal
probability integral which is tabulated. This potential
is shown in Table III. The simple Coulomb scattering
term thus includes the scattering of a point proton plus
corrections to this due to the fact that the proton po-
tential differs from 1/r near r=0 By calcula. ting the
s-wave part of this correction we showed it to be
negligible. Thus, for the simple Coulomb term we keep
only the point nucleon part, which has already been

~'K. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454
(1956).

The four terms in this solution correspond to the four
graphs shown in Fig. 1. Equation (77) can be shown to
be the solution to (76), to our approximation, by direct
substitution and by use of the e-independent Low
equation with the crossing terms omitted, which we
write as
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g, =—2eg. F(q)] dr V(r) [(cosqr)/qr —(sinqr)/(qr)'j
Jo

calculated. " ' This term occurs with opposite sign in integration of d'x, we get
m+-proton and m. -proton scattering and is absent in
charge-exchange scattering.

The Rescattering Effect I
The term in (77) involving the sum on I, which we call

R~, has two terms, one of which represents the nuclear
rescattering of a Coulomb-scattered meson, and the
other of which represents the Coulomb rescattering of a
nuclear-scattered meson. Using

(79)

and omitting the isotopic spin dependence, which will be
put back in later, this term may be written

d'I p Ll F(q)) expLi(1 —p) x7V(x)
2e (PS

P—q' —jg

(cot+to q) (tot+qq „)to qX, (80)
4(~q~q) ~P'

which is to be evaluated for co,=co„.We now approxi-
mate the factors of (80) involving to by a function which
will enable us to perform the integration more easily.
%'e set

This approximation is exact for co,=~~, as it must be in
order that an inlnite part of (80), associated with the
long-range Coulomb potential, may be properly identi-
fied. For other values of the variables the approximation
is quite good and should give the integral at least within

10%. Using (81) and replacing the vector I of the dot
product in (80) by a gradient, the d'I integration may be
performed giving

Zt= —$2e/(2qr)'j~ d'x V(x)e 's *L—iF(q) / )

X (2+/r) Le""—(5l») e "'3 (82)

X (L—qr sinqr —cosqr j+(5/12) L(1+pr) e ""]

+iLqr cosqr —sinqr)). (83)

The imaginary part of the integral is logarithmically
divergent since only the p-wave part of the Coulomb
scattered amplitude, which is infinite in the Born ap-
proximation, is rescattered. This infinite amplitude is

exactly out of phase with the p-wave part of the nuclear
amplitude, however, and so corresponds to a higher-
order correction to the cross section in e' than the real
part. In the exact theory with small Coulomb phase
shifts, this term would be dropped. This term will be
identified later in a discussion of s- and p-wave inter-
ference eGects. The remaining integral has been evalu-

ated, with the result

R,= —2e'P F(q)Ai(q),

where Ai(q) is a function which varies more or less

linearly from a value of 0.79 at q=0 to 0.45 at q= 1.5p.
The function Ai(q) is shown in Table IV.

We have omitted the isotopic dependence of I,„
which is i ,;e—sThis operator has the eigenvalues +1,
—1, and 0 for positive, negative, and neutral mesons,
respectively. Thus, the R& term is in negative phase
with the nuclear amplitude for m+-proton scattering, and
in positive phase for elastic ~=proton scattering. In
charge-exchange scattering the relative phase is the
same as with negative mesons, but the effect is only half
as large since only one of the diagrams (8 C) of Fig. 1—
enters.

The Rescattering Effect II
The remaining rescattering eIIfect is given by the term

in (77) involving the sum of k and i. This term represents
a nuclear scattering of the meson followed by a Coulomb
scattering and then another nuclear scattering. Using
expressions like (79) with k F(q) for the first nuclear
scattering and I-G(p) for the second, this term may be
written

The first term in the square bracket comes from the
poles at I= &(q+ie) and the second from the poles at r d'k d'l

l

i=&i@. Taking the derivative and doing the angular J (2qr)s ~ (2qr)s

TABLE lV. Table showing the function A&(g).

A1(q)

Q F(q)j dsx exp[i(k —I) x]V(x)pl G(p)7J

0
0.4
0.8
1.2
1.6
2.0

0.79
0.68
0.57
0.49
0.43
0.37

(P—q' —ie) (k' —q' —ic)

& q (tqt+cq q) (ois+toq) (qqI +qqt)&(k)&(I)
X (85)

8k2 L2 q

The cutoff factors n(k) and n(l) are included here since



M ESON —NUCLEON SCATTER I N G i823

E& depends on the cutoff somewhat more strongly than
E]. We use the form 8(k)=1"/(r'yk') where I'=7ls.
Then, to facilitate the integration, we approximate the
factors of (85) depending on pp and v by the simpler form

(3,3) amplitude for this state, corrected by Rr and Rs, is

T+, s= —(4srqs/2co )hs, s+2e'q4srA ths, s+3esq'(47r) sA shs, s'

= —(4sr/2qPP, )e's»+a+»&n&' sinLBss+~ s(E)j. (90)

cp ( I' ) tp ( I'

tps' l I'+P) ppP Ei"+k'~
(86)

Using (64) and (89), we get

D~, s (E)= —(2&d,/q) e'L2A, cos8, s sin8„
+ (12sr/q') ReA s sin'5ssf, (91)

This approximation should give the integral at least to
15%%uq. The integrations may now be done, giving

LF(q) G(P)j
12'

(e i qr e—I'r)

+iqei«+I'e rr

(cia~ e "") (X— +iqe'p"+pe i" X( ). (87)
r & q'+I's)

where we have included the isotopic dependence. ReA s(q)
is flat near resonance with the value 1.4sr/12sr, but
drops to 0.78li'/12sr at q=0. The imaginary part is
much smaller at low energies, but becomes greater than
the real part at resonance and above. The calculated
values of As(q) are shown in Table V.

From (77) it may be seen that, although the crossing
theorem is not obeyed by that equation, the unitarity
condition is still satisfied. This gives an exact relation
between At and As of (84) and (88):

12sr ImAs=i(2q'A~). '(89)

Because of the approximations made, the calculated A~
and As only satisfy this relation to about 15%accuracy.
Since A & is more accurately known than A &, we shall use
(89) for ImAs rather than the calculated values.

As with the meson mass-difference eGect, we shall
only include the (3,3) state in the e-independent part of
T,(p) in computing Rt and Rs. Then the isotopic spin
dependence of Rs given by (88) is quite simple. For
positive mesons on protons we get the full e5ect with
the plus sign. For negative mesons on protons there is a
2: 1 chance that the meson will charge-exchange scatter
in the erst nuclear scattering. Since there is no E2 effect
in this case, the effect is reduced to a factor of -', for
negative scattering or charge-exchange scattering, and
the sign is opposite to that for positive mesons. A factor
of 3 is obtained in R2 from the angular momentum
dependence of F G.

Since the unitarity condition is maintained by (77),
the effect of E~ and E2 on x+-proton scattering can be
expressed as a change in the scattering phase shift. The

The integral has been evaluated, giving

Rs=e'F(q) L(1+rs)/2j( —ie, ;s)G(P)As(q), (88)

sharpening the resonance and moving it to a higher
energy. For m.=proton and charge-exchange scattering
the e6ect is not expressible as a change in the phase
shifts since the corrected h;, , is not diagonal in either the
isotopic or charge representation. Rather than diago-
nalize the scattering matrix, we shall write the correc-
tions to the J= ss amplitudes (for sr elastic and charge-
exchange scattering) in the charge representation. These
amplitudes, corrected by E& and E2, are

T, s —(4srq'/2i——p,) (-',h, , s) —2e'q4srA t(-', hs, s)
—e'qs(4sr)'As(rshs ss) (92)

I',
, s

———(4srq'/2', ) (tsv2hs s) —e'q4srA t (rsV2hs, s)

esq (—4sr) As(s&2hs s'). (93)

sit —sip= +e /'v, (94)

for x+-proton scattering. For charge-exchange scatter-
ing, the sign is as with m=proton scattering, but with

TAnzz V. Table showing the function Az(q).

0
0.74
1.65
2.0

12mA2(q)

0.78@~
(~.i+o.s~)&
(1.1+1.9i)si'
(1.1+2.6z)s P

ss L. SchilI, guoltism 3Eechasszcs (McGraw-Hill Book Company,
Inc. , New York, 1949); see Ecl. (20.24).

The s-P-Wave Interference Effect

In scatterings which involve the Coulomb field, the
scattering amplitude is the sum of the Coulomb ampli-
tude and a nuclear amplitude, with each of the partial
waves of the nuclear amplitude multiplied by e"&~ p&

being the Coulomb phase shift for the same orbital
angular momentum as the nuclear partial wave. "Since
the rii are small, we write this factor as 1+2irli. The
term containing the product of 2irlt with the p-wave
nuclear amplitude appeared explicitly as the imaginary
part of the integral Rr of (83). This infinite integral can
be shown to correspond to the Born-approximation p-
wave Coulomb phase shift by considering a cut-oG
Coulomb potential and letting the cutoff radius become
infinite. The only eGect of these terms to lowest order in
the gg will appear in the interference between partial
waves of difFerent angular momenta. Including only s
and P waves, it is easily seen that the extra cross-section
contribution is proportional to
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half the magnitude since the Coulomb 6eld is active only
during half the scattering. In Eq. (94), e is the relative
velocity. This e6'ect only alters the coefFicient 8 of the
cos0 term of the cross section. If we include both s-wave
phase shifts, 5I and 53, but only the 533 p-wave phase
shift, the result is

DB+— Sp (8 /v) slI153 slI1533 sill(533 53) (95-a)

IV. CONCLUSIONS

We may now write expressions for the diGerential
cross sections in the center-of-mass system for the three
processes (+), (—), and (e), in terms of the six charge-

independent phase shifts, 8~, 8~, 833, B3~, 8~3, 8~~, and the
mass-difference and Coulomb effects previously de-

scribed:

do. (+)/dQ= ( {—S3—t2T~, 3+Ts, rf cos8)oI„/2rr
—(to~es)/LP ' sins(8/2) j )

'
+(~./2~)3 IP'+, 3—T3, I) I

' »n38

+hB+, cos8, (96-a)

d~(-)/dQ= ((-L~S,+-,'S,g
—L2(T ,+-', T, ,)

+ (3T3, I+3TI, I)j cos8)M&/23r

+(oI~es)/tP 'sin'(8/2)j('
+ (to„/23r)' i L(T, 3+-;T,, 3)
—(33Ts, I+3 TI, I)j ~

3 sin'8+ AB cos8, (96-b)

d (e)/dQ= (P,/P+) ~ j—L.,"v2S,—-',v2S,j
—(Ps/P+) L2(T., 3

—4~TI, 3)

+ (3%2T3, I—342TI, I)7 cos8}oI~/2Ir
~

'
+(po/p+)(oI /2Ir)

i (po/p+)f(T, 3 3V2TI, 3)
—(3~T3, I—3%2TI, I)) ~

' sin'8

+AB, cos8. (96-c)
In (96)

S;=—23r(P+oI )
—Ie"' sin5;, (97)

TABLE VI. The meson mass-difference and Coulomb effects on
the J=-2, ~+-proton scattering phase shift. After the s-p-wave
interference effect, which will be discussed below, and the simple
Coulomb and kinematic etfects Pall of which are also included in
(96)g, have been taken into account, the indicated amount must
still be subtracted from the (+, 3}phase shift to get the charge-
independent part. The electromagnetic effect is to sharpen the
resonance and move it to a higher energy.

0.8
1.2
1.6
2.0

—0.74'
—1.03'
—0.12
+0.33'

—0.26'
—0.67'
—0.53'
+0.01'

—1.0'
70

—0.7'
+0.34'

Lab energy

54 Mev
110 Mev
185 Mev
270 Mev

DB =+Sp '(e'/s)f(2/9) sin5I sin533 sin(5„—5,)
+ (1/9) sin53 sin533 sin(533 —53)$, (95-b)

AB,=+4p '(e'/e)(2/9) L
—sin5I sin533 sin(533 —5I)

+sin53 sin533 sin(533 —53)j. (95-c)

5; being the s-wave phase shift for l=i/2; and

Ts, I =—23-(p+oI,)
—'e "» sin5„, (98)

given by (66) and (91), respectively. In (96-b) we have

T,3= 3%(P+M )
X)1—2(&5l /p+ )+4(ur„/p+) e'A Ife "» sin533

—L(43r)'/(3P+ )jesAse"3" sin'5 (101)

and in (96-c) we have

T„s ',V2rr(P——~o—I„)--'

X t 1—2 (l35p/p~s)+2 (oI~/p+) e'A I)e"» sin533
—tV2(4rr)'/(3P )je'Ase"3» sin'5 (102)

In these equations A~ is given in Table IV, ReA2 in
Table V, and ImA3 by Eq. (89). The three quantities
DB are given by (95a-c). p+ is the momentum of either
the nucleon or mass-p+ meson in the center-of-mass
system, computed relativistically. In (96-c) the ap-
proximation ps/p+ ——1+phlI/p+3 is good except at the
lowest energies. 8 is the angle of scattering of the meson.
To the extent to which we have included all electro-
magnetic effects, an analysis of the pion-nucleon scat-
tering data according to (96) should give the six charge-
independent phase shifts for mesons of mass p Lsee Eq.
(58)j which would occur in the absence of all electro-
magnetic eGects.

To indicate how large these eGects are, we look at
x+-proton scattering, for which the effects are most
simply expressed. First, we show in Table VI the
magnitude of the (3,3) phase-shift alteration brought
about by the meson mass-difference and the Coulomb
e6ects.

With our choice of p there is no e8ect analogous to
~ 3(rII) fOr Ir elaStiC and Charge-eXChange SCattering.
The effect analogous to 6+, 3(R) cannot be expressed as
a phase-shift alteration, but is given in (96) by (101)
and (102). To indicate how large the eBect of AB+ is on
the s-p-wave interference we consider the 3r+-proton
scattering at the energy at which 8»—83= ~m. At this
energy the cos0 term is zero except for the correction,
AB+ cose, and this correction is equivalent to an in-
crease of 533—53 by an amount 2esoI„/p or about 1.0'.
Thus, the AB+ electromagnetic eGect is to reduce the
energy at which the cosP term goes to zero. The anal-

5» being the p-wave phase shift for I= -,', J=—', .Equation
(98) holds also for TI, 3 and TI, I with the corresponding
p-wave phase shifts, 5I3 and 5II. No attempt has been
made to furnish kinematic corrections to these "small"
p-wave amplitudes or to the s-wave amplitudes. In
(96-a) we have

T+, 3= —27r(p+to„) Ie'&3»+a+» sin(533+6+ 3), (99)

where 533 is the charge-independent (3,3) p-wave phase
shift and

AP, 3——+,3(tI3)++ 3(R),
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gous eBect for m. elastic and cha, rge-exchange scattering
is given in (96) by (95b-c). The significance of all these
electromagnetic eQ'ects in meson-nucleon scattering can
be correctly determined only by using (96) to analyze
the scattering data at all energies through the (3,3)
resonance.

integral equation for the desired matrix element:

e—&PI &'(x) I
P')

de

dy&p I
~V'"(x)j"(r)) Ip'&((~.(x)~ (r) )+)
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e '~'~

(Pl 6'( ) lP"v)
oy" (2(o,)&

x e &P"I—n;(y) lp')
de po"+ooo po —oe—

e'i ~

+ e (Pl 6—(y) IP")
, . de (2(oo)&

—(P I &'(x) I
P')

de

1
dr d» &PI ~«'(x)j"(r)j "(»))

I
P'&

x&(~.(r)~.()).&—— I'dy&PI~V'"(*) j"(y)) I
p'&

e~

X((A„(*)A,(y) ) )+, (A-1)

where, to lowest order in e,

J,„=e(2a„+ok„)y;o;p, (A-2)

k„being the four-momentum of the photon associated
with the contraction ((A„(x)A„(y))+) in (A-1), and
where j„=—Bl.r/BA)' is the usual current operator.
The terms omitted in (A-1) are proportional to the
derivative with respect to e of the various mass re-
normalization counter terms, and are cancelled by parts
of the two terms of (A-1) which are written down.

The Coulomb approximation is equivalent to taking
the two current operators to have the same time
coordinate. Thus, in the first term on the right of (A-1),
the ordering of the operators with the 5; between the
two j„'s never occurs. We now eliminate the time-
ordering operator and rewrite this term using a sum over
intermediate states:

&PI 6(*)j(r)j( ) I
P')

=&-(PI 6(x) I ~)(il j(r)j(s) IP') (A-3)

Using the one-meson approximation, we now obtain an

APPENDIX A

Using a method. similar to that which gives (70), we
have in the Heisenberg representation

po +o)o po

The inhomogeneous term of (A-4) is cancelled in part by
the meson mass renormalization terms. Part of the
inhomogeneous term, as well' as terms which have
already been dropped, will produce an electromagnetic
renormalization of the meson-nucleon coupling constant
in addition to the renormalization brought about by the
charged-neutral meson mass difference. If this eB'ect
could be calculated, it could be included in +,o(f)
[see Eq. (69)].

If we consistently use the Coulomb approximation,
however, this type of coupling-constant renormalization
does not occur. From (A-2) we see that the inhomo-
geneous term of (A-4) has two terms, one containing
the meson momentum 8„&and the other containing the
photon momentum k„. After a change of variables, the
first of these may be written as

(('8 8)+ IB'(*)i (* ')j ("&—(Bx" Bs") I

X((A~(x)A" (x—s) )+), (A-5)

to be evaluated at @0=0. In the Coulomb approximation
the term 8/Bx" gives a factor (po —po') since only j„=jo
is considered. This is zero in the static-nucleon ap-
proximation. The term 8/Bs(' has one part involving
(8j„/8»(')g('", which is zero, and another part, coming
from the time-ordering symbol, involving a 5 function
of so multiplied by the commutator of (t) with jo. The
integration on so makes this the commutator for equal
times which is proportional to the 5 function of x. This
part of (A-5) thus contains the contraction of the two
electromagnetic field operators at the same space-time
point. This cannot be a real eGect and must correspond
to part of the meson mass renormalization to be
cancelled. By similar arguments the part of the inhomo-
geneous term of (A-4) proportional to the photon
momentum k„ is also seen to be zero.

Thus to our approximation the solution to (A-4) is
zero,


