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Theory of Cyclotron Resonance in Metals*

SKRGIO RODRIGUEZ/
Department of Physics, University of California, Berkeley, California

(Received August 5, 1958)

The surface impedance of a metal, in the extreme anomalous skin effect region and in the presence of a
magnetic field Ho parallel to its surface, is calculated assuming specular reflection and spherical energy
bands. We give the surface impedance in the cases in which the microwave electric field is parallel and at
right angles with Ho, which we call longitudinal and transverse, respectively. The position, intensities, and
width of the cyclotron resonance lines are the same for longitudinal and transverse cyclotron resonance.

I. INTRODUCTION

HEN an electromagnetic wave impinges on a
metal, the electric and magnetic fields are

rapidly damped inside the metal by the surface currents
arising from the inhuence of the fields on the conduction
electrons. The fields decrease with a characteristic
length 6 as we go into the metal surface. This length 5

is called the skin depth. In the derivation of the result
quoted above, the validity of Ohm's law is assumed.
However, at liquid helium temperatures, for a relatively
pure sample and in the microwave region, we often
find ourselves in a situation in which the mean free
path / of the electrons is larger than the penetration
depth 8. If this is the case, the electric field E varies
considerably during an electron mean free path. In
this condition, the current at a certain point within
the metal does not depend upon the electric Geld E
at that point alone but also on its value within a
sphere centered at the point under consideration and of
a radius equal to the electron mean free path. When
l&)5, we say that we are in the extreme anomalous
skin effect region.

Under the conditions that occur in the ordinary skin
eGect, the power absorbed by the metal from the
electromagnetic wave is proportional to the square
root of the product of the frequency and the resistivity.
However, in the extreme anomalous skin eGect region,
the power absorption varies as the two-thirds power
of the frequency and is independent of the resistivity.
To explain these experimental facts, Pippard' introduced
a rather crude but useful idea known as the ineffective-
ness concept. " According to this model, only those
electrons that remain in the skin depth during most of
their mean free path can contribute to the surface
currents. With this assumption, the experimental
results just described can be qualitatively explained.

A theoretical treatment of the anomalous skin eGect
has been given in great detail by Reuter and Sond-
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heimer. ' Their work gives the relation of the current
density J to the microwave field E as obtained from
the solution of the Boltzmann transport equation for
the conduction electrons in the metal. This relation, in
conjunction with Maxwell's equations, gives an
integro-differential equation governing the variation of
the electric field E inside the sample. The solution of
this equation permits them to obtain the power absorbed
in a variety of conditions. In the anomalous skin effect
region, the result agrees with that obtained by Pippard,

The extension of the results of Reuter and Sondheimer
to a sample that is in the presence of both a constant
magnetic field Hp and of a microwave electric field has
been made by various authors. In all the cases, the
microwave electric held is polarized in the plane of the
sample. Azbel' and Kaganov' and Chambers4 have
considered the geometry in which the constant magnetic
field is normal to the surface of the metal. The case in
which the field Hp is contained in the plane of the
sample has been treated by Azbel', ' Azbel' and Kaner, '
Mattis and Dresselhaus, ' and Heine. ' The latter
situation is the most important to us, because, if the
field Hp is chosen in such a way that the electron
cyclotron frequency ~, is equal to an integral sub-
multiple of the microwave frequency co, we obtain a
peak in the absorption that is caused by cyclotron
resonance, as we shall soon explain. Here, we shall
limit our considerations to the extreme anomalous
skin effect region (l»5) and to magnetic fields Hp such
that the radius of the cyclotron orbit is much larger
than the skin depth (this condition can be written in
the form cocwb((l, where z is the relaxation time of the
electrons).

We now explain how resonances arise when to, =co/rt,
e being an integer. In the metal, there are some electrons
whose cyclotron orbits have a portion inside the skin
depth. If the condition to, = ur/rt is satisled, these
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electrons will always see a microwave field in the same
direction while they are in the skin depth. Thus, the
electrons under consideration will acquire a drift
velocity in the direction of the microwave Geld, and this
gives rise to power absorption. This phenomenon has
been observed in tin by Kip et ul. , and in bismuth by
Aubrey and Chambers. "

Two different geometries will be considered here.
In both, the constant magnetic field Hs is contained in
the plane of the sample and the microwave Geld

propagates in the direction of the normal to the surface
of the metal. In the Grst, the microwave electric field
E is parallel to Hs, while in the second, it is at right
angles with Hp. We shall call these two cases longi-
tudinal and transverse cyclotron resonance geometries,
respectively.

In the longitudinal case, the only nonvanishing
component of the surface current density J is in the
direction of E and therefore there will be no Hall field
produced. However, in the transverse situation, the
resonant electrons will give rise to a current normal to
the metal surface, which, in turn, will produce a space
charge (see reference 8). When the radius of the
cyclotron orbit is much larger than the skin depth,
the nonresonant electrons are able to reduce eGectively
the production of space charge. In fact, the increase of
the space charge is opposed by two forces. The first is
proportional to the space charge and its constant of
proportionality is co„', where or~ is the plasma frequency
of the electron gas. The second force is of a viscous
nature and is inversely proportional to the conductivity
relaxation time. "These two forces are equivalent to an
impedance which limits the production of space charge.
In this paper the effect of the space charges is treated
exactly.

In Sec. II, we calculate the surface impedance of a
metal in the extreme anomalous region and in the
presence of a constant magnetic Geld, for both the
longitudinal and the transverse cases described above.
The surface impedance is the pertinent magnitude to
calculate, as the power absorption is proportional to its
real part. The method of calculation consists in the
solution of the Boltzmann transport equation in
conjunction with Maxwell's equations for the micro-
wave field. The electrons are assumed to have an
isotropic effective mass m and to constitute a degenerate
Fermi gas. It will be seen that, in the extreme anomalous
skin region, the surface impedances for longitudinal
and transverse cyclotron resonance are the same.

II. THEORY

Consider a semi-infinite sample of metal with a
plane surface. Take a system of Cartesian coordinates
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x, y, s, with the xs plane in the plane of the sample and
the y axis normal to this plane and pointing into the
metal. The external field Hp will be taken as parallel
to the s axis. The eRect of the collisions of the electrons
with the surface is now considered. The scattering
of the electrons may be diffuse (i.e., the electrons are
thermalized after colliding with the surface) or specular
with a wide range of intermediate possibilities. Reuter
and Sondheimer' have shown that, when Hp=0, the
surface impedance, if the scattering is specular, divers
from the result obtained in the case of diffuse scattering
by a factor of 8/9. Therefore, we shall consider here
that we have specular reRection, because the treatment
is mathematically simpler.

We notice that if we Gll the remaining half of space
(y(0) with another piece of the same metal, and if we
imagine that somehow it is possible to produce a
microwave field in the xs plane, the situation for each
of the two samples is the same as if the electron reQec-
tion at the boundary were specular.

The power absorbed by each half is proportional to
the real part of the surface impedance Z, which is
defined by

4ir E.(0)
Zz y

c H, (0)

for the two cases of longitudinal and transverse cyclotron
resonance. Here H is the microwave magnetic field,
and c the velocity of light. The argument zero indicates
that the Gelds are to be evaluated at y=0. From
Maxwell's equations we obtain

O'E/By'+ (oi'/c') E= (4s m/c') J, (3)

assuming that the time variation of the field is of the
form exp(icot) with angular frequency or. J is the electron
current density. It is convenient to work, not with the
fields and currents themselves, but with their Fourier
transforms. Therefore, we define the quantities 8(s)
and j(s) by the expressions

8(s)=(2s.) & l E(y) exp(isy)dy,
J „

j(s)=(2 ) ' J(y) exp(ssy)~y

The Geld E(y) is a continuous function of the
coordinate y, but its gradient along y has a cusp at
y=0, because there the field is damped in both the
direction of the positive and of the negative y axis. If
we denote derivatives with respect to y by primes, we
shall have, by symmetry,

E'(+o) =-E'(-o),



1618 SERGIO RODRIGUEZ

where the arguments +0 and. —0 indicate that the
limits are to be evaluated for positive and negative
values of y, respectively. From Eqs. (3), (4), (5), and
(6), we obtain

—(2/pr) &E'(+0)—S'S(S)+(pi/e)'8 (S)
= (4Iripi/e')j(s). (7)

The equation

Bky
(1+ippr —isvr sin8 sing)C 1+&v,r

d p

eura(s) n, (12)

Another expression connecting j(s) and 8(s) is found
from the solution of the transport problem. We shall
assume, for simplicity, that the collisions of the electrons
with the lattice imperfections and the thermal phonons
can be taken into account by assuming the existence of
a relaxation time v, which is a function of the electron
energy alone. The electron distribution function f
satisfies the well-known Boltzmann equation,

is equivalent to (10).The solution of (12) is

C I ——8(v—vp) (e/mpr, )[exp(2prV) —1$ ') dy'

Xa(s) n(8, po') exp[7(p' —o)

+iay sin8(cosy' —cosy)$, (13)

e
8f/8t+v V'f+ E+—v—XHo ~If

A c

where

y = (1,+i4pr)/(pi, r),

a= (sl)/(1+ipir),

(14)

(15)

where v=hk/m is the velocity of the electrons, e and
m their charge and mass, and k their wave vector.
The function fp is the Fermi distribution function.
In Eq. (8) we have neglected the force exerted by the
microwave magnetic 6eld on the electrons, because it
is vp/e times smaller than the force exerted by the
electric field E. Here, ep denotes the Fermi velocity of
the electrons, which is of the order of 10' cm/sec for
the monovalent metals.

We shall assume a solution of Eq. (8) of the form

with /= ~07. Here we have used the fact that at tempera-
tures much smaller than the Fermi temperature,

dfp/d p—=8(p pp), —

where ep is the Fermi energy and 8 is the Dirac 5 function.
The current density is given by

(16)

which is equivalent to
(9)

ej(s)=, C,v dk.
4n-'~

j(s) = ~P (Ee'/ormpI, )[exp(2iry) —1j ' t d8

where the deviation f, of the electron distribution
function from its thermal equilibrium value is propor-
tional to the electric Geld E. If we linearize the Eq. (8) From (17) and (13), we obtain the relation
in the usual way, and if we assume that f, has the same
time periodicity as E, we get

(17)

8fl 8fl
(1+ioor)fl+po, r +vr sin8 sinp-

B(p By

0

ervE n (10)
A

21r p 2K+p

Xsln8 ~t dpo Il(8, p) dp
dp

X8(s) n(8, q') exp'(q' —
pp)

where n is a unit vector in the direction of v and 8
and q are the polar angles of v, with the z axis as polar
axis.

Equation (10) is a linear partial differential equation
with the independent variables y and p, where 8 appears
only as a parameter. Its solution can most easily be
found if we introduce the function 4 ~, de6ned by

C I (s,8, p) = (2'Ir) '*~" fi exp(isy)dy

+i' sin8(cosy' —

cosy�)

g. (18)

j,=o. ,8 +O.,„tp„,

g, =o;,8,.

(19)

(20)

(21)

Here E is the number of conduction electrons per unit
volume.

Equation (18) defines a conductivity tensor which
relates the components of j(s) to those of 8(s). We can
write, after some manipulation,
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The components of the tensor are

0 3' 3 3'
o.,= —coth(ory) ——+ coth(ory) (1+-,'y ')

1+zcor 4a u' 4u3

( 1)ra—2r—4

—3 P, f 1+2(r+1)'(r+2)y '}
~o (2r+1) (2r+3)

r

&& g (1+(~~-t)'} (22)
nm

alous skin effect region (D)3) and for moderate magnetic
fields such that to.r8((l, if we observe that a is of the
order of i/3. Thus, only the first term in the asymptotic
expansion (25) needs to be taken into account. Also,
the term co'/c' coming from the displacement current
can be neglected. The argument to show that the
displacement current is negligible in this case is similar
to that given by Reuter and Sondheimer' and will not
be repeated here. Therefore,

o 37r coth(pry)
0' = 0'V

1+iv)r 4a'

3 ~ (—1)"a '" 4(r+1)
n &1+(.v-) }, (23)

2r+1

4p

Integration of (29) yields

8 (V3orcosl ) &

Z, =-~
~

(1+iv3) tanh&(~).
9 E c'o

(30)

&zz =
0' 3Ã 3x—coth(os)+ (1+-,'y—') coth(ory)

1+i(or 4a 4g3

( 1)ra—sr—2

+3 Z II (1+(Nv ')'} (25)
r=o (2r+1)(2r—1) ~=o

0 3' 3
o „„= — coth(os)+-

1+i&or 2as g2

~ (—1)"a'' ~

+3 2 II (1+(~v-')'}, (24).=o 2r+1 ~o

We notice that, when Hp ——0, Eq. (30) coincides with
the result obtained by Reuter and Sondheimer. ' The
integral at the right of Eq. (29) is performed by a
method similar to the one described in Appendix I of
reference 2.

YVe now consider the case when the microwave
electric 6eld is directed along the x axis at right angles
with Ho. Here, a field E„in the direction of the normal
to the surface of the sample is present. From the
Maxwell equation relating the divergence of the
electric 6eld to the charge density, and using the
continuity equation, we obtain

For negative values of s, the components of the tensor
have the same values as for —s. The symbol 0- denotes
the electrical conductivity of the sample. The procedure
for obtaining these expressions has been given elsewhere. "

When H is parallel to the z axis, the only nonvanishing
component of j is in the z direction. Then, from (7)
and (21), we Gnd

h. (s) = —(2/w)'E '(+o)Ls' —(~/~)'

+ (4orioo/c') o „(s)j-t (26).
Combining (26) with the inverse transform of (4),
we get

so that

where

h. (s) = . @.(s),
(r„„+(i(u/4n)

', (s) =~,a, (s),

The surface impedance,

o „„+(ice/4or)

i.(s) = —(~/4w) ~.(s).

From Eqs. (20) and (31) we get

(31)

(32)

(33)

(34)

E.(y) = —(2/ )E.'(+o) Ls' —(~/~)' 47ria) E,(+0)Z=-
c' E '(+0)

(35)

+ (4n ice/c')o„(s)1 ' cos(sy)ds. (27)

From Maxwell's equations, we observe that the surface
impedance in this case can be written in the form

4n-ioo E,(+0)
c' E,'(+0)

(28)

Z, can now be easily calculated in the extreme anom-

' S. Rodriguez, Phys. Rev. 112, 80 (1958).

is obtained exactly as before with the difference that
0-, plays the role of 0.„.In the extreme anomalous region,
only the term containing s in the expansion of 0. is
important. The asymptotic expansion of 0, is"

» In the conditions encountered in practice 0» is much larger
than cu/4n. In fact, for a sample of copper with a ratio of conduc-
tivity at 4'K to conductivity at room temperature of 1000 and
can=10" sec ', we have 4v)o»)/co~8&(10'. Here l/6 is of the order
of 10'. When f/b is about 10', cr» becomes comparable with
co/4v. In any event the asymptotic expansion (36) is correct up
to and including terms of the order of a 3.
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0 3Ã 3
o,= — —coth(~) ——

1+icos 4a 8

3'
+ — coth(sy) (1+-,sy—')+

4a'

that the position and intensity of the peaks and the
width of the resonant lines are identical in both lon-
gitudinal and transverse cyclotron resonance, provided
that the metal under investigation is in the extreme

(36) anomalous skin e6ect region.
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Temporary changes in the absorption spectrum of a colored NaCl crystal can be produced at 77 and O'K
by irradiating the crystal with a strong auxiliary light. The changes in the absorption spectrum indicate that
the R, M', and X centers are not randomly distributed but are located near each other. It is concluded that
previous arguments based upon less complete observations are not valid and that one cannot decide from
this type of experiment whether the R~ and R2 bands arise from transitions in two distinct centers or from
two transitions in the same center. Measurements of the degree of polarization of the emission excited with
R&- or R&-band light indicate that the concentration of other centers probably aff'ects this number. It is
concluded that this measurement may not determine the symmetry of these centers. Measurements of the
temperature dependence of the half-widths of the absorption and emission bands of the M center indicates
that the optical transition is primarily influenced by local interactions of the center with neighboring ions
and not by interactions with the long-range phonons of the lattice.

INTRODUCTION

'WO prominent optical absorption bands lie be-
tween the F and M bands in the alkali halides.

These have been called the R bands and the centers

giving rise to these absorptions are called R» and R2.
The most usual treatments for the production of these
bands consist of optically bleaching the F band in

additively colored crystals or of extensively irradiating
the crystals with ionizing radiation. Both operations are
done at room temperature.

Although the mechanism of production of these
centers is not well established it has been suggested that
these centers result from the coagulation of F centers.
A consideration of the kinetics of the coagulation led
Seitz to suggest that the R» center consists of an electron
trapped at a pair of negative-ion vacancies and the R2
center consists of two electrons trapped at a pair of
negative-ion vacancies. '

The observation that the ratio of the peak heights of
the R» and R2 bands is nearly constant for a large
variation in the concentration of the centers led

' F. Seits, Revs. Modern Phys. 26, 7 (1954).

Herman, Wallis, and Wallis to suggest that both
absorption bands arise from transitions in the same
center. ' They suggested that the center consists of two
electrons trapped at a pair of negative-ion vacancies.
The R2 band results from the electronic transition from
the ground state to the erst excited state while the R»
band results from the electronic transition from the
ground state to the second excited state. These authors
found reasonable agreement between the energies of the
peak absorption of these bands and the transition
energies calculated on the basis of their model.

Lambe and Compton have argued that both absorp-
tion bands cannot arise from transitions in the same
center. ' This was based upon the observation that
irradiation at 77'K with an auxiliary R»-band light
bleached the R» band but did not aGect the R2 band.
When the auxiliary R»-band light was removed, the
absorption in the R» band returned to its original
value. It was argued that both bands should be bleached
by the auxiliary R» light if the same center is responsible
for both bands.

s Herman, Wallis, and Wallis, Phys. Rev. 103, 87 (1956).' J. Lambe and W. D. Compton, Phys. Rev. 106, 684 (1957).


