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Ground State of Two-Electron Atoms
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A new method is developed for solving the wave equation for two-electron atoms. The wave function is
expanded into a triple orthogonal set in three perimetric coordinates. From the wave equation one obtains an
explicit recursion relation for the coeKcients in the expansion, and the vanishing of the determinant of these
coeS.cients provides the condition for the energy eigenvalues and for the eigenvectors. The determinant was
solved on WEIZAC for Z=1 to 10, using an iteration method. Since the elements of the determinant are
integers, and only an average of about 20 per row are nonvanishing, it has been possible to go to an order of
214 before exceeding the capacity of the fast memory of WEIZAC. The nonrelativistic energy eigenvalues
obtained for the ground state are lower than any previously published for all Z from 1 to 10. In the case of
helium, our norirelativistic energy value is accurate to within 0.01 cm ' and is 0.40 cm ' lower than the value
computed by Kinoshita. From the wave functions obtained, the mass-polarization and the relativistic
corrections were evaluated for Z= 1 to 10. Using the values of the Lamb shift computed by Kabir, Salpeter,
and Sucher, we obtain an ionization potential for helium of 198 310.67 cm ' as against Herzberg's value of
198 310.82&0.15 cm '. Comparison is also made with the available experimental data for the other values
of Z. By the use of our magnetic tape storage, the accuracy of the nonrelativistic energy value for helium
could be pushed to about 0.001 cm ', should future improvements in the experimental values and in the
computed radiative corrections warrant it.

1. INTRODUCTION

HE nonrelativistic Schrodinger wave equation for
two-electron atoms is, on neglecting the motion

of the nucleus, given (in atomic units) by

( Z Z 1 )V'it+a', sliy2~ Z+ + ~y=o. (1)
r, r, r„~

Z denotes the nuclear charge, r1 and r2 the electron
distances from the nucleus, and r12 their mutual dis-
tance. In the ground state, one has

f(r1 rs r12) (2)

and a method of obtaining an exact solution of (1) has
recently been proposed by Fock, ' but has not yet been
carried out. The exact solution starts out with the linear
terms

/=1 —Z(ri+rs)+-', res+, (3)

which are followed by terms of the form R lnR, & le,
R'(lnR)' etc ' where

R=rjs+rss. (4)

Pending a derivation of -the exact solution, the
practice has been to follow the classical method of
Hylleraas' whereby (2) is substituted into (1), leading to

With
S=rl+r2 t= rs r1 I=rls

f is assumed to have the form

p —+e—iss Q c ht+tn+osttmgs

and the "scale parameter" k as well as the coefficients
c~ „are determined from the equivalent variational
form of (5). Now the asymptotic behavior of the
solution of (5) for large s requires that in the exact
solution k equal 2e, where

e=g F.. —

By allowing k to deviate from 2t. in the variational
method, we obtain a better over-all behavior of f, at the
sacrifice of its proper asymptotic behavior, and thus
achieve higher accuracy for a given number of terms.

2. METHOD OF SOLUTION

If we attempt to develop P(r~,r r~s)isnto an orthogonal
set of its three variables, we meet with the diKculty
that, because of the triangular condition, these variables
are not independent. This difBculty can be obviated by
the use of the perimetric coordinates st, e, w, defined by

c)'g 2 8$ c)Q 2 et/ WP 4
+— + +— +2- +-

Br1' r1 Br1 Br2' r2 Br2 Br12 f12 Br12

(rl rs +r12 ) ct f (rs rl +rls )

Q= s(re+res —ry),

e= e(rl+ru rs)

w= 2e(ry+rs res)—
(10)

Bt'18f12 ~2~12
These coordinates4 are independent, and range each
from 0 to ~. %e have

c)s$ ( Z Z 1 )
X +2~&+ +

c)rsgr12 0 r1 rs r12)
' V. A. Fock, Izvest. Akad. Nauk. S.S.S.R. Ser. Fiz. 18,

(1954).
'V. A. Fock, reference 1; J. H. Bartlett, Phys. Rev. 51,

(1937).' E. A. Hyllersas, Z. Physiic 54, 347 (1929).

661
f= e &'"+'+"&F(N, s,w),

— (13)
4 Perimetric coordinates were first used by H. M. James and

A. S. Coolidge, Phys. Rev. 51, 857 (193/).

1649

(5) doc/'docs' —81r'ryrsrysdrtdrsdrys-
= (s'//32e') (st+@)(2tt+w) (2s+w)dudvdw. (12)

Put
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thus assuring the proper asymptotic behavior of P at
inanity (k=2e). The wave equation (5) takes on the
foal

e{(4u'v+4uv'+4u'w+4uvw+ 2uw') F
+ (4u'v+4uv'+4v'w+4uvw+2vw')F

+ (Su'w+Sv'w j4uw'+4vw') F „
—4uw(2u+ w) F„„—4vw(2v+ w) F.
+ ( 4u'+—4v'+ 2w'+4uw+4vw+8uv 4uvw-

—4uv' —4u'v) F„+(4u' —4v'+ 2w'

+4uw+4vw+ Suv —4uvw —4uv' —4u'v) F„
+ (Su'+ Sv' —4w' —2uw' —2vw' —4u'w —4v'w) F„

4(—u+v) (u+v+w)F}
+L4Z(u+ v) (u+ v+ w) —(2u+ w) (2v+ w) jF=0. (14)

The equivalent variational form of (14) is

I= i' e "dg e 'dv ' e "dzv

X{~$(4uv'+4u'v+4u'w+4uvw+2uw')F '

+ (4uv&+4u2v+4v'2w+4uvw+2vw&)F 2

+ (8u'w+ Sv'w+4uw'+4vw') F '

—4uw (2u+ w) F„F„—4vw (2v+ w) F„F„
+4(u+ v) (u+ v+ w) F'$+ $—4Z(u+ v) (u+ v+w)

+ (2u+w) (2v+w) jF'}. (15)

We now assume the expansion

F= P A (l,m, e)L)(u)L„(v)I.„(w),
lmnm

(16)

where L„(w) denotes the eorma/ised Laguerre poly-
nomial' of order e.

" (e&(—w)'
L-(w)= Z I

a=o (p) p!

e "$L-(w) j'dw=1.

(17)

(18)

By substituting (16) into the wave equation (14), we

obtain an explicit recursion relation between the coeffi-
cients A (l,m, e), on using the relationse

xL„"(x)= (x—1)L,„'(x)—eL„(x),

xL„'(x)=eL„(x)—eL„g(x), (20)

xL„(x)= —(e+1)L~g(x)
+ (2e+1)L„(x)—eL„ i(x), (21)

the primes denoting derivatives with respect to x. The
recursion relation between the A (l,m, e) thus obtained,
containing 33 terms, is

4(/+1) (/+2)L —Z+ e(1+m+e) jA (l+2, m, e)+4(m+1) (m+2)L —Z+ e(1+/+e))A (/, m+2, e)
+4(l+1)(m+1) f1—2Z+ e(2+/+m) jA (l+1, m+1, e)+2(l+1)(e+1)(i—2Z+ e(2+2m+e) j
&(A (l+1, m, e+1)+2 (m+ 1)(e+1)L1—2Z+ e(2+2l+e) jA (l, m+1, e+1)+(e+1)(e+2)A (l, m, e+2)
+ (/+1) {4Z(4l+4m+2e+7) —Sm —4e—6—2e/(m+e)(4m+12/)+e'+12/+18m+15e+ 14j}A(/+1, m, e)
+ (m+1) {4Z(4/+4m+2e+7) —8/ —4e—6—2eg(/+e) (4/+12m)+e'+12m+18/+15e+14j}A (l, m+1, e)
+4(e+1){Z(2l+2m+ 2)—l—m —e —2—eP—/ —m'+4lm+2le+2em+3l+3m+2e+27} A (l, m, e+1)
+4e(m+1) (m+2)eA (l, m+2, e 1)+4&—(/+1) (/+2)eA (l+2, m, e 1)—
+2d(e+1) (e+2)A (l—1, m, e+2)+2am(e+1) (e+2)A (l, m —1, e+2)
+{4(2l+1)(2m+ 1)+4(2e+ 1)(l+m+ 1)+6rP+ 6e+ 2—4ZL (/+ m) (6l+6m+ 4e+ 12)—4/m+4e+ 8j
+4ef(l+ m) (10lm+ 10me+ 10/e+ 10l+ 10m+ 18e+4e'+ 16)+ /m(4 —12e)+8+12e+4e'j}A (l,m, e)
+4/(m+1) $1—2Z+ e(1+/+m) jA (/ —1, m+1, e)+4(/+ 1)m/1 —2Z+ e(1+/+m) jA (/+1, m —1, e)
+2/(e+1)$1 —2Z+e(2m —4l—e)jA(l 1, m, e+1)+2m—(e+1)L1—2Z+e(2/ —4m —e)jA(l, m —1, e+1)
+2(/+1)eL1 2Z+. e(2m —4/ e 3))A—(/+—1, m—, e 1)+2(m—+1)e)1—2Z+e(2/ —4m —e—3)jA(l, m+1, e 1)—
+2/{—(4m+2e+3)+Z(8l+Sm+4e+6) —eL(m+e+1) (12/+4m+2)+e+e'7}A (l—1, m, e)
+2m{—(4l+2e+3)+Z(Sl+Sm+4e+6) —f(e+/+e1) (1 2+m+4/) 2++eje}A (l, m —1, e)
+4e{—(l+m+ e+1)+Z(2l+2m+ 2)—eL(/+ m) (1+2e—l—m)+ 6lm+2e) }A (l, m, e—1)
+2ee(e 1)(/+1)A—(/+1, m, e 2)+2ee—(e 1)(m+1)—A (l, m+1, e 2)+4d(/ . —1)(e+1)A (—l—2, m, ej1)
+4em(m —1)(e+1)A (l, m —2, e+1)+4/(l —1)L—Z+e(1+m+e) jA (l—2, m, e)
+4m(m —1)L

—Z+ c(1+/+e) jA (l, m —2, e)+n (e 1)A (l, m—, e—2)
+4/m)1 —2Z+ e(/+m) jA (/ —1, m —1, e)+2leL1 —2Z+ e (2m+ e+ 1))A (l—1, m, e—1)

+2mef1 —2Z+ e(2/+e+1) jA (l, m —1, e 1)=0. (22)—
' The Laguerre polynomials dined in Courant-Hilbert as well as in Morse-Feshbach are not normalized.
6 A. ErdHyi, Higher Transceedenta/ Functions (McGraw-Hill Book Company,

' Inc., New York, 1953), Vol. 2, p. 188.
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We note that if we write Eq. (22) in the form TABLE I. Ordering of the indices l, m, n in the symmetrical case.

then
C, p, „(l,m, n) =C, p, ,(l n, m——P., n y—) .(24)

If f is symmetrical in the two electrons, then

A (l,m, n) = A (m, l,n), para,

while in the antisymmetrical case

(25)

C, p ~(l,m, n)A(l+n, m+P, n+y) =0, (23)
a, P, y 2 0 0

0 1
1 0
0 2
1 1
2 0
1 0
0 3

2
2 1

1
2
3
4
5
6
7
8
9

10

1 1
3 0
2 0
0 4
1 3
2 2
1 2
3 1
2 1
4 0.

11
12
13
14
15
16
17
18
19
20

A (I,,m, n) =Bi„ (27)

k (l,m, n) = (1/24)co(co+2) (2~+5)+ &'~ L1—(—1)"]
+-', (l+m)'+-'L1 —(—1) '+~j+k+1, (28)

where
(o= l+m+n (29)

The scheme which we have adopted for ordering the
(l,m, n) is illustrated in Table I for the symmetrical case.
Substituting successively the triplets (l,m, n) into (22),
we obtain the equations

Q C;gB1,=0, (30)

Cjk amok+ ef jk

Here the a,~ and b,~ are integers and

(31)

(32)

A sample of the determinant for the symmetrical case
is shown in Table II.

A (l,m, n) = —A (m, l,n), ortho. (26)

Equation (22) represents a set of linear equations for
the determination of the coeKcients A(l, m, n), and the
vanishing of their determinant yields the eigenvalues of
the energy parameter e. For this purpose, it is necessary
to arrange the triple series of coeKcients A (l,m, n) into
a one-dimensional array. We do this by erst ordering
the (l,m, n) in a suitable manner, and then assigning to
each triplet of indices (l,m, n) an index k by the relations,

fore equivalent to the variational method. Indeed, in
one respect our method is weaker than the variational
method of Hylleraas because the Axed exponential form
introduced in (13) deprives us of the disposable "scale
parameter k" (k= 2e). For a given number of terms B~,
Eq. (30) therefore yields an inferior value for e than is
possible to attain when the disposable constant k is
available. Indeed, our solution is biased to assure proper
behavior at infinity. However, from the point of view of
economy of the electronic computer, the fixed expo-
nential form in (13) is to be preferred because firstly it
makes the elements a;I, and b;I, of the determinant in
(30) integers. This allows us to maintain double-preci-
sion (18decimals) floating accuracy in the computations,
and at the same time to accommodate about four times
as many elements of the determinant in the fast
memory. The second advantage is that the resulting
determinant is very sparse, having on the average only
about 20 nonvanishing terms per row. In this way we
have been able to reach an order of the determinant of
214, before exceeding the capacity of the fast memory
of WEIZAC; while with the Hylleraas type of solution
(7), where every element of the determinant is non-
vanishing and nonintegral, only a determinant of order
about 42 could be accommodated. The results obtained
by our method are therefore to be compared with those
of Hylleraas' method on the basis of a determinant of
order 2i4 of the former, as against a determinant of
order of about 42 of the latter.

3. COMPARISON WITH THE VARIATIONAL METHOD

Had we substituted the assumed expansion (16) for
F into the variational form (15), then the resulting
Eulerian variational equations would also have yielded
the same recursion relation (22). Our method is there-

4. SOLUTION OF THE DETERMINANT

The solution of the determinant (30) was carried out
on the electronic computer (WEIZAC) of the Weizmann
Institute. A program was prepared for computing the
elements of the determinant a, i and b, i, in (31),based on

TABLE II. The determinant of order 7 for the symmetrical case.

B2 Bg Be

—16Z+5+16m
4Z —4—4~

28Z —6—28m
1—4Z+2+ 4e—8Z + 8e—4Z+2+ 4e

—24Z+ 15+48&—4Z+ 2—8e
8Z —12—16~

36Z—10—60m
8e

—112Z+26+144m
4e —32Z+31+96m

16Z—12—16' —8Z+ 4—20m —144Z+541336e
88Z —12—104' 8Z+ 4—32~ —224Z+34+320e
44Z —14—72m 4Z+ 2— 4e —16Z+ 8+ 24m —104Z+25+208e
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TAmz ID. Values of the energy parameter e for various orders e of the determinant used. E= —2~' ry. The computed values are
uncertain by about one unit in the last decimal 6gure. o& is the order of the polynomial used, n the order of the corresponding determi-
nant. e* denotes the highest order determinant used in which k was not consecutive after about 95; k* and co* denote the highest values
of k and of co, respectively, in the determinant of order e*.

95 125

10

101 203 Extrapolated

1 0.726 464 050 4 0.726 464 459 0
2 1.704 031 510 6 1.704 031 654 2
3 2.698 131 255 2 2.698 131 361 3
4 3.695 343 695 3 3.695 343 778 0
5 4.693 716 047 0 4.693 716 1144
6 5.692 648 357 9 5.692 648 414 7
7 6.691 N3 891 6 6.691 893 940 6
8 7.691 332 382 5 7.691 332 425 6
9 8.690 898 172 8 8.690 898 211 2

10 9.690 552 367 8 9.690 552 402 5

0.726 464 630 8
1.704 031 722 5
2.698 131 411 1
3.695 343 816 6
4.693 716 145 7
5.692 648 441 0
6.691 893 963 3
7.691 332 445 5
8.690 N8 229 0
9.690 552 418 6

0.726 464 683 0
1.704 031 756 8
2.698 131 436 0
3.695 343 835 7
4.693 716 161 2
5.692 648 454 0
6.691 893 974 5
7.691 332 455 4
8.690 898 237 8
9.690 552 426 4

0.726 464 709 7
1.704 031 781 1
2.698 131 453 6
3.695 343 849 6
4.693 716 172 2
5.692 648 463 5
6.691 893 982 7
7.691 332 462 9
8.690 898 244 5
9.690 552 432 4

0.726 464 701 2
1.704 031 793 6
2.698 131 462 0
3.695 343 8SS 6
4.693 716 177 2
5.692 648 467 4
6.691 893 986 0
7.691 332 465 4
8.690 898 246 7
9.690 552 434 5

214 517 16
210 438 15
214 437 15
213 AHA

206 444 15
204 444 15
201 rtaa 15
207 "~~ 15
206 437 15
207 437 15

the recursion relation (22) and on (28). Following the
scheme of ordering indicated in Table I, all of the
elements of the determinant were generated up to the
end of a given value of or. The determinant was then
solved by an iterative procedure. ' If we truncate the
determinant at the order e, then we may put 8&= 1, say,
and use the 23 equations to solve for the (23—1) re-
maining BI, and for e. In the case of the ground state,
we may use the first equation to solve for ~, and each
kth row to solve for 8~. If we start with initial values of
5 and of the vector 8 which are close to the exact
solution for the order e, then the iteration procedure
will converge rapidly. We have programmed the solution
to take as initial values for the order e the final values
which were obtained for the order e—1, and to put
8„=0. The iterations for a given rs were programmed to
stop after the value of e had stabilized to within a
preassigned accuracy. Thus the computations were
started at m= 1 and allowed to proceed through aQ e up
to n=125, which constitutes the complete polynomial
in the variables I, v, and m of order or =9. Next we did
I= 161 (00= 10) by starting with the solution for 23= 125,
and guessing initial rough values for the additional B~.
The next step was 23= 203 (01= 11).Up to this stage, the
computations were made in single-precision Qoating
arithmetic. For the final re6nement of the cases m= 95,
125, 161, and 203, we changed to double-precision

arithmetic, in order to avoid possible errors from round-

oB. At this point, the pattern of the relative magnitudes
of the Sj„for a given value of Z, when proceeding to a
new value of or became clear. We then rejected certain
components B& beyond about k= 95, which were small,
and put in their place other elements (different k for
different Z), up to about k*=450 which were anticipated
to be larger. This constitutes our solution for e=n*
below.

The results for the values of the nonrelativistic energy
parameter e are given in Table III for Z= 1 through 10.
These values are higher than any previously pub-

~ C. L. Pekeris, J. Appl. Phys. 17, 683 (1946).

lished' " for all Z. For helium, Kinoshita' obtained a
value of e= 1.704 031 25 by direct variational computa-
tion with a determinant of order 39, in which the "scale
parameter k" was also varied. The latter came out 3.72,
which is markedly diferent from 2e. He also arrives at
an extrapolated value of &= 1.704 031 6.

In order to exhibit the rate of convergence of e with
increase in the order or of the polynomial used, we have
made an extrapolation to or—&oo. The extrapolation is
based on the fact that, except for the case Z=1, the
ratios of the successive differences of e are nearly con-
stant. The extrapolated values in Table III were derived
from the computed values of e for e=95, 125, 161, and
203 by 6tting the formula

6125 695
coo = 095+

(1—x)

where the constants x and a are determined from

(5151 5125) (15+1)$ (5203 5151)
as= )

(5125—505) 2 6161 6125

(33)

(34)

If the ratio of successive diBerences were constant, as it
Dearly is, and equal to x, then a would be 1. The slight
deviation of a from unity allows us to take account of
the variability of this ratio.

(35)

SS. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955).' T. Kinoshita, Phys. Rev. 105, 1490 (1956).

'0 J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).
n E. A. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958).

5. MASS POLARIZATION

Our computations, so far, are based on the wave
equation (5), in which the motion of the nucleus has
been neglected. The nonrelativistic energy values given
in Table III have first to be corrected for the motion of
the nucleus. An elementary correction is to use a Rydberg
constant E~ appropriate for the atom in question,
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TABLE IV. Values of the mass-polarization correction ssr =2s'(ra/3E)(A/Ã)Rsr cm '.

1
2
3
4
5
6
7
8
9

10

Element

H'
He4
Ll
Beg
B11
C~
N14
016
F19

Ne

(cm 1)

109 677.577
109 722.267
109 728.727
109 730.628
109 731.840
109 732.291
109 733.009
109 733.544
109 734.140
109 734.297

0.032 884 3
0.159 072
0.288 981
0.420 529
0.552 764
0.685 349
0.818 136
0.951 049
1.084 047
1.217 104

125

0.032 881 2
0.159 071
0.)88 978
0.420 524
0.552 758
0.685 342
0.818 127
0.951 039
1.084 035
1.217 091

0.032 880 1
0.159 070
0.288 977
0.420 522
0.552 755
0.685 338
0.818 123
0.951 034
1.084 030
1.217 085

—e2(A/X)
161 203

0.032 879 9
0.159 069 8
0.288 976
0.420 521
0.552 754
0.685 336
0.818 121
0.951 032
1.084 028
1.217 082

(em 1)

—3.928—4.785—4.960—5.619—6.046—6.878—7.036
.
—7.160—6.871—7.331

m p ( fPlf r)sg cisP

+ + iPdx 'dx ', (36)
M ~ (r)xrr)xs BprBfs Bzrr)ss) e *I„(x)L (x)xdx=eb„,

Q

(40)

provided f is normalized. If tf is represented by (13),
then one has and Eqs. (20) and (21). Table IV gives values of the

mass-polarization correction e~ for Z= 1 through 10.
These agree to within 0.001 cm ' with the values of
Hart and Herzbcrg. "

2

where

A second correction is the so-called mass-polarization With the coefficients A(l, m, u) in the expansion (16)
correction esr. According to Bethe, " this is given by known, the integrals in (38) and (39) can be evaluated

by using the relation

pQO IN

A= e "du e "dv
J,

f
X ' e "dw{—(Su'w+Suvw+4uw')F„'

JQ

—(82w+Suvw+4vw')F '+32uvwF '
—16(u'v+ uv') F„F„+(16u'w+ 8uw') F„F„

+ (16v'w+Svw')F„F„

+ (u+ v) (4uv —2uw —2vw —w') F'}, (38)

E= e "dg I e-'de
Js

6. RELATIVISTIC CORRECTIONS

A. General

Since an up-to-date discussion of the relativistic
corrections is available in reference 12, p. 275, it will
sufFice here to give a summary of the results and to show
how the various terms can be evaluated from our solu-
tion of the wave equation. It is customary to express the
energies in terms of the ionization potential J (see
Table V),

J= (e'—srZs) atomic units, (41)

which is the quantity measured experimentally. The
shift E, in the ionization potential due to relativistic
sects is given, in atomic units, by"

&;=n'(—sZ'+4(Pr') —~Z(B(rs))—m(8(r»))j —E,. (42)

e "dw(u+v) (2u+w) (2v+w)F'. (39) Here n denotes the fine structure constant, and the
various terms have the following origin: —Sn'Z' is the

TanLE V. Values of the nonrelativistic ionization potential J= (2e' —Z )Rsr cm '. n denotes the order of the deterruinant used.

Zgn

1
2
3.

5
6
7
8
9

10

95

6087.109
198 317.158
610 072.469

1 241 177.40
2 091 701.82
3 161 660.61
4 451 08'7.72
5 959 978.57
7 688 349.37
9 636 164.80

6087.239
198 317.265
610 072.595

1 241 177.54
2 091 701.96
3 161 660.75
4 451 087.87
5 959 978.71
7 688 349.52
9 636 164.95

161

6087.294
198 317.316
610 072.654

1 241 177.60
2 091 702.03
3 161 660.82
4 451 087.93
5 959 978.78
7 688 349.58
9 636 165.02

203

6087.311
198 317.342
610 072.683

1 241 177.63
2 091 702.06
3 161 660.85
4 451 087.97
5 959 978.81
7 688 349.62
9 636 165.05

6087.319
198 317.360
610 072.704

1 241 177.65
2 091 702.08
3 161 660.87
4 451 087.99
5 959 978.84
7 688 349.64
9 636 165.08

Extrapolated

6087.317
198317.370
610 072.714

1 241 177.66
2 091 702.09
3 161 660.88
4 451 088.00
5 959 978.85
7 688 349.65
9 636 165.09

H. A. Bethe and E. E. Salpeter, Efaedbuch der Physsh (Springer-Verlag, Berlin, 195'g), Vol. 3S, part 1, p. 252.
"Reference 12, Eq. (41.4).
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—16e'Z(u+ v) (u+ v+ w) —32e'Z(u+ v+ w)

+4es (2u+w) (2v+w)+32e'Z'(u+ v)

shift for the ion, An'(pt') stems from the relativistic
variation of mass with velocity. The last two terms in ~= ' ' (u+")(2u+w)(2v+w)
the square brackets arise from a term characteristic in
the Dirac theory, and from the interaction of the spin
magnetic dipole moments of the two electrons. The last
term is due to the retardation of the electromagnetic
field produced by an electron.

We have

f
(pi4) = d»sd»s(Vis|ad)'

16e'Z'(u+ v) (2u+w) 16e'Z'(u+ v) (2v+ w)

(2v+w) (2u+ w)

4e'(2u+ w) (2v+ w)

(u+v)
(50)

= s d»'d»'L(VtV)'+(Vs@)') (43)

Now from the wave equation (1), it follows that

(Vt'iP)s+ (Vs+)'= —2Vt'ib Vs'tb+4LE —V(r))'its (44)

where
V(r) = —Z/ri Z/r2 +1/r,—s. '(45)

We have used the right-hand side of (44) in the integrand
of (43). In terms of F defined in (13); the final result is

Ã is given by (39).
In order to carry out the integration in (47) we have

found it expedient to prepare a program for the evalua-
tion of the coeKcients F(a,b,c) in the conversion

F= g a(t,m, u)l. , (u)1.„(v)1.„(w)

P F(a,b,c)u'v'w' (51)
a, b, c

&p ')=Q/»
We then use the following relations, which can be easily

46 proved:

Q= I e "du~ e'dv
0 0 p(a, b,c) = I

e "dl e 'dv
J,

where

00

J
X ~ e "dw—

16e4GH
+2BF', (47)

(u+v)
u'vsw' a!b!c!

e ~dw =, (52)
"p (u+v) (a+b+1)

G ={uwF „+(2uv+2v'+ vw) F„„+4uwF„„
4uwF „+(uw——2u+w)F „

+ (—2uv —2v' —vw+2u+4v+w)F,
+ (—2uw+4u —2w)F„

+P, (u+v) (2v+w) —2(u+v))F}, (48)

I V'm'

(2u+w)

00 00 f00

h(a, b,c)= ' e "du ! e 'dv e "dw'' =J,

m=e (c )= b!(a+c)!& (—)"
~

l&(a+u) (53)
&u)

H = {vwF„„+(2uv+2u'+uw)F „„+4vwF„
—4vwF. +(vw —2v+w)F.
+ (—2uv —2u' —uw+2v+4u+w)F„
+ (—2vw+4v —2w)F„

+[-,' (u+ v) (2u+ w) —2 (u+ v))F}, (49)

(—)'
1V(a) = (—) lu2 —1+-,' ——',+ +

Values of (pi') are given in Table VI.

(54)

TABI.E VI. Expectation values of (p&') in atomic units.

Zgn

1
2
3
4
5
6
7
8
9

10

9S

2.462 8
54.088 8

310.548
1047.278
2659.729
5663.354

10 693.60
18 505.93
29 975.78
46 098.62

125

2.462 5
54.088 8

310.549
[1047.280
, 2659.734
t 5663.364

10 693.62
18 505.96
29 975.83
46 098.68

161

2.462 6
54.088 7

'310.549
1047.279
2659.736
5663.368

10'693.63
18 505.97
29 975.86
46 098.7g

203

2.462 6
54.088 6

310.548
1047.280
2659.737
5663.371

10 693.64
18 505.98:.
29 975.86
46 098.74

2.462
54.088 7

310.546
1047.29
2659.72
5663.35

10 693.64
18 505.95
29 975.85
46 098.72

Extrapolated

2.462
54.088 2

310.548
1047.29
2659.74
5663.38

10 693.65
18 506.00
29 975.84
46 098.77
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TABLE VII. Expectation values of (S(r2)) in atomic units.

Zgn

1
2
3

5
6
7
8
9

10

0.164 6
1.810 064
6.851 133

17.196 58
34.756 22
61.439 92
99.157 52

149.818 9
215.333 9
297.612 4

125

0.164 5
1.810 181
6.851 406

17.197 07
34.756 99
61.441 02
99.159 04

149.820 9
215.336 4
297.615 5

161

0.164 5
1.810 255
6.851 580

17.197.38
34.757 50
61.441 75
99.160 03

149.822 2
215.338 1
297.617 6

203

0.164 5
1.810 303
6.851 700

17.197 60
34.757 84
61.442 25
99.160 71

149.823 1
2]5.339 3
297.619 0

0.164 5
1.810 430
6.851 870

17.198 04
34.758 18
61.442 97
99.161 89

149.824 4
215.340 6
297.620 8

Extrapolated

0.164 5
1.810 403
6.851 97

17.198 1
34.758 6
61.443 4
99.162 2

149.826
215.342
297.622

C. (5(r,.))
With a normalized f, one has If r12=0, we have

D. (fi(r»))

(6(r2))=,~dxts p(r1,0).

Now if r2= 0, we have

I=w= 0) v ——2er„dx12= (pr/2es) vsdv,

(55)

(56)

v=v=0, w=4er1, dx12= (pr/16es)wsdw, (63)

(5(r12))= dx1' p(rt, rt)

= (pr/16es) F'(0 0 w)w'e "dw. (64)

and from (12)
16&'

(8(r2)) = e
—'v'F'(O, v, O)dv.

prS "p
(57)

As before, we write

F(0,0,w) =Q P„I.„(w), (65)

Let
F(O,v,O)=Q E~ (v),

P = Q A(l, m, 22). (66)

where
E„=pA(l, m, 22). (59) wF (0,0,w) =P G„L„(w), (67)

By applying Eq. (21) we get G = 22P 1+ (222—+1)P„—(2s+1)P~1, (68)

vF(O, v,O)=g D„L (v), (60)
26

(~(r»))=
~E

(69)

with

D = mE„,+—(2m+1)E„—(m+1)E~1 (61).
Values of (8(r12)) are given in Table VIII.

It then follows that
16&'

(8(rs)) = p D„'.
m-Ã

Values of (8(r2)) are given in Table VII.

(62)
g2

2m C t'12

r12 (r12 ' P1)P2
P1 P2+

~122

E. E2

E2 is the expectation value of"

O.2S

(70)
8f1~2~12

TABLE VIII. Expectation values of (b(r&2)) in atomic units.

Zgn

1
2
3
4
5
6
7
8
9

10

95

0.002 755
0.106 590
0.534 472
1.524 43
3.315 04
6.144 98

10.253 0
15.877 7
23.258 0
32.632 4

125

0.002 749
0.106 517
0.534 244
1.523 96
3.314 24
6.143 76

10.251 2
15.875 4
23.255 0
32.628 7

161

0.002 746
0.106 469
0.534 095
1.523 65
3.313 72
6.142 98

10.250 1
15.873 9
23.253 0
32,626 3

203

0.002 744
0.106 436
0.533 995
1.523 45
3.313 37
6.142 45

10.249 4
15.872 9
23.251 8
32.624 6

0.002 742
0.106 405
0.533 892
1.523 19
3.312 75
6.141 52

10.248 1
15.871 0
23.249 4
32.621 7

Extrapolated

0.002 74
0.106 36
0.533 78
1.523 0
3.312 6
6.141 3

10.247 8
15.871
23.249
32.621

'4 Reference 12, p. 267.
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TAnLE IX. Values of —(2/os)Es in atomic units.

z~~

2
3
4
5
6
7
8
9

10

0.01/ 78
0,278 385
0.856 434
1.758 32
2.985 20
4.537 46
6.415 26
8.618 68

11.147 8
14.002 5

|25

0.017 77
0.278 310
0.856 256
1.758 01
2.984 72
4.536 78
6.414 35
8.617 52

11.146 3
14.000 8

16i

0.017 76
0.278 266
0.856 155
1.757 83
2.984 45
4.536 41
6.413 85
8.616 88

11.145 5
13.999 8

203

0.017 76
0.278 240
0.856 095
1.757 73
2.984 30
4.536 19
6.413 57
8.616 51

11.145 1
13.999 3

0.017 /5
0.278 21
0.856 04
1.757 6
2.984 1
4.535 7
6,413 2
8.615 6

11.144 7
13.998 5

ExtrapoIated

0.017 75
0.278 20
0.856 01
1.757 6
2.984 1
4.535 9
6.413 2
8.616 0

11.144 5
13.998 5

where

S= (—2rt'rs'+2rtsrtss+2rssrtss+rt4+rs' —3rts4)

—Sr1r2r12
t9f18r2

, r)V—8r1r2r12'

+4rsrts( r1 +rs r12 )
Br1jr12

8
+«trts(rt'-rs' —rts') . (71)

t9r28r j2

This leads to

~+j +L, 1 +L, 2 EL, 2' ~ (73)

Er., t represents the Lamb shift for the one-electron ion,

Sn'Z4 1 Ep 19
2 In—ln +—ry,

3x Za Z' ry 30
(76)

where Ep denotes the average excitation energy for a 15
state lv—19

Salpeter'~ and by Sucher. " According to Kabir and
Salpeter, the leading terms of the Lamb shift in the
ionization potential of two-electron atoms DE; are
given by

with

40.2e' TP
, (72)(.+.) '

&o= 19.77Z2 ry. (77)

EL 2 and EL 2 represent radiative corrections to the
ground state of two-electron atoms,

2 =uwL(u+'v) (4u+2'v)+vw+2uwjp~v
+vwL(u+v) (2u+4v) juw+2vwjp~~-uvw (Su+ Sv —4w) P
+uvL (u+ v) (8u+ 8v+ 4w) +2w jp
—uw (u+ v) (Su+4w) p„„—vw (u+ v) (8v+4u) F,
+ L4uv(u+ v+ w) (1—u—v)+2w(u'+ v')+ w'(u+ v) $
X (p„+p„)+L4w(u'jv') —Suv(u+v+w)

+ (2ws —4w) (us+ v )+2w (u+ v) (6uv —w) )F~
+ $uv(u+ v) (2u+ 2v —w)

—tsw'(u'+ v') —w(u'+ v') )F. (73)

In carrying out the integration in (72) we use the relation

g( , a, )b=e, e
—"du

~

e-'dv
Js

16 1 kp 19
Er, s ———u'Z(8(rs)) 2 ln ——ln—+—ry, (78)

3 n ry 30

28 f1
Z, , , = —~'(8(»,)& Inl —

I ry.
3 Err)

(79)

Here kp denotes the average excitation energy for the
ground state of two-electron atoms. In the case of
helium, Kabir and Salpeter arrive at a value kp ——80.5 ry,
and a more approximate calculation for lithium yieMs
kp=191.6 ry. These values of kp were used in Table XI
for Z equal to 2 and 3, respectively, while for the other
values of Z we have used the values of Ep for the one-
electron ion given by Kq. (77). The justification for this
is, as Kabir and Salpeter point out, the fact that the
values of Es given by (77) for Z equal to 2 and 3 are
79.08 and 177.9, respectively, which are close to their
values of kp quoted above.

XJ e dw . (74)
(u+v)' (a+b) (a+bi 1) DISCUSSION OF RESULTS

The principal results of this investigation are the
Values of —(2/rr')Es are given 'n T X values of the energy parameter e for the ground state of

combination of all the above into E; in Table X.

F. THE LAMB SHIFT

The radiative corrections to the ground-state energy
of two-electron atoms have been treated by Kabir and

"P.K. Kabir and E. E. Salpeter, Phys. Rev. 108, 1256 (1957);
see also reference 12, p. 276."J.Sucher, Phys. Rev. 109, lplp (1958).' H A Bethe Phys Rev 72 339 (1947)

's H. Hakansson, Arkiv Fysik 1, 555 (195P).
's J. M. Harriman, Phys. Rev. 101, 594 (1956).



GROUN D STATE OF TWO —ELECTRON ATOM S

TAnrz X. Values of the relativistic shiit of the ionization potential Ey in cm, evaluated from Eq. (42).

Zg~

1
2
3

5
6
7
8
9

io

—0.304—0.542 7
19.759

114.655
373 222
919.583

1 912.93
3 547.51
6 052.64
9 692.66

125

—0.302—0.549 0
19.737

114.603
373.119
919.407

1 912.66
3 547.09
6 052.04
9 691.83

161

—0.304—0.553 2
19.723

114.565
373.051
919.287

1 912.46
3 546.79
6 051.66
9 691.27

203

—0.303—0.556 0
19.713

114.544
373.002
919.202

1 912.33
3 546.58
6 051.31
9 690.86

—0.304-0.563 9
19.691

114.505
372.925
919.015

1 912.08
3 546.20
6 050.92
9 690.25

Extrapolated

—0.304—0.562
19.69

114.52
372.88
919.00

1 911.9
3 545.9
6 050.3
9 689.5

two-electron atoms given in Table ID. The highest
values obtained by the direct solution of the determi-
nant are those shown in the column labelled e*. The
extrapolation is based on the values for e= 95, 125, 161,
and 203 and Kqs. (33) and (34). The purpose of the
extrapolation was to obtain an estimate of the accuracy
that one may attach to the n~ values. Judged by this
criterion, the e* values for the nonrelativistic ionization
potential J given in Table V are probably within 0.01
cm—' of the exact values. It is to be noted that they have
been computed for the particular isotopes of the ele-
ments which are listed in Table IV. Values for the other
isotopes can be obtained by using the appropriate R~.
The numerical values in Table V are of course subject to
the uncertainty" in R„,which amounts to +0.012 cm '.
In the Tables VI to X, where values of the terms
entering in Kq. (42) for the relativistic shift in the
ionization potential E; are given, the accuracy of the
results may again be judged by comparing the e* values
with the extrapolated values.

For the completion of the calculation of the theoretical
value of the ionization potential of two-electron atoms
we need to apply the Lamb shift correction. Whereas we

have aimed at an accuracy of 0.01 cm ' in all the terms
excluding the Lamb shift, the available calculations of
the Lamb shift to date are subject to a larger uncer-
tainty. Using the value of lnk0=4. 39, given by Kabir

and Salpeter's for helium, in Kq. (78) and the values of
(b(rs)) and (8(rrs)) given in Tables VII and VIII, we
obtain a value of —1.267 cm ' for E; in (75), compared
with the value of —1,264%0.2 cm ' given by Kabir and
Salpeter. Adding to this an additional o, correction,
evaluated by Sucher, "of —0.072 cm ', we arrive at a
value of —1.339 cm ' for the Lamb shift correction to
the ionization potential of helium. With the value of J
for e* in Table XI, this leads to a theoretical value for
the ionization potential of helium of 198 310.67 cm '.
The error in this value would be about 0.01 cm ' if the
above-mentioned Lamb shift correction is not subject
to a larger uncertainty. Herzberg's experimental value"
of 198310.82&0.15 cm is within his stated experi-
mental error of our theoretical value.

As for the heavier elements, the available experi-
mental values for the ionization potential are subject to
an uncertainty of the order of 100 cm '. Further re6ne-
ment of the experimental values will therefore be neces-
sary before our theoretical values can be subjected to
experimental test appropriate to their accuracy.

The values for the Lamb shift correction for the
ionization potential of the heavier elements may also be
subject to a larger uncertainty than is indicated by the
values given in Table XI.Another source of error is the
uncertainty in the value of R„,which enters as a factor
in the J values of Table XI. When one aims at an

TABLE Xl. Values of the ionization potential J of two-electron atoms, including the mass-polarization and relativistic corrections, but
excluding the Lamb shift. Jth„,* equals J for n* plus the Lamb shift of the ionization potential.

Z+e 95

1 6082.877
2 198 311.830
3 610 087.268
4 1 241 286.44
5 2 092 069.00
6 3 162 S73.31
7 4 452 993.62
8 5 963 518.92
9 7 694 395.14

10 9 645 850.13

125

6083.009
198 311.931
610 087.372

1 241 286.52
2 092 069.04
3 162 573.28
4 452 993.49
5 963 518.64
7 694 394.69
9 645 849.45

J incm ~

6083.062
198 311.977
610 087.417

1 241 286.55 1
2 092 069.03 2
3 162 573.23 3
4 452 993.36 4
5 963 518.41 5
7 694 394.37 7
9 645 848.96 9

203

6083.080
198 312.001
610 087.436
241 286.56
092 069.01
162 573.17
452 993.26
963 518.23
694 394.06
645 848.58

6083.087
198 312.011
610 087.435

1 241 286.54
2 092 068.96
3 162 573.01
4 452 993.04
5 963 517.88
7 694 393.69
9 645 848.00

Extrapolated

6083.085
198 312.023
610 087.44

1 241 286.57
2 092 068.93
3 162 573.01
4 452 992.9
5 963 517.6
7 694 393.1
9 645 847.3

Lamb
shift

-0.003 7
1 339b,a—7.83—27.1—65.7

-132—235—383—584—844

Jtheor
(cm ~)

6083.08
198 310.67
610 079.61

1 241 259.4
2 092 003.3
3 162 441
4 452 758
5 963 13S
7 693 810
9 645 004

Jex&a
(cm 1)

198 310.82 +0.15~
610 079~25

1 241 225~100
2 091 960&200
3 162 450&300
4 452 800~500
5 963 000~600
7 693 400&800

a Except for helium, the values for Je&p were taken from Atomic Pnergy I-eels, edited by C. E, Moore, National Bureau of Standards Circular No. 467
(U. S. Government Printing OfBce, Washington, D. C., 1949).

b See reference 15.' See reference 16.
d See reference 21.

20 E. R. Cohen and J. W. M. DuMond, Haldbuch de' Ehyssh (Springer-Verlag, Berlin, 1957), Vol. 35, Part 1, p. 82."G. Herzberg, Proc. Roy. Soc. (London) A248, 309 (1958).
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accuracy of 0.0i cm in the ionization potential, the
isotopic purity of the element has also to be considered.
In the case of lithium, where this is most serious, our
computations are based on the isotope I.i'. For the
naturally abundant element, which contains an admix-
ture of 7.5% of I.i, the ionization potential becomes
uncertain by about 0.7 cm ' due to the isotope eGect
alone.

It is clear that our method is directly applicable also
to the treatment of the excited states of two-electron
atoms, including the ortho states. Work is now in
progress on the 2 'S, 2 'S, and 2I' states.
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Measurements of the Interaction of 95-Mev Protons with He'f
W. SELovE* ANn J. M. TsEM$

Harvard Vrliversity, Cambridge, Massachusetts

(Received May 26, 1958)

Elastic and inelastic scattering and the (P,d) "deuteron pickup" process have been studied using a proton
beam of energy about 95 Mev incident on a liquid helium target. The elastic scattering shows a nuclear-
Coulomb interference dip at 9', a slight diffraction-type minimum at about 57, and a deep minimum,
approximately 10 "cm'/sterad at 135'. (All angles and cross sections are in the center-of-mass system ).
Inelastic scattering spectra were obtained at laboratory angles of 10', 15', and 30'. These spectra are
characterized by broad peaks, roughly 10-Mev wide, centered around an energy about 6 Mev below the
upper kinematical limit for inelastic scattering. Their interpretation is discussed qualitatively both in terms
of quasi-elastic nucleon-nucleon scattering and in terms of strong interaction between parts of the dis-
sociated rr particle in virtual or continuum states. A minimum was observed in the He4(p, d)He' differential
cross section at about 29'. Analysis oi the (p,d) data at 95 Mev and 32 Mev in the "transparent nucleus"
porn approximation yielded inconsistent results; presumably this inconsistency is due to the failure of the
model at the lower energy due to the tightly bound structure of He4.

I. INTRODUCTION

HK interaction of high-energy nucleons with He is
of particular interest because with high incident

energies, one can expect to study the internal structure
of the target nucleus, and the presumed complete space
symmetry of the He4 wave function should simplify the
interpretation of the results. At high energies the
proton-He' interaction can proceed through at least
seven channels, from elastic scattering through com-
plete disintegration of the alpha particle. The possible
reactions, together with their respective Q values, are
listed in Table I.

We hoped when this investigation was begun that by
obtaining data on both the elastic differential scattering
cross section and the He'(p, d) He' "pickup" cross section
at a sufficiently high energy, we could deduce an
equivalent single-particle wave function for He4. This
purpose might be accomplished as follows: (A) If the
elastic scattering is analyzed on the impulse approxi-
mation, ' the total scattering amplitude factors into the
product of a nuclear form factor and a sum of nucleon-

$ Assisted by the joint program of the Oiiice of Naval Research
and the V. S. Atomic Energy Commission.

* Now at the University of Pennsylvania, Philadelphia, Penn-
sylvania.

f. Now at the California Institute of Technology, Pasadena,
California.' G. F. Chew, Phys. Rev. 80, 196 (1950).

TABLE I. Possible interactions and Q values of
high-energy protons with He4.

Reaction

1. He4(p, p)He4
2. He4(p, d)He'
3. He4(p,'2p~H~
4. He4(p, pn)He'
5. He4(p, pd)H'
6. He4(p, 2pn)H'
7. He'(p, 2p2g)H'
8. $He4(p, p')He4*)

0 (Mev)

0—18.32—19.81—20.55—23.75—25.97—28.2
?

Experimental observation

Elastic scat tering
"Pickup" deuterons
a (Quasi-elastic p-p type)
a (Quasi-elastic p-n type)
a, b
a, b
a
Peak on the inelastic proton

continuum

& Reactions 3, 4, 5, 6, and 7 all contribute to the inelastic proton con-
tinuum, with varying "threshold" proton energies roughly equal to the
difference between incident proton energy and the appropriate 0 value.

b Reactions 5 and 6 both contribute to the deuteron continuum with
deuteron "threshold" energies roughly less than the peak from reaction 2
by the difference in the 0 values (see Fig. 2).

nucleon scattering amplitudes. The latter sum involves
the non-spin-fhp parts of the triplet and singlet p-m and
p-p scattering amplitudes. If one knew what to insert
for these amplitudes, one could then obtain from the
experimental data the nuclear form factor—which is
equivalent to obtaining the nuclear wave function.
(Inversely, of course, if the nuclear wave function were
known, one could get information on the nucleon-
nucleon scattering amplitudes. ) (8) Analysis of the

(p,d) pickup data, on the "transparent-nucleus" or


