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which is indeed smaller by a factor n' than the matrix
element (~ Sf

~
V

~ 2') which does not vanish in the non-
relativistic limit.

Since the matrix element (A.S) is an off-diagonal
perturbation between states which are also split by
the Lamb shift, the total splitting is obtained by
diagonalizing the 2X2 matrix

t'V, P dipole |
j'

where V28~, V2~ are the matrix elements of the I amb
shift operator for the indicated states and V28, 2p 'I""is
the matrix element (A.S). The eigenvalues of this
matrix are

&y=s(Vss'+Vsp )
W-,'L(Vss~ —Vst ~)'+4~ Vss sg '""~'j'. (A.9)

Ke expect that the dipole moment will be so small
that the splitting due to the Lamb shift alone,

V28 —V2~, is much larger than the dipole matrix
element V~8 2~ '"" so that these eigenvalues can be
approximated by

&g—-', (Vss'+ Var ')~ s (Vss' —Vsz')
&

~
(Vss, s~ ' '")~'/(Vss —Vs& ) (A.10)

The first two terms are just the usual Lamb-shift
splitting, so that the change will be

2~ Vss, sp ' '"~ /(Vss —VsI' ),
which is again proportional to d' rather than to d.

This may be compared with the splitting coming
from second and higher order perturbations using the
nonrelativistic wave functions, which we have cal-
culated exactly in Sec. II, and which is of order

~
Vst, tsd'o

~
/(&st —&ts)~

as can be seen immediately from perturbation theory.
The ratio of these two is approximately

) V2S, 2P
~

(+2P +1S)
x~ (~x—=~, (A.»)

so the relativistic contribution to the splitting is small

compared to the nonrelativistic part, even though there
is a first-order matrix element with the relativistic
wave functions.
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A parity-violating perturbation, corresponding physically to a permanent electric dipole moment of an
electron parallel to its spin, is introduced into the Dirac equation for an electron. For positrons two choices
of the relative sign of electric moment and spin are considered. Some numerical consequences of such a
perturbation for hydrogenic atoms and for positronium are calculated.

From various experiments carried out previously, rough upper limits are obtained for (, the electric
dipole moment expressed in units of eh/mc: From the numerical value of the Lamb shift, P(0.004; from
the metastability of the 2s-state in hydrogen, (&0.03. From the absence of E—+L& x-ray transitions in the
heaviest atoms, the upper limit for g is about 0.005 or, probably, even- smaller. From the value of the hyper-
6ne splitting of the positronium ground state, (&0.02.

1. INTRODUCTION

ECENT experiments' on the formation and decay
of positronium in the presence of a static external

electric 6eld have brought up the question of the
possible existence of a small intrinsic electric dipole
moment of the electron and positron. In connection
with these experiments more complicated possibilities
might be of interest, such as parity-violating field-

theoretic terms' which give some effects in positronium

* Supported in part by the joint program of the Ofhce of Naval
Research and the U. S. Atomic Energy Commission.' F. E. Obenshain and L. A. Page, Bull. Am. Phys. Soc. Ser. ZI,
8, 228 (1958).' P. Stehle (unpublished work).

akin to those produced by electric dipole moments but
have no eGect on single-electron atoms. We shall not
consider any such possibilities in this paper but only a
small permanent electric point-dipole moment coupled
with the spin of individual electrons or positrons. We
merely calculate, for future reference, some effects such
a dipole moment would have on hydrogenic atoms and
on positronium and discuss upper limits on such a
moment which are already implied by various experi-
ments which were carried out in the past for other
purposes. Some discussion of the effects of such a
moment on more complex atomic and molecular systems
will be found elsewhere. '

' M. Sachs (to be published).
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In conventional notation the Dirac equation then reads

(Hp+H )I=Est, Hp=mPc'+n (cp+. eA) ep, —
H'=((eA/2mc)P[e 8+in Xj,

'
(2)

where 8 and $C are the electric and magnetic field. In
the Pauli approximation, which will be suKciently
accurate for part of our calculations, the pseudoscalar
perturbation Hamiltonian H, expressed in atomic units,
reduces to

H'=$n(s 8+,'ip K-+ ', sXp-X), . (3)

where n=1/137.04 is the Sommerfeld fine structure
constant and. s=-,'trp is the Pauli spin-operator. P is a
dimensionless constant throughout which measures the
electric dipole moment in units of the Bohr magneton.
We shall assume $&(1, i.e., electric dipole moment
small compared with e times the Compton wavelength
of the electron.

Ke shall find as rather sensitive, although indirect,
tests for the presence of an electric dipole moment some
second-order perturbation energy shifts. For hydrogenic
atoms these shifts contribute to the Lamb shift and
are discussed in Sec. 2. For positronium they contribute
to the hyperfine splitting of the ground state and are
discussed in Sec. 4. More direct eGects of the parity-
violating perturbation Eq. (3), the breakdown of the
metastability of the 2s-state in hydrogenic and of
equivalent selection rules in the x-ray spectra of heavy
atoms, are discussed in Sec. 3. The behavior of an
electric dipole moment in the presence of an external
static electric field is discussed in Sec. 5.

2. CONTRIBUTIONS TO THE LAMB SHIFT

We consider a hydrogenic atom with charge Z in the
absence of any external field, using at first the lowest-
order Pauli approximation. The perturbation Hamil-
tonian H' in Eq. (3) then reduces to

H'= —$Znr 's„, s„—=r 'r s, (4)

in atomic units. We assume this perturbation to be
small compared with the fine structure splitting (g&(1)
and consider matrix elements of H' between the usual

4 H. A. Bethe and E. E. Salpeter, Quantum 3IIechanics of One-
and Two Etectron Atoms (Springe-r Verlag, Berlin and Academic
Press, Inc. , Heidelberg-New York, 1958);hereafter referred to as I.
Kctnation (tt. m) in this reference will be referred to as (I, I.m).

Wherever possible we shall use the notation of Bethe
and Salpeter. 4 We introduce an electric dipole moment
in a Lorentz-covariant manner into the Dirac equation
for a single electron in an electromagnetic field by
means of a term analogous to the Pauli anomalous
moment term but multiplied by the pseudoscalar Dirac
operator y5. In covariant notation we put, by analogy
with (I, 10.15),

e q
- feb'

I p.+ ~. -Iv.—imc tt= —
SI Iver.vP'..tt (1)

c ) (4mc')

stationary states which are simultaneous eigenstates of
the operators k', M', and M, with quantum numbers
(lj,m), where M =k+ s is the total angular momentum.
The operator s, commutes with M' and M, but has
odd parity. 5 Its only nonzero matrix elements are

(l=j&-,' j m
I

s
I
l=j a s j m) = s.

We need next the matrix element of r ' between the
radial wave functions for two diR'erent atomic states.
We shall find it useful to rewrite this radial integral in
the following manner. Let X ~ be r times the radial
wave function and E„& the corresponding energy eigen-
value for principal and orbital quantum numbers e
and l, for an electron in an arbitrary central V(r). This
function satisfies the equation Lin atomic units (a.u.)j

f $2ttV —d /dr j+l(l+1)r 2tsE—„t)X~t=0, (6)

where p is the reduced mass in units of the electron
mass m, . Multiplying on the left by X„&, integrating
over r and subtracting an equivalent expression with
el and e'/' interchanged, we obtain the desired relation

Ll(i+1)—i'(l'+1) 1 )t dr X„tr 'X„,

=2t (E„t—E„,) dr X„tX..r. (7)

For our hydrogenic atom, with V(r) replaced by the
Coulomb potential, we then obtain for the only non-
zero matrix-elements of H' in Eq. (4)

(tt, l+,j,m
I
H'I rt', L,j,m)= —$Zn(2j+1)—'

where l~———j~—, and we have replaced the reduced
mass p, by unity. As expected, our parity-violating
perturbation Hamiltonian II' mixes a given unperturbed
state with the states of opposite parity and the same
values of j and nz.

It is important to note that our nonrelativistic matrix
element (8) vanishes between the two degenerate fine
structure components with a=n'. These two states are
still degenerate in the relativistic Dirac theory and are
split only by the Lamb shift by an energy of order
(Zn)'n times the energy difference to states of different
principal quantum number e'. If we were to consider
the Lamb shift as due to a phenomenological extra
potential of order (Zn)'n, then Eq. (7) shows that the
nonrelativistic matrix-element of II' for a= @' would be
an order of (Zn)'n smaller than for ttWN'. In fact we
shall show that the correct relativistic matrix element
for e=e', even disregarding the Lamb shift, is smaller
than for rtNrt' only by a factor of order (Zn)'. The term
with e=e' thus contributes only a fraction of the order

5 For further details, see E. U. Condon and G. H. Shortley,
The Theory of Atomic Spectra (Cambridge University Press,
Cambridge, 1953).
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of Zsrr to the second-order perturbation energy due
to H'. In evaluating this perturbation energy for
reasonably small values of Z we are then justified in
using the nonrelativistic approximation which replaces
the contribution from n=n' by zero. However, in
evaluating the (square of) mixing into a given state of
wave functions of the opposite parity, due to H', we
shall see that the term with n= n' contributes an order
of o, ' more than the terms with n4n' and we shall
have to evaluate the matrix element relativistically.

We can now evaluate the second-order perturbation
energy DE due to H' for a state (is, l~,j,rN), using the
nonrelativistic matrix-element (8), a sum rule and
Eq. (6):

= ()Za/2j+1)'
~

dr X~i+LE„+-,'d'/dr'

+Zr '—-', E~(l~+1)r '7X~i+.

Using Eq. (6) again, this expression reduces to a
multiple of the expectation value of r ' Lsee (I, 3.25)7
and we get

The difference AEI.q between this energy shift for the
2s;- and the 2Pi-state, i.e., the second-order perturba-
tion contribution of H' to the observed Lamb shift for
n=2, is then

GAEL

s —(Z g /6)(P ry
=—Z'$'&&2.9X10' Mc/sec. (10)

The contribution of F1' to the 2pi-2pi energy difference
is ss of AELs. In reducing H' given in Eq. (3) to the
expression (4) we have omitted the interaction of the
electric dipole moment with the virtual radiation Geld.
This interaction, calculated in second-order perturba-
tion theory in close analogy with the ordinary Lamb
shift, also gives a contribution to AEI,g. However, as
will be discussed brieRy in Sec. 4, this contribution
(with divergent integrals cut off at momenta of order
m, c) is an order of u smaller than Eq. (10) and we
omit it.

The diR'erence' between the experimentally observed
and the theoretically calculated (with /=0) Lamb
shift is about (—0.26&0.25) Mc/sec for Z=1 and

(—17&8) Mc/sec for Z=2. The stated probable errors
do not include an estimate of the 6eld-theoretic terms
of order Z'a5 ry, which have not been calculated yet.
Such terms could be as large as &0.2Z' Mc/sec and,
if negative, would remove most of the remaining dis-
crepancy mentioned above both for Z=1 and 2. If
positive, these terms would enhance the discrepancy,

6 E. Lipworth aird R. ¹vick,Phys Rev. 108, 14. 34 (1937).

but this discrepancy would have a somewhat stronger
Z dependence than a correction term of form (10),
due to any electric dipole moment. The value of AEl, q
in Eq. (10) is thus most probably less than about
—0.5 Mc/sec, giving an upper limit of about 4X10 '
for $.

3. PURITY OF THE 2sy-STATE IN
HYDROGENIC ATOMS

One striking eBect of the perturbation H' is the
mixing in of small amounts of states of the opposite
parity (and same j) for any given state isjlm. Let R' be
the sum of the integrated squares of the mixed-in wave
functions of opposite parity (with the unperturbed
wave function normalized to unity). For a non-
Coulombic potential with no orbital degeneracy, the
small ratio R would be of the order of err. In some non-
hydrogenic atoms where two states of opposite parity
and diAerent principal quantum numbers accidentally
have very similar energy eigenvalues, such as the 3d-
and 4p-states in Al (Z=13), the numerical value of R
might be enhanced considerably. We shall not consider
such cases but only the states njlm of hydrogenic atoms
in the absence of any external electric fields: The mixing
in of states with nQn' would again only give a ratio E
of the order of gn. We have seen that the nonrelativistic
matrix-element of H' between the two states with the
same n and j values vanishes. Ke shall show that the
relativistic matrix-element does not vanish exactly and
that the mixing ratio between the two almost-degener-
ate Gne structure components is of order P. We there-
fore consider only this mixing and neglect contributions
from states with n/n'.

YVe consider 6xed values of n, j, and m and denote
the Dirac wave functions in a Coulomb potential with
l~= j&2 by u+ and u . We can write these Dirac
spinors in partitioned form as

N~=r 'LX,~(r)ri;i~, —iX,~(r)ri, ip7,

where the X2 and X~ are the "large" and "small"
normalized radial components, respectively, and the q
are Pauli-spinor and orbital wave functions. With H
defined in Eq. (2) and using Eq. (5) we then get, in the
absence of any external electromagnetic field

= —s&Za )t dr r '(Xsi.Xs —Xi+Xi ). (11)
0

Before evaluating the integrals in Eq. (11) explicitly,
we digress a moment: If we had omitted the Dirac
operator P in the definition Eq. (2) of H', the only
effect on Eq. (11)would be a change of sign of the term
&~+X~ . One can show as follows that the integral in
Eq. (11) with this changed sign would vanish: In our
present notation the exact quadratic Dirac equation
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t see (I, 12.9)) reads

$2Hp+lg(4+1)r ')X,~= —Znr 'Xz~,

L2Hp+lp(fan+1)r '$Xz~ ——+Znr 'X,~,
(12)

(17)

and 2p~-states. In the absence of a magnetic 6eld, hW
is simply the Lamb shift (7.76n'Z'/6pr) a.u. =1000Z4
Mc/sec, and (for Zn«1)

R=0.18Z$.
where Hp 2W+——eP+n'(W+eP)'+8'/Br' and —W is
the binding energy which is the same for both states
even in the Dirac theory. After some cross-multiplying,
integrating, and subtracting, one obtains the two re-
lations

F00

dr r 'Xp+Xp ——Zn(2j+1)—'
"0

F00

dr r '(X2 X,„—X~Xz )

=+ dr r 'X,+X, . (13)

The matrix element of H' modified by the omission of P
in Eq. (2).would thus vanish, but this omission would
destroy the Lorentz invariance of the Hamiltonian
which is presumably unacceptable (even if one might
be prepared to admit the parity-violating H' alto-
gether).

We return now to the matrix element Eq. (11).As

Eq. (13) shows, the square bracket in (11) contributes
simply twice as much as either term in it. For small Zn,
we have as a simple approximation for the "small
component" Xz, using (I, 14.12),

Xz~ = -',n[d/dry (j+-', )r
—']Xg =—-', n(DgXg),

where X~- are the normalized radial Schrodinger wave
functions for l+ ——j~—,'. In this approximation then

4(l ~H'~L)=gZ ' t dr(D+X+)r '(D X ), (14-)
0

where we have omitted the fixed labels n, j, and m.
The most interesting case is m=2, j=-,', since this

mixing between the 2s, and 2p; wave functions destroys
the metastability of the 2s;-state. Equations (14) and

(I, 3.18) then gives, in this approximation for small Zn,

(2s., iH'i2p;)=pZ' /KS. (15)

Using the exact Dirac wave functions (I, 14.40) and

(I, 14.41), the integrals in Eq. (11) for n=2, j= pz can
also be evaluated exactly and give, with y= (1—Z'n')',

(2s;
~

H'~ 2p;) = gZ'n(y —1)/
L27(27 —1)(7+1)(2y+ 1)**3. (16)

Equation (15) is the first nonzero term in the expansion
of Eq. (16) in powers of Zn.

The presence of the perturbation H' alters the wave
function of the 2s;-state to

up, ,+Rgp„;, R=(slH'Ip)/~W,

where AW is the energy separation bctwet:n the 2s~-

The half life [ of the 2p~-state is 1.6X10
Z= 1, 1.0)&10 " sec for Z=2. The half-life t, of the
metastable 2'-state in the absence of an external
electric field and without our parity-violating term H
is 0.7 sec for Z=i and 2.2&(10 ' sec for Z=2. For
$)10 ', the presence of H' considerably shortens the
life of the 2s;-state to t,=R 't„. The value of t, has
never been measured directly, but in the course of
various microwave experiments on the metastable state
in H, D, and He+ lower limits on t, have been obtained
as a by-product. In Lamb shift experiments' for He+,
for instance, t, for Z=2 is bigger than at least 10 ' sec,
so that R'&10 4 and

~ P ~

&0.03. In hyperfine structure
experiments' on H and D, the line-width of the 2s~-

states give a lower limit of about 3X10 ' sec for t, for
Z=2, i.e., R'&SX10 '. The same hyperfine structure
experiments also yield a more sensitive, although more
indirect, test for the presence of our perturbation
Hamiltonian: With a fraction R' of the state in 2p, -
form, the theoretical value of the hyperhne splitting
energy has to be multiplied by a factor (1—2R'/3).
This factor is absent in the nondegenerate 1s ground-
state. The experimental and theoretical ratios of hyper-
fine splitting in the 2s- and is-states in H and D agree
to about 1 or 2 ppm (parts per million), so that R'&2
&(10 ' for Z=1 and

~ $~ &0.008. In principle, direct
measurements of the lifetime of the 2s;-states could
furnish quite a sensitive test for the presence of H':
In the presence of an external magnetic field the
2s; 2pi energy separation for one of the m values is
decreased and for a suitably chosen magnetic field the
mixing ratio R for Z= 2, for instance, can be increased
to about 2$ or more. If lifetimes up to about 10 ' sec
could be detected (and stray electric fields kept to a
small fraction of a volt/cm) one could detect values of

~ $~ as small as 0.0002, say.
The mixing ratio R according to Eq. (17) increases

with increasing Z, but accurate experiments cannot be
carried out on hydrogenic atoms of large Z and for non-
hydrogenic atoms there is no orbital degeneracy and
the mixing ratio E is not large. Nevertheless, x-ray
experiments on neutral atoms of very large Z again
provide a sensitive and very direct test for $. Although
there is no true orbital degeneracy and no metastable
states, the energy separation between the I.z and Lii
shells (a 2s~- or a 2p;-hole) is relatively small for very
large Z and single-photon radiative transitions between
the E shell and Lz shell (jump of a 1s hole to a 2s hole)

~Heberle, Kusch, and Reich, Phys. Rev. 101, 612 (1956);
104, 1585 (1956).

The two-photon radiative transition has a non-negligible
probability for large S but, of course, dos not lead to mono-
energetic x-rays,
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are still strictly forbidden in the absence of any parity-
violating perturbation Hamiltonian. In the presence of
our perturbation H' this selection rule breaks down and
the ratio between the intensities for a E-Lz to a E-Lzz
(1s;-2p, ) transition is simply equal to R', the square of
our mixing ratio. For U (Z=92), for instance, the
experimental energy separation 68"between Lz and Lzz
is only 30 a.u. and the matrix-element Eq. (16), using
hydrogenic Dirac wave functions, is about 760 a.u. and
the mixing ratio R is about 26$. Screening corrections
for this matrix-element are probably appreciable even
for Z as large as 92, but our factor of 26 for R/P is
probably in error by less than a factor of two. The
forbidden E-Lz line for heavy elements would probably
have been detected already if E.' were as large as 10 ',
say, which gives an upper limit for

~ &~ of the order of
0.005. A careful analysis of previous experiments on the
"wings" of E-Lzz lines might already be able to de-
crease our upper limits for R' and $ considerably. The
ratio R/$ increases rapidly with increasing Z and a
high-dispersion specific search for this forbidden EC-Lz

x-ray line in the transuranic elements (or in U) would
provide a particularly sensitive test for (.

4. POSITRONIUM

Once we are prepared to accept the parity-violating
perturbation H' in Eq. (2) for an electron, it is not
clear how we should require this term to transform
under charge conjugation. We therefore shall consider
separately two cases in which the term H' for a positron
has the same and opposite sign, respectively, than H'
for an electron. In positronium the Coulomb field vector
seen by the electron and positron are equal and parallel.
The perturbation Hamiltonian in Pauli approximation
equivalent to Eq. (4) is then

H, ' = —PZnr-'X
5„—=s~„+s2„ for case (i)

(18)
for case (ii),S»g

—$2'

where s», s~ are the electron and positron spin and
S=s~+s2 is the total spin. We need the matrix-
elements of H' between the unperturbed positronium
eigenstates of k', S', M', and 3f„with quantum
numbers I, 5=0 (singlet) or 1 (triplet), J= ~l S~ to-
t+5, and m (M = k+ S is the total angular momentum).
The operator S„connects a state l, S, J, m only with
states l~1, S, J, m and has zero matrix-elements for
5=0. The operator (sq„—s2,) connects I, S=O, J', nz

with l~1, S=1,J, m.
We evaluate explicitly the second-order perturbation

energy due to H' only for the ground state of posi-
tronium, i.e., for the S=O and S=1 levels with v=1
and I=O. Since l=O the operator 5„(or s,„—s2„) con-
nects the ground state only to states with /=1. We
again use the relation (7) with reduced mass p=-,', sum
rules and (I, 3.25) as in the derivation of Eq. (9) for
hydrogen. One factor needed in our derivation is the

expectation value

3(5„). ..=,=&S )=5(5+ 1),
3((s~„—s2„)')~ o J'=s (2(sP+s2') —S')

= —', —5(5+1). (19)

We call AB, the second-order perturbation energy for
5= 1 minus that for S=0 (for the ground state, +=1),
i.e., the contribution of the perturbation H' to the
hyperfine splitting of the positronium ground state.
Our final result is

hE, = W-,'pn' ry, (2o)

where the minus and plus signs refer to cases (i) and (ii),
respectively, in Eq. (18).

We now have to consider also the interactions H»'

and H2' of the electric dipole moment of the electron
and positron with the virtual radiation field. H» is
simply given by Eq. (2) Lor, in Pauli approximation,
by Eq. (3)j with 8 and K replaced by the usual sum-
mation of electric and magnetic field of plane waves
multiplied by photon creation and annihilation oper-
ators. The term involving 8 behaves essentially like P

times the ordinary magnetic dipole radiation term and
the one involving X somewhat like (Pk/2mc) times the
ordinary total radiation term (k is photon momentum),
except that the photon polarization direction e is
replaced by eXk/k. For a two-electron system or for
positronium, H»' and H2' taken together in second-
order perturbation theory then contribute corrections
of relative order p to the ordinary Breit interaction.

The spin-spin interaction part of the Breit inter-
action, Hr in Eq. (I, 39.14), can be thought of as
coming from the magnetic dipole radiation term.
Explicit calculations show that this term in Pauli
approximation is simply multiplied by (1&P), the
upper and lower signs referring to cases (i) and (ii),
respectively, in Eq. (18). The corresponding term
(I, 23.4) in positronium is multiplied by the same
factor, adding another P-correction term DEB, besides
AE, to the hyperfine splitting in the positronium
ground state

B,En, ——+x'pn' ry. (21)

To lowest order in n there is no corresponding p-cor-
rection to the "pair annihilation term, " Eq. (I, 23.5).
The perturbations H»' and H2' also result in terms akin
to the Lamb shift, which involve divergent integrals.
If momentum cutoAs of order mc are applied, the result
is of order Pn' ry, which we neglect. It should also be
pointed out that cross-terms between H~' (or H2') and
the ordinary radiation interaction, which would have
been linear in P, vanish from symmetry considerations.

Adding Eqs. (20) and (21) we have

~&=~(5/6)Pn'r =~(5/7)P~lf' (22)

where the minus sign refers to case (i), plus sign to
case (ii) and 0 W is the lowest order hyperfine splitting
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in the positronium ground state, Eq. (23.6).The experi-
mental' hyperfine splitting agrees with the theoretical
calculations (assuming /=0) to within the combined
experimental and theoretical errors of about 1 part in
4000. This yields an upper limit of about 0.02 for

~
$~.

This upper limit is not as sensitive as those obtained in
previous sections from single-electron atoms but it
tests, to some extent, any field-theoretic two-electron
terms which might give effects akin to those of an
electric dipole moment only in many-electron atoms or
in positronium.

The situation is very similar, although the calcula-
tions slightly lengthier, for the excited states e&2 of
positronium to that for the ground state, i.e., corrections
of relative order P are obtained. to the fine and hyperfine
structure splitting energies. The (squared) mixing
ratio R' between states of opposite parity is simply of
order Pn' Th.e contribution to E' from states of the
same principal quantum number e is not any larger
than Pn' in positronium, unlike hydrogen, since the
hyperfine structure ensures energy separations of order
rr' ry (instead of n' ry) between all states with the
same e value.

Hs& —— Fr cos8, —Hr'= PrrFs. . (23)

We shall obtain terms linear in $ not only from the
direct term Hp' taken in first order, but also from the
combination in second-order perturbation theory of
Hso and H', the operator linear in $ involving only the
Coulomb potential and given. in Eq. (4).

Ke consider first the ground state of a hydrogenic
atom with charge Z. Using the fact that the operator s„
couples s states only to p states, and using Eq. (7) and
a sum rule, we can write the second-order term DE2
which is linear in g in the form

2 Pi, (Eo—Ei,) '(Hss)oi, (H')so= 2(Fr cos8$—mrs, )pp.

Using the explicit definition (4) of s„ the fact that the
orbital part of the ground-state wave function is
spherically symmetrical and the expectation value
(I, 3.20) for r, we have

AEs —— 2$ZrrF(r cos'8) op(s,—)pp,
(24)hE=—(Hr') op+ AEs ——0.

Equation (24) demonstrates that the second-order
term involving H' and Hzt, exactly cancels the direct
term of order PeiF for the hydrogen ground state, if one

'Weinstein, Deutsch, and Brown, Phys. Rev. 98, 223 (1955);
Hughes, Marder, aud Wu, Phys. Rev. 106, 934 (1957).

S. EXTERNAL ELECTRIC FIELDS

We consider now the effects of an external homo-
geneous electric field F (in atomic units) in the s
direction. For a single electron we now have, besides
the ordinary Stark effect operator H&&, a perturbation
Hp' representing the direct interaction between the
electric dipole moment and the external field,

uses nonrelativistic matrix elements. Explicit calcula-
tions for the positronium ground state lead to similar
results: The direct term alone would lead to an energy
splitting of order PnF for the triplet states if case (i)
holds and to a mixing of order gnF/AW between the
singlet and triplet m=0 states if case (ii) holds. In both
cases the direct term is canceled exactly by the second-
order term when evaluated in nonrelativistic approxi-
mation.

The fact that terms linear in the small parameter P
vanish in nonrelativistic approximation can also be
demonstrated more generally as follows. Let Hp be the
nonrelativistic Hamiltonian for a hydrogen (or posi-
tronium) atom in an arbitrary external electrostatic
field, in the absence of any terms involving P, and let H~
be the terms involving g. For hydrogen, in atomic units,

Ho=-', p' —g(r), H = —
P s Vg=( s t p,Hoj. (25)

p(r) is the total electrostatic potential, Coulomb plus
external. The Pauli spin operator s commutes with the
nonrelativistic Hamiltonian Hp. It then follows from
Eq. (25) that the expectation value of H~ over any
eigenstate of Hp vanishes, as does the matrix element
of H~ between two degenerate eigenstates of Hp. An
equivalent argument holds for positronium.

I have not carried out detailed relativistic calcula-
tions for the Stark effect in the presence of an electric
dipole moment, but some statements can be made
without extensive calculations. As we have seen, the
second-order terms which involve the nonrelativistic
matrix elements between states of different principal
quantum numbers cancel the direct terms of order PrrF.
The relativistic corrections to these matrix elements
must be smaller than gnF by at least one power of n
(probably by n' or more). Thus the most interesting
terms are the second-order ones which involve the
relativistic matrix elements of H' between states of the
same principal quantum number (which are discussed
in Sec. 3 and vanish in nonrelativistic approximation).
For the states with +=2 and j=& in hydrogen, the
calculation is particularly simple: The mixing between
the si and p; states due to the ordinary Stark effect
operator Hs& is given by (I, 55.7) and the matrix-
element of H' by our Eq. (15). If the ordinary Stark
effect of order F is small compared with the Lamb shift
(F«500 volts/cm for H) we get a splitting of the levels
with equal and opposite ns, due to our parity-violating
interaction, which is linear in the field-strength Ii.
This splitting is given by

AE= & (3m./7. 76) )Frm atomic units, (26)

where the plus sign refers to 2p,*, the minus sign to 2s~.
Thus, for such weak electric Gelds, the "electric
Zeeman" splitting is actually larger than PnF, i.e., of
order PF. However, for F large compared with the Lamb
shift this "electric Zeeman" effect becomes field-inde-
pendent and is given by g(u /8&3)rN; i.e., the splitting
between m=&rs is about $X185 Mc/sec.
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For the excited states of positronium the second-order
coupling of Ps~ and H' with fixed n cannot (unlike in
hydrogen) produce any effects much larger than guF,
since all fine structure components in positronium are
split by an order of u'ry (rather than by u'ry).
Neglecting any accidental near-degeneracies, all energy
splittings and mixing ratios between singlet and triplet
states, linear in $, are expected to be at most of order
PuF (probably smaller than this for F»u' ry). I have
not evaluated these eGects in detail but give, for future
reference, the ordinary Stark effect plus fine structure
pattern (for +=2 and )=0), on which any $ terms are
merely small perturbations.

For the e= 2 states in positronium, the spin-de-
pendent parts of the Gne structure operators in Pauli
approximation (including the pair annihilation term)
can be reduced (see" I, Sec. 23u) to the form

+Ps f (40~st 303so)3l0+3slbll

X t 4+6S k—3(S k)')) (u'/480) ry. (27)

We consider now strong enough fields so that the
Stark effect is large compared with the Gne structure
(F))5000 volts/cm, say). In zero order the spatial
wave functions are the usual ones in parabolic coordi-
nates with quantum numbers (nt, es,eii). The states
(0, 0, &1) are unshifted and the wave functions equal
Qs, md=&1. The states (1,0,0) and (0,1,0) have energies
+6F and —6F and wave functions (I,+I„)/v2, where
u, and u„are the spatial functions for m=2, l=0 or 1
and m~=0. The components of this Stark triplet are
now split by Hpa, considered as a perturbation, as
follows (S is still a good quantum number, l and J are
not). For the (1,0,0) and (0,1,0) states: The triplet
states (5=1) lie higher than the singlet (S=0) state by
((34/15)+(m'/10)j(u'/32) ry. For the (0,0,1) states:
The two states with m=&2 (triplet states only) are
degenerate and raised by (7/480)u' ry. The two singlet
states with m= &1 are unshifted, the two triplet states
with m= &1 are degenerate and raised by (u'/480) ry.
For m=0 there are two triplet states (with m, = mt-
=&1), lowered by —(u'/96) ry and —(11us/480) ry.
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' The coe%cient of the last term in square brackets in
Eq. (I, 23.3) should read —3 instead of ——;.

Note added ie proof .I—n the experiments by F. E.
Obenshain and L. A. Page LPhys. Rev. 112, 179 (1958)7
published so far an electric field F of about 15 kv/cm
seems to have eGects similar to those produced by a
magnetic Geld of about 2 kilogauss. Expressed in
atomic units such an electric Geld is more than ten
times weaker than the corresponding magnetic field and
the Stark e8ect splitting is slightly larger than the Gne
structure and hyperGne structure splittings for st=2
states in positronium. If we attempt to explain these
results in terms of singlet-triplet mixing for e= 2 states
due to a static electric dipole moment of both the elec-
tron and positron we find that the direct term Hp' and
the indirect eGect of H', discussed in Sec. 5 of the pres-
ent paper, are of the same order of magnitude. To
obtain the rather appreciable singlet-triplet mixing
implied by the experiment we would require a value of
about ten for our dimensionless parameter $. Such a
large value is clearly out of the question even if it
applied only to positronium and not to other atoms
since we have seen in Sec. 4 that positronium ground-
state experiments give $(0.02.

If one still wanted to explain the Obenshain-Page
experiments in terms of some parity-violating electric
moment-like perturbation one would be forced to
hypothesize a term more complicated than our Eq. (3).
Such an interaction would have to include an additional
position, field or velocity dependence in such a way
that there is no cancellation in the Pauli-approximation
matrix element between 2s and 2p so that the matrix
element of order gus in our Eq. (15) would be replaced
by one of order gu. If one were bold enough to assume
such an interaction, the Obenshain-Page experiments
might require values for $ of not much more than 10 '
which would not be incompatible with our Sec. 5.
However, even such an interaction would have to be
postulated to exist only for positronium and not for
single electron atoms since the experiments on the life-
times of 2s states in hydrogen or ionized helium, dis-
cussed in our Sec. 3, would require g(10 ' for such an
interaction in hydrogenic atoms. Finally, it should be
noted that, if such an interaction in positronium were
responsible for the Obenshain-Page eGect, this e8ect
should saturate at electric Geld strengths of about 5
or 10 kv/cm. The effect would depend on field strength
only through the amount of 2s-2p mixing and for 10
kv/cm this mixing is already very close to the maximum
value contained in the Stark effect states labeled (1,0, 0)
and (0, 1, 0) in our Sec. 5.


