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co= pop+ho, where

in which
~to = (&oo

—poo)Gf/L,

tanbr+l/L[tanbr —cosbr+1/(br) j
21/L tanbr+br+ (l/L)'(tanbr —cosbr+1/(br) j

For f/L= 1/15 and for values of 4br between 1 and 3,
G is between 0.9 and 2.0. If (cop—top)/2pr= 100 kc/sec,
Chp/2s is between 6 and 12 kc/sec.

Consideration of the velocity distribution of the
beam and of the case of a system with three equally-
spaced energy levels (helium) is not expected to change
the order of magnitude of the above estimate.
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The bound states in a Coulomb held of a charged, spin -„particle with an electric dipole moment are
obtained. The nonrelativistic Schrodinger equation for such a particle is solved in closed form. The wave
functions are generalizations of the Coulomb wave functions, involving Laguerre polynomials of nonintegral
upper index. The accidental degeneracies of the Coulomb energy levels are removed by the dipole inter-
action. In particular, there will be an additional contribution to the splitting between the 2Sg and 2Py states
coming from the dipole moment. By requiring that this extra energy shift should not destroy the agreement
between the theoretical and experimental values of the Lamb shift, it is found that the dipole moment of the
electron must be less than 10 "cm times the electron charge. Other e8'ects of the dipole moment on the
hydrogen energy levels are discussed.

I. INTRODUCTION

HE possible existence of electric dipole moments
for the spin —', elementary particles has been the

subject of some recent theoretical and experimental
investigation. Theoretically, it has been shown that the
invariance of physical laws under space reQection or
time reversal would imply the nonexistence of such
moments, ' provided that there is no more degeneracy of
the states of a free spin ~ particle at rest than that given
by the two spins and the particle-antiparticle. Experi-
mentally, there is a very accurate measurement of the
neutron electric dipole moment through a magnetic
resonance method. ' This indicates that the electric
dipole moment of the neutron is less than 5&10 "cm
times the electron charge. There do not seem to be any
such accurate limits known for the dipole moments of
charged particles such as electrons. In view of some

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' Lee, Oehme, and Yang, Phys. Rev. 106, 340 (1957).
'The requirement of the lack of degeneracy has been stressed

by N. F. Ramsey, Phys. Rev. 109, 225 (1958). If there exist spin
~ particles with two otherwise degenerate states for each value of
the spin, momentum, and charge, and these states have opposite
but nonvanishing electric dipole moment, then the definition of
space reflection and time reversal may be extended so that these
states are transformed into each other under these operations, and
the invariance of the Hamiltonian will be maintained. The
particles which constitute ordinary matter, i.e., the electron,
neutron and proton, presumably cannot be of this type, because
such an added degeneracy would change the form of the periodic
table and the nuclear shell structure by allowing twice as many
particles into each closed shell.

s Smith, Purcell, and Ramsey, Phys. Rev. 108, 120 (1957).

recent experiments which have been interpreted as
indicating that the positron has a large dipole mo-
ment, ' it seems useful to see what limits for the
electron dipole moment are implied by the measure-
ments of the hydrogen energy levels by Lamb and
others. 5 In particular, one may expect that the 25; and
2Py states, which are split only by radiative corrections
to the Dirac equation, would further be split by the
interaction of an electric dipole moment with the
Coulomb field, and so the dipole moment must be small
enough so as not to spoil the agreement between the
experimental value of this splitting and the value
predicted by quantum electrodynamics. The depend-
ence of the splitting on the dipole moment will be ob-
tained in Sec. II, where the nonrelativistic Schrodinger
equation for a charged particle, with a dipole moment,
in a Coulomb field is solved in closed form. The energy
levels depend only on the square of the dipole moment, ,
as would be expected from a perturbation calculation.
The energy levels and wave functions obtained are
used in Sec. III to discuss the limits on the dipole
moment of the electron implied by various measure-
ments on the hydrogen atom.

II. WAVE FUNCTIONS FOR A PARTICLE WITH
AN ELECTRIC DIPOLE MOMENT IN

A COULOMB FIELD

We consider the Schrodinger equation for a non-
relativistic charged particle with an electric dipole

4 F. E. Obenshain and L. A. Page, Phys. Rev. 112, 179 (1958).' Triebwasser, DayhotI, and Lamb, Phvs. Rev. 89, 98 (1953).
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d in a Coulomb field h= ( Z—e/r')r" T.he spin-orbit
coupling produced by the magnetic moment of the
particle is neglected in this approximation. Therefore,
if the dipole moment vanishes, the energy levels are
completely determined by the total quantum number
n and the degeneracy for a state with given n is 2e2. As
we shall see, this degeneracy will be split by the dipole
interaction so that the energy will depend not only on
one principle quantum number, but also on the total
angular momentum j, and on another quantum number
which indicates which of the 2 states of opposite parity
and equal j is predominantly present in the eigenstate.

The Hamiltonian of the system is

1 1 d ( df~5 nz (J——,')(J+-,')
J J

2mr'dr& dr) r r'

Zed
+ g~=

I El fs
r2

1 1 d ( dgg5 nz (J+-,')(J+-',)
I+

2mr'dr& dr& r r'

Zo.'d
+ f~=

I EI g~.
r2

(6)

p ZQ ZAd t1 1'

II= )
2m r r3

(A=c=1),

We introduce the dimensionless variable p= (8m I EI ) lr,
and let

l =2~Z/8mIEI; k=2mZ~d.
(1)

Then (we drop the index J)

(8)
1 d (,dg5 (f LJ+ 3PJ+ j 15 k——

I
p' I+ I

—— —
I g+ f=o. —

p'dp E dpi Ep p' 4J p'
H%= —IEI+,

where —IEI is the energy of one of the bound states.
The total angular momentum J=L+-', e commutes

with B, so that we can separate the equation by
writing

The similarity of the terms kg/p' and kf/p' coming from
the dipole moment to the terms (J——,')(J+-', )f/p' and
(J+~) (J+~)g/p' coming from the centrifugal potential
suggests that we look for solutions of the form

+s(r)=fs(r) I J, l=J 2, &+gs(r) I
J—, l= J+2&. (3)

g'(r) =cf(r).

where the last term represents the interaction de. h of 1 d (,df5 (i LJ+k7I J 23 15——
I

p'—I+ I

—— —If+ g=0-the intrinsic dipole moment with the Coulomb field.
P P P P p

2 4) p'
We wish to solve

e rIJl=J ', )=IJ, l=Jj——
Furthermore,

P'I:fs(r) I J,l=J lH—
(4)

1 d ( dfs5
I+(J ,')f, I J,l=J——

r'dr E dr)

Here the functions fz, gs depend only on the distance

I
r I, and the states

I J,l& are eigenfunctions of J', I.', and
J, with the indicated quantum numbers. The quantum
number for J, which is inessential, has been omitted.
Thus the state I-,',0) would be an 5; state; I-,', 1& a I",
state, etc. With the usual normalization of J, these
states satisfy

or

kc—(J—-', )(J+-,') =—(J+-',) (J+-,'),

Cy=
(J+k)+I:( J+ )2' +kj'

(10)

which is more conveniently written

J+-'+L(J+-')'+k']*'

Substitution of this into the Eqs. (8) gives the con-
sistency condition

P'La~(r) I J,l=J+:&j-
1 d( dgs5

I+(J+l)(J+l)g I
J l= J+l&.

r'dr E dr )

Substituting (1) and (3) into (2) and using (4), (5) and
the orthonormality of

I J, l=J—
~& and

I J, l= J+2),
we get the two equations

When this condition is satis6ed the two Eqs. (8)
become identical, and

1 d ( df5 (f 15 s~(s~+1)——I"—I+I ——If—,f=o, (»)
p' dp 0 dpi' Ep 4) p'

;(;+1)= (J+-,) ~L(J+-:) +k I' (»)
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(22+S~+1)2

The energy levels are thus given by an expression
similar to the Bohr formula, however, n+s+1 is not an
integer in general. Each value of n, J and each choice
of s+ or s will correspond to a diferent value of the
energy, except for special values of k which are all
bigger than the critical value, and so are not considered.
This has two main consequences about the degeneracy
of the levels.

Let us denote by L, the nearest integer to s, so that
if the dipole moment vanished L=s= orbital momentum
of the state. States which have diferent values of J,
but the same value of 22+L, which are degenerate in
the ordinary hydrogen spectrum when the spin-orbit
coupling is neglected, are now no longer degenerate,
since 22+s will be different for them. An example of
such states are the states m=0, J=-'„s=s and n=0,
J=—,', s=s+, which go into the 2J'; and 2J'; states when
the dipole moment vanishes, Of course, the degeneracy
between such states is already removed by the (much
larger) fine-structure energy, which has not been
included. Thus one e6ect of the dipole moment would
be to change the Gne-structure splitting by a small
amount, whose magnitude we discuss in the next
section.

The second change in degeneracy is that states with
equal J, different 22, and equal (e+L), which are
degenerate in the Dirac theory without radiative
corrections, are no longer degenerate if a dipole moment
is present because n+s will be different. Thus a dipole
moment would contribute a small amount to the Lamb
shift of the 25~ and 2I'~ states of hydrogen like atoms.

We summarize the results of this section by writing
the normalized wave functions for the bound states,

~+(~++1)=(J—2) (J+2)—
2(J+2)

e-(~-+1)=(J+l)(J+l)+
2(J+2)

Then according to (9), (11), (12), and (14), if the dipole
moment is small the two solutions of (10) represent
states which contain mostly one or mostly the other of
the two states of the hydrogen atom with equal J and
different /. In the following we shall sometimes refer
to the exact solutions by the quantum numbers of the
pure Coulomb states which they approach for small
dipole moments.

The normalizable solutions of Eq. (12) are "general-
ized" Coulomb wave functions of the form

(15)fn, J,ay=lVn, J,a~e i~p +L~ ++ (p).

Here En, z,s+ is a normalization constant, n is a non-
negative integer related to the eigenvalue f by

(16)n={ s 1—, —

and L„"++'(p) are the associated Laguerre polynomials
of the indicated argument as defined in Morse and
Feshbach'

I'(n+2s~+2) e& d"
2 san+1 (p) (e ppn+2s+—+1) (17)

I'(22+1) p2 ++i dp

It may be seen from the definition that L„"++' is
indeed a polynomial when e is an integer, even if s+ is
not an integer, in which case L„"++'cannot be expressed
as a derivative of the ordinary Laguerre polynomial.

It is apparent from Eqs. (13) and (15) that f~, &,8+

will behave like a negative irrational power of p near
the origin. For su%ciently large dipole moments, this
implies that the expectation value of the kinetic energy
operator for instance, will become undefined, and so the
solution (15) will break down. This occurs for the
states with J=~ at k=~, corresponding to a dipole
moment on the order of eae (ac=Bohr radius). Such a
large dipole moment would produce a radical change in
the energy levels and we will not consider this possibility
here. If the dipole moment is small compared to this
critical value, the wave function near the origin is not
so singular as to make the expectation values of T and
V diverge and the solution (15) is valid.

The energy levels corresponding to the eigenfunctions

4n, z,s+ Nn, z,s+e "p'+—L—„"+'(p)
~
J,/= J—-', )

+ J,/= J+,', (19)—
J+-'+L(J+-,')2+ k27&

where

En, z,s+ =2=
(22+s++1)ue 2 (e+s++ 1)LI'(22+2s++2) 7'

{J+2+L(J+2)'+k'7')'
X

{J+-'+ P(J+-')2+k27~) 2+k2
and

%n z =Xr zs e ~i p' L'-+i(p)-
J+2+C(J+-')'+ k'7'

Equation (11) is the same as the ordinary radial wave are obtained by solving Eqs. (7), (16) f6r E.
equation for a particle without a dipole moment in a —z,-a m
Coulomb Geld, with s~ replacing the angular momentum En, J',ay =
/. For small k (i.e., small dipole moment) it can be 2
seen by expanding Eq. (12) that

6 P. M. Morse and H. Feshbach, 3fethod of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953),p. 784.

+ i J,/= J+g), (20)
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where

En, z,s '= nZ

(rt+s +1)as. 2(st+s +1)LI'(st+2s +2)7'

V+-'+l(~+ l)'+k'j'*}'

which go into the 25~„2P~ and 2I'; states, respectively,
as k-+0.

Z GPSS
+2S~s—

x
(~+-,+I:(I+-')'+k'll)'+k'

The corresponding energies are given in Eq. (18).

III. LIMITS ON THE ELECTRON DIPOLE MOMENT

Znm

Znm

(21)

N=1

m=0,

e=O,
J l

2)

J=32)

S=S+)

s=s )

s= s+)

In order to compare the energy levels of the charged
dipole with the observed hydrogen levels, it is necessary
to include, as a perturbation on the Hamiltonian (1), the
relativistic and Lamb shift interactions. This can be
done by standard perturbation theory, using the wave
functions (19) and (20) for the unperturbed states.
There are two problems which arise when this is done.
First, the states%'n, s=-'„8+ which go over into the s states
as k—+0 will contain some admixture of p state when k is
not zero, as can be seen from (19).Because of this, the
expectation value of the usual fine structure operator
(1/r)(tEV/dr)tr L, in these states, will diverge. This

difhculty can be avoided by using a fine-structure
operator corrected at short distances for the eGect of
the Coulomb field, as discussed in Bethe and Salpeter.
When this is done it is found that for states which were
not accidentally degenerate for k=0, the energy is just
the sum of the usual relativistic and Lamb-shift
corrections, calculated for hydrogenic wave functions,
and the dipole energy of Eq. (18) expanded to order k.'
The corrections to this are smaller by factors of n or
higher. For states such as 25' and 2Py which are
degenerate for k=0, one has the additional problem
that the perturbing e6'ect of the Lamb shift is much
larger than the energy splitting due to the dipole, at
least for small k. It can be shown here also that the
energy shift is the sum of the Lamb-shift and relativistic
corrections computed for hydrogenic wave functions
and the dipole energy evaluated to order k', with

corrections that are higher order in n. Thus the main
additional eBect of the dipole on the energies is given by
Eq. (18) expanded to order k', and it is this quantity
which will be compared with experiment. However, the
wave functions (19), (20) will not be a good approxi-
mation for the 25~ and 2P~ even to first order in k.

Let us consider the states with the following quantum
numbers:

Using Eq. (13) and expanding in powers of k', we get

E' &= —srZ'n'mt 1/srk'+O(k')j
E' t= —srZ'n'm[1 —-,'k'+O(k') j
E'P» = ——',Z'n'm)1+ —,',k'+0(k4)].

(22)

We write d =X/m, so that lI, measures the dipole moment
in electron Compton wavelengths, and k=2Zo. A. Then

E's~= —Es——,'Z'n'mls. '+ 0(lj.'),
E'"t= —Es+—,',Z4n4mX'+0 (X4),

E'~t = —Es—(1/24) Z4n4mV+ 0(X4),
(23)

here ~0= —'sZ

Note that the energy of the 25~ state is lowered while
that of the 2P; state is increased, which eGect is
opposite to the Lamb shift.

The energy difference between the 25~ and 2P; states,
neglecting terms of order A4 and higher, is

+2S) It 2I'y 1Z4+4~) 2 (24)

This corresponds to a frequency shift of the correspond-
ing line of 10") '(cycles/sec) in hydrogen.

It is known' that the measured value of the 25~—2I'~
splitting in hydrogen agrees with the theoretical cal-
culation to about s X 10' cycles/sec. It seems reasonable
to require that the shift due to the electric dipole
moment should be less than 10' cycles/sec. This then
gives

X&3X10 ', (25)

E»—E»=-,'n4~)P. (26)

or the electric dipole moment of the electron must be
less than 3X10 ' times its Compton wavelength
multiplied by e. According to the TCI' theorem, ' a
similar result holds for the positron.

There are several other effects of an electron dipole
moment on the properties of hydrogen which do not
lead to more accurate limits than the above, which will
be mentioned brieRy. '

1. There is an addition to the fine-structure splitting
between the 2Pi and 2J'i states. From Eq. (23), we see
that

~ H. A. Bethe and E. E. Salpeter, Quantum Mechanics of Oee-
attd Troo Eteetrort Atoms (Aca-demic Press, Inc., New York, 1957),
p. 60.

I would like to thank Dr. G. Breit for interesting discussions
on the possibility of using the lifetime of the 2S state at a test of
the admixture of P state.
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The experimental formula for this splitting is in agree-
ment with the fine-structure formula including radiative
corrections' to within about 10' cycles/sec. The require-
ment that the dipole splitting be less than this then
implies X&10 '.

2. If the relativistic form of the electric dipole
interaction y4ysr„„F„, is used, it is seen that there will
also be an interaction of the electric dipole moment with
the magnetic field produced by the proton magnetic
moment, of the form

Upon using Eq. (4), this becomes

M=, R2s(r)R2p(r)dr. (A.3)

states is proportional to

t R2s(r)R, p(r)
M=)' (J=-'„/=0(~ S

r'
(1=2, l=1)d'r. (A.2)

V=deo. H. (27)

This interaction will lead to a hyperfine splitting in the
s states of hydrogen which would add to that produced
by the usual interaction pee. H. In the 1S state this
splitting will be very small, since it is of second order
both in the electron dipole moment and the proton
magnetic moment, and is furthermore a relativistic
effect because of the odd operator e H. The ratio of the
dipole splitting to the Fermi splitting in the 1S state
will be about n'(m/m„)X', which gives no limit on X of
any interest.

We conclude that the electric dipole moment of the
electron is less than 10 "cm times the electron charge.

The following theorem may be proven for the radial
wave functions of the nonrelativistic Schrodinger
equation for any central potential:

Rl (r)Rg (r)r'dr(Ei —E2) + Ll2 (l2+ 1) ll(ll+ 1)$

)&)
I Rg(r) R2(r) dr =0, (A.4)

where R~, R2 are the radial wave functions for two
states with energy E&, E2 and orbital angular momentum
l&, l2. This result follows directly from the two radial
wave equations
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1 d ( dRyp——
(

r' (+2m(Z, —V)R,—
r'dr& dr )
1 d( dR2

(+2m(Z, —V)R,—
r'dr& dr )

lg(lg+1)
Rg=0,

r2

l2(l2+1)
R2 ——0.

r2

(A.5)

@2sy R2s(r) I
1=i'~ l=0),

&=PR p(2r) (J=-,', l=1), (A.1)

APPENDIX

According to Eqs. (13) and (18), the energy levels
depend only on the square of the dipole moment
parameter k. It might have been expected that because
the 2S~ and 2Py states are degenerate in the non-
relativistic theory and have opposite parity, the dipole
interaction would have a matrix element between them
which would give a splitting in first order, as for
example happens when an external electric field is
applied to the hydrogen atom. The reason that this
does not happen is because of a peculiar property of the
nonrelativistic hydrogen wave functions, which we now
derive. '

Let 4' &, 0 ' & be the nonrelativistic wave functions
for the 2S, and 2Pi states (i.e., the eigenstates with
the indicated quantum numbers of H= p'/2m —Zn/r).

If 1& l2, Eq.——(A.4) is just the ordinary orthogonality
condition on the radial wave functions for states of
diferent energy. If however /&//2 but EI=E&, as is the
case for the 2S1 and 2Py states, then Eq. (A.4) implies

f
Rg(r)R2(r) dr =0, (A.6)

V =d'ZQ&4&50 liyFPy~ (A.7)

and use the Dirac wave functions for the 2S and 2P
states. However, since the matrix element must vanish
in the nonrelativistic limit, it will be proportional to
some power of (v/c)=n. An explicit evaluation of the
matrix element for hydrogen gives

so that M=O, and therefore there is no erst-order
splitting due to the dipole interaction.

This vanishing of the first-order matrix element of
the dipole operator no longer holds if we use the
relativistic expression for the dipole interaction,

where R2g and R2~ are the radial wave functions for the
states, and (J= 2', l= 0), (

J= 2, l= 1) are the angular
momentum eigenstates introduced previously. The
matrix element of the dipole interaction between these

1 dn
(2S;( V(2P;) = Xn'—

4v3 ap'
(A.S)

9 This point has been noted in private communications to the
author by Br. M. Schwartz, Dr. N. Kroll, and Br. J. Keneser.
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which is indeed smaller by a factor n' than the matrix
element (~ Sf

~
V

~ 2') which does not vanish in the non-
relativistic limit.

Since the matrix element (A.S) is an off-diagonal
perturbation between states which are also split by
the Lamb shift, the total splitting is obtained by
diagonalizing the 2X2 matrix

t'V, P dipole |
j'

where V28~, V2~ are the matrix elements of the I amb
shift operator for the indicated states and V28, 2p 'I""is
the matrix element (A.S). The eigenvalues of this
matrix are

&y=s(Vss'+Vsp )
W-,'L(Vss~ —Vst ~)'+4~ Vss sg '""~'j'. (A.9)

Ke expect that the dipole moment will be so small
that the splitting due to the Lamb shift alone,

V28 —V2~, is much larger than the dipole matrix
element V~8 2~ '"" so that these eigenvalues can be
approximated by

&g—-', (Vss'+ Var ')~ s (Vss' —Vsz')
&

~
(Vss, s~ ' '")~'/(Vss —Vs& ) (A.10)

The first two terms are just the usual Lamb-shift
splitting, so that the change will be

2~ Vss, sp ' '"~ /(Vss —VsI' ),
which is again proportional to d' rather than to d.

This may be compared with the splitting coming
from second and higher order perturbations using the
nonrelativistic wave functions, which we have cal-
culated exactly in Sec. II, and which is of order

~
Vst, tsd'o

~
/(&st —&ts)~

as can be seen immediately from perturbation theory.
The ratio of these two is approximately

) V2S, 2P
~

(+2P +1S)
x~ (~x—=~, (A.»)

so the relativistic contribution to the splitting is small

compared to the nonrelativistic part, even though there
is a first-order matrix element with the relativistic
wave functions.
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Some Atomic Effects of an Electronic Electric Dipole Moment*
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A parity-violating perturbation, corresponding physically to a permanent electric dipole moment of an
electron parallel to its spin, is introduced into the Dirac equation for an electron. For positrons two choices
of the relative sign of electric moment and spin are considered. Some numerical consequences of such a
perturbation for hydrogenic atoms and for positronium are calculated.

From various experiments carried out previously, rough upper limits are obtained for (, the electric
dipole moment expressed in units of eh/mc: From the numerical value of the Lamb shift, P(0.004; from
the metastability of the 2s-state in hydrogen, (&0.03. From the absence of E—+L& x-ray transitions in the
heaviest atoms, the upper limit for g is about 0.005 or, probably, even- smaller. From the value of the hyper-
6ne splitting of the positronium ground state, (&0.02.

1. INTRODUCTION

ECENT experiments' on the formation and decay
of positronium in the presence of a static external

electric 6eld have brought up the question of the
possible existence of a small intrinsic electric dipole
moment of the electron and positron. In connection
with these experiments more complicated possibilities
might be of interest, such as parity-violating field-

theoretic terms' which give some effects in positronium

* Supported in part by the joint program of the Ofhce of Naval
Research and the U. S. Atomic Energy Commission.' F. E. Obenshain and L. A. Page, Bull. Am. Phys. Soc. Ser. ZI,
8, 228 (1958).' P. Stehle (unpublished work).

akin to those produced by electric dipole moments but
have no eGect on single-electron atoms. We shall not
consider any such possibilities in this paper but only a
small permanent electric point-dipole moment coupled
with the spin of individual electrons or positrons. We
merely calculate, for future reference, some effects such
a dipole moment would have on hydrogenic atoms and
on positronium and discuss upper limits on such a
moment which are already implied by various experi-
ments which were carried out in the past for other
purposes. Some discussion of the effects of such a
moment on more complex atomic and molecular systems
will be found elsewhere. '

' M. Sachs (to be published).


