
P H YS I CAL REVI EW VOLUME 112, NUM BER 1 OCTO B ER 1, 1958

Theory of Threshold Energy Dependence of Photodetachment of
Diatomic Molecular Negative Ions

SYDNEY GELTMAN
Atomic Physics Section, Sationa/ Bscreaa of Startdards, Washingtort, D. C.

(Received June 11, 1958)

The energy dependence near zero energy of the continuum wave function of an electron in a molecular
potential 6.eld is found by an iterative solution of the wave equation. This leads to shapes for the photo-
detachment cross section near threshold which are found to depend on whether the molecular ion is hetero-
nuclear or homonuclear and on the u, g symmetry (for homonuclear case) of the outer molecular orbital.
The predicted energy dependences are found to be consistent with the available experimental data.

I. INTRODUCTION AND MOLECULAR
APPROXIMATIONS

'HE threshold behavior of the cross section for
photodetachment of an electron from an atomic

negative ion is well understood. ' It is the case of a
reaction with two final products (electron and atom)
interacting with one another through a short-range
spherically symmetric potential. The general treatment
of such two-particle reactions has been given by
Wigner, ' who found that the energy dependence near
threshold was a function of the relative orbital angular
momentum of the product particles. In the case of
electron photodetachment from atomic negative ions,
the final / is obtainable from the initial 1 of the bound
state via the selection rules for dipole radiation. In the
diatomic molecular case the potential between the
product particles is no longer spherically symmetric
but axially symmetric, making the expansion of the
Anal-state wave functions in spherical harmonics in-
appropriate. In the present work we derive the threshold
shape of the molecular photodetachment curve in a
general way which makes no assumptions about the
molecular potential other than its basic symmetry
properties and the fact that it is short-ranged.

In the Born-Oppenheimer approximation the total
molecular wave function may be written as a product
of a function of the nuclear coordinates alone and a
function of the electron coordinates in which the nuclear
coordinates are contained as parameters. For any given
nuclear coordinates the electronic functions form a
complete orthonormal set. The total electronic eigen-
functions may be constructed from a configuration of
molecular orbitals obtained from a self-consistent-field
calculation. The energy dependence of the differential
cross section for photodetachment' is entirely con-
tained in

do.~sk Qi, flod1' dQ,
f

where r is the photon frequency, k is the electron wave
vector, and No and Nk are bound and continuum orbitals
corresponding to the initial and final states of the
photodetachment process. As these two orbitals are
orthogonal, the effect of the inner electrons is to intro-
duce energy-independent overlap integrals into the
expression for the cross section. Simultaneous nuclear
dipole transitions are forbidden in the Born-Oppen-
heimer approximation as terms containing the nuclear
dipole operators will vanish by the orthogonality of
the electronic states. If the molecules initially are in a
distribution of vibration-rotation states, then the
resultant photodetachment cross section is a superposi-
of curves having the form of (1), each setting in at
slightly displaced thresholds.

D72+O' —V jet=0, (2)

where V=V(p, s) is the axially symmetric eA'ective

molecular potential. The molecular axis is taken to be
the s axis, and the cylindrical coordinates p, s, and p
are used. In a negative ion there are usually one, or
perhaps a few, bound-state solutions for (2) and the
continuum of positive-energy solutions, Nj, . The initial
bound-state solution is independent of the energy of
the photon or of the detached electron and may be
written as

I&——Xo(p,z)e'"«,

where XOA is the angular momentum component along
the molecular axis.

The normalization of the continuum function in (1)
is such that as V—+0, Ni,—&e'" '.Hence, we seek a solution
of (2) of the form Nq= e'~ '+n, which leads to the non-

homogeneous partial diAerential equation for v,

II. FINAL-STATE CONTINUUM WAVE FUNCTION

The initial and 6nal outer orbitals are eigenfunctions
of the Schrodinger equation

' Branscomb, Burch, Smith, and Geltman, Phys. Rev. ill, 504
(j.958).' E. P. Wigner, Phys. Rev. 73, 1002 (1948).

'H. A. Bethe and E. E. Salpeter, Encyclopedia of Physic
(Springer-Verlag, Berlin, 1957), Vol. 35, p. 381.

P"+h']n= V(e'" '+e).

Since V is a short-range potential we expect a solution
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of (4) by iteration to be convergent. The ttth iteration
p

CO

gives =i P e'"&~~-& tdh

v&"&= dx„ ( -)L "'"+ '" "(.)j, ( )
expLi(k2 —t2)il s—s„lj

XJ& (hp) J1(hp ) (6b)
(k' t2—)i

with R„=
l
r„—rl and 2&&'&=0. To take advantage of

the molecular symmetry, we make use of the following
expansions for the plane wave4 and the three-dimen-
sional Green's function for the Helmholtz equation':

in which cr is the angle between k and the s axis and P
is the azimuthal angle of k. Also, expanding

tt(e& P 2'ke—AeF&(nl (p z)eAo

eik r eikz coen p joe ice—J (1kp stncr)ei1o we have, after substituting (6a, b) into (5) and inte-
grating over the cp-like variable,

f expL2(k' —h1') 'I z—z1 I j .
F&,&"&=22ri p1dp1 ds1

'

trdtr J&,(ttp) J1(ttpr) V(p1,s1) e'"*1-' J1(kpt sinn)
(k' —tP) i

+ (22ri)"
4

p

expL2(k2 —t„')ll s—s„lg
P dP

i

dz„ t„dt„J1(t„p)J1(t p„)V(p„,s„)
—oo 0 (k' —t.')'

t'
XJ pe, ldpn 1—-

0 00

expl 2(k' —t„p) il s—s„ 1 l 7
dzn —1

~

4-id@-1 A(te-lp) J1(4—1 pn —1)V(pn —lq Zw 1)
0 (k' —t„P)'

expL2(k' —tP)il s—s
l g

ptdp1 I ds1
~

trdh1 J&,(ttp) J1(trpt) V(p, ,s1) e'"*' "'~J1(kpt sinn). (7)
0 —oo 0 (k2 t12) *

In the case of a homonuclear molecule, V is an even
function of s about the center of symmetry. Also
expl 2(k2 —tp)'*l s—s1

l $ is an even function of s about s, .
The exponential e'~" "' is the sum of an even and odd
part about the center of symmetry, cos (kz1 cosn)
+i sin(kz1 cosa). Hence, the integral with respect to s1
contains an even and an odd part in s. This evenness
or oddness is propagated through all the iterative inte-
grations in (7) over the s-like variable. For hetero-
nuclear molecules, V has no symmetry with respect to
s and consequently F),&"' will not be divisible into an
even and an odd part.

The k dependence in the limit of k—+0 is obtained by
making the power series expansions of e'~'"' and
J1(kp sinn) in (6a) and (7). This leads to

—eik r+ l&m z(n) g see-QPG (p z)eikv (g)

where, in the heteronuclear case,

G&, (k stna)" p do„——t"& (s,p) (k stnn)'i'(k cosn)", (9a)
p, v=o

i J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 194j.), p. 3'hI'2.

5 P. M. Morse and H. Feshbach, Methods of Theo~esca/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. I,
p. 888; G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954).
The threshold shape will not depend on whether. the ingoing or
outgoing modi6cation is used for the "scattered wave. "

and in the homonuclear case,

G1 ——G1 (even)+G&, (odd),
with

G&, (even) = (k sinn)" g 8„„&"&(p,s) (k sinn)2e(k coscr)2",
tg, v=o

G1(odd) = (k sinn)" (k cosu)

Ci, t1&(p,z) (k Sinn) "(k COScr) ". (9b)
p, v=o

The k dependence in the A, 8, and C coefficients can
be written as a power series in k' starting with the
constant term, since exp[i(k2 —tP) &

l
z—sr

l
j/(k2 —tP) i~

a function independent of k as k—&0. The limiting k
dependence is thus explicitly exhibited in the factors
multiplying the above infinite series. Note that the
limiting k dependence in G), is the same as would be
obtained in the first Born approximation, i.e., with
m~ ——e'"'. Hence, at least in this case, the 6rst Born
approximation would give the correct threshold energy
dependence.

III. DIPOLE MATRIX ELEMENT AND
CROSS SECTION

The dipole matrix element in (1) becomes, after the
p integration,
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TABLE I. Values of threshold exponent m.

)Xo[ Heteronuclear Homonuclear
g Q

0

fop[ odd

1

2[Xpi —1

3
2i? pf

—1

2I7 pl+1

1

2[zpfy1
2I&pl —1

M = tts*rttpdr

00 GO

=2~ 2 (—s)"e'"' ~ pdp dsxp(p, s)G~*(p,s)

&(L(e,—iev)-,' pox, xp+1

+ (e,+sev)-',pl) x,~p —t+e,sk„~p],

and as dD= sinndtrdP,

2J J1M1 dp= (2pr)s — pdp ds xppGxpyt*

f 2

+- I pdp ds xppGxp —1
2~

+ Ji
'

pdpdsxpsG)p* . (10)
f

g orbital: xp(p, s) = (—1)"'xp(p, —s),
st orbital: xp(p, s) = (—1)"&+'xp(p, —s),

For a given A, p the threshold energy dependences are
found by substituting the expansions (9a, b) into (10).
The integration over o. causes the odd powers of k cosa
which enter through the sum in (9a) to vanish.

In the homonuclear case, the bound orbital must
have either g or I symmetry, that is, remain unchanged
or change in sign when the electron coordinates are
inverted through the center of symmetry of the mole-
cule. This requires the following behavior of xp..

IV. COMPARISON WITH EXPERIMENT

Photodetachment measurements have been made for
only two molecular negative ions, OH and 02 . With
OH, ' a photodetachment curve which rises very
sharply (on energy scale) from threshold has been
observed. A detailed analysis has not yet been made of
the data but it seems to fit (12) most closely with trt= 1.
This would be consistent with our theoretical result for
a a or m orbital in a heteronuclear molecule. It is
reasonable to expect OH to have the same electron
configuration, ~4, as the isoelectronic molecule HF. '

The detailed behavior of the 02—photodetachment
curve is presented in the accompanying paper. ' An
actual threshold energy was not found, but the shape
of the curve down to the lowest photon energies used
closely followed (12) with trt=3. If this is indeed the
threshold form, it is theoretically obtainable in a
detachment from a o;, m„or 8, orbital in 02 . This is
consistent with a m, ' configuration, ' which is believed
to be the lowest lying. A more detailed discussion of
other possible interpretations of the 02 results is con-
tained in the companion paper.

It should be emphasized that the foregoing results
apply only in cases where the Born-Oppenheimer sepa-
ration of electronic and nuclear motion is valid. Right
at threshold the magnitude of the outgoing electron's
velocity is less than or the same order as that of the
nuclear velocities, implying a breakdown of the Born-
Oppenheimer approximation. However, at 0.1 ev above
threshold the electron velocity is already much greater
than that of the nuclei. Also we make no attempt to
evaluate the coefficients in (12) which would tell how
far above threshold the limiting shape is valid. This
would require a detailed knowledge of the molecular
potential.

It is of interest for the sake of completeness to note
that the similar process of photoionization (single) of
neutral molecules will have a threshold energy de-
pendence of the form v(1—e ' t") '(1+ark'+ ), in-
dependent of the initial molecular orbital or the type
of molecule. This is brought about by the predominance
of the long-range attractive Coulomb field between
electron and positive ion at large separations. '

a ~vk (1+arks+ ask4+ . ~ ), (12)

we find from (1), (9a, b), (10),and (11) the set of values
of the exponent m for the various cases given in Table I.

or xp will be even or odd with respect to s depending
on) p and whether the orbital is g or N. In the first two
terms of (10) both xp and Gaper* must have the same
parity to keep the integration over s from vanishing,
while in the last term xp and Gap* must have opposite
parity. For Xp(0, one uses J „=(—1)"J„,showing that
the limiting energy dependence is a function of 1)ip1 only.

Writing the threshold form of the photodetachment
cross section as
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