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cients will be constant. Substitution in Eq. (3) of
Lotgering's value of p= —0.8 for x=2 and the value
tt=0 9 at @=1.3 (obtained by extrapolation from x= 1.2
in Fig. 3) gives ns/rt t——13 and tts/ttr ——0.31.Using these
values for its/tt& and tts/tt& in Eq. (3), curve c in Fig. 3
was calculated.

The situation in the region x=0.3 to x=1.3 is more
complicated. To begin with, the equation for p contains
an additional Weiss coe%cient, e4, for the interaction,
A(Fes+) —B(Cr'+). Also, since the value of st varies
considerably in this region, the interaction coefficients
are probably not even approximately constant. Fitting
the equation to the experimental curve at three points
in this region gives the curve d and the values tts/Nr
=1.5, tts/nr ——0.19, and n4/rtr 1.8——. These values for
ratios of Weiss coeKcients have little meaning as they
represent only some sort of average values for the
region.

Using the experimental values for p, in the region
x=0 to x=0.3 and assuming inverse structures lead to
ns/Ns= 1.7. Since ns/ns= 0.13 (average) and 4.2 in the
regions x=0.3 to x=1.3 and x=1.3 to x=2, respec-
tively, this ratio does not show a persistent trend as
the structure changes from inverse to normal.

IV. SUMMARY

The oxygen parameters were found for the Fe-Cr
spinels and support qualitatively the cation arrange-
ments given by Eq. (1). The magnetic measurements
agree with these cation arrangements for x=0 to x=0.3.
For higher values of a (at least for x)0.5) the magnetic
measurements indicate that the spins of cations on 8
sites are not all parallel, so that the cation arrangements
cannot be inferred directly from them. Estimates of
the relative strengths of the magnetic interactions and a
prediction of the curve of saturation moment (curve c,
Fig. 3) in the range x= 1.3 to x= 2 were made.

Further magnetic moment measurements are needed
on the x=1.2 sample at lower temperatures to check
its value of tt (because of the uncertainty in its tem-
perature extrapolation) and of the samples in the region
x=1.3 to x=2 to check the predicted curve c of Fig. 3.
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Decay of Excess Carriers in Semiconductors
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A discussion is given of the nonlinear differential equations which govern the decay of excess carriers
with arbitrary densities. The form of decay is explored for situations where the Fermi level is in the same
half of the energy gap as the recombination level; criteria are established for both strong and weak trapping
in addition to recombinative action. Analytic results are augmented and illustrated by numerically computed
decay curves for a variety of circumstances. The separate solutions for holes and electrons are combined to
show various kinds of behavior for photoconductive lifetime.

I. INTRODUCTION

A N important recombination process —one which
indeed controls the lifetime in many semicon-

ductors —is that whereby a recombination center can
accept electrons and holes alternately. Consideration of
the transition probabilities between the recombination
level and the conduction and valence bands leads to
two coupled first-order equations' which can describe
the buildup, maintenance, and decay of excess hole
and electron populations. Steady-state solutions of
these equations, which gave expressions for the effective
carrier lifetimes, were demonstrated in the well-known

' E.g., N. Riehl and M. Schon, Z. Physik 114, 682 (1939).

papers of Shockley and Read' and of Hall'; these solu-
tions gave great impetus to studies of recombination.

The S-R treatment dealt only with steady-state
recombination and required that either the recom-
bination-center density or the departure from thermal
equilibrium be small. A number of subsequent con-
tributions, for instance those of Rittner4 and Rose, '

' W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952),
hereinafter referred to as S-R.

s R. N. Hall, Phys. Rev. 87, 387 (1952).
4 E. S. Rittner, in Proceedings of the Conference on Photocon-

dlctivity, Atlantic City, November 4—6, 1954, edited by R. G.
Breckenbridge et al (John Wiley and So. ns, Inc. , New York, 1956),
p. 215.

5 A. Rose, in Proceedings of the Conference on Photocondlctivity,
Atlantic City, November 4—6, 1954, edited by R. G. Breckenbridge
et ut. . (John Wiley and Sons, Inc., New York, 1956), p. 3.
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TABLE I. List of symbols.

no=thermal equilibrium electron density in conduction
band

pa= thermal equilibrium hole density in valence band
he=excess free electron density
d p= excess free hole density

c= (p„/p„) = ratio of electron to hole mobility
an = (cArp+ap)/(c+1)
E&=density of traps
nI=thermal electron density when the Fermi level is at

the energy of a nondegenerate trap
p1= thermal hole density when the Fermi level is at the

energy of a nondegenerate trap.
C„=cVp(c„)=1/rpp=probability per unit time that an electron

will be captured by any of a set of X& avail-
able sites

C„=A'g(c„)=1/roo=probability per unit time that a hole will be
captured by any of a set of E& available sites

fr=fraction of traps occupied by electrons
fop= (1+po/pr) ~= (I+po&/np) '= value of f~ in thermal equi-

librium
z=nw/pp
y= Ap/Po
~=n1/Po
b =pi/po

r =Co/Ca = r no/r op

X=Xp/po
=N p/P o =v (1+'b)o/(1 ~b)—

r p = r„p(1+b)
r„=r„p(1+1/y)= (r p+rop)
rg = r„p(1+b)/yb
r p

——r„p(1+b) (yb+y(1+b)o/N }
T=t/r„p ——normalized time scale

have discussed the more general problem —which can
get very complicated. Mathematically, these com-
plexities arise because general analytic solutions for the
nonlinear S-R equations are not known. From a more
physical standpoint, complexity is anticipated in that
any center which has dealings with both the con-
duction and valence bands combines the dual functions
of trapping and recombination. '

Some transient solutions of the S-R equations have
been reported by several authors~ " for certain re-
strictive cases. In most instances, solutions were limited
to the e8'ects of small excess-carrier concentrations
(thus removing the nonlinearities in the differential
equations). These treatments also imposed severe
restrictions on the parameters of the model. But this
rendered their conclusions of limited value, since in
practice the parameters governing the recombination
process (capture constants, trap energy, etc.) vary very
widely between one semiconductor and another. Isay's

6 The terms "recombination center" and "trap" are used inter-
changeably in this paper.' D. J. Sandiford, Phys. Rev. 105, 524 (1957).' D. H. Clarke, J. Electron. Control 3, 375 (1957).' G. K. Wertheim, Phys. Rev. 109, 1086 (1958).

+ G. M. Goureau, Zhur. Eksptl. i Teoret. Fiz. 33, 158 (1957)
i translation: Soviet Phys. JETP 6, 123 (1958)g.

approach to the problem" was diferent from those of
the above authors in that the nonlinear terms of the
diGerential equations were retained; but he sought to
force a fit in terms of specific types of function —to the
detriment of the underlying physical problem. "

It is our intention to explore the transient decay of
excess-carrier populations (whether these be large or
small) for any values of the controlling parameters. "
Some insight into the transformation from purely re-
combinative to purely trapping character comes from
such a study. The following sections are based on
analytic solutions where applicable, numerical solu-
tions where convenient, and intuition when all else
fails. Such a combination of approaches is called for by
the nature of the problem. Indeed Rose remarks"
". . . the problem of recombination still retains a large
measure of complexity. There is likely more need for
points of view that allow semiquantitative judgments
than there is for complete and closed mathematical
solutions. "

In Sec. V, characteristic forms of photoconductive
decay are synthesized from the behavior of the excess
hole and electron densities. This has an important
bearing on the validity of carrier lifetimes inferred
from photoconductive measurements.

—(dAn/dt) = C„L(no+An) (1—fo) nt fp'j, —

(dAP/dt) = C—'.L(ps+ Ap) fo p~(1 fp) 3— —
(1)

(2)

where fo is the fraction of recombination sites occupied
by electrons. From the neutrality condition we find that

p1
7

pl+pp-

which reduces at zero modulation to

t0 I 1 0 +0 +0 +1 ~

Hence (1) and (2) can be written as

X,ei-~dAni C„
l=—An np+nt+Edt) no+n,

AP(n, + n—,)+Ans An/3P —(4)
J

&I

"W. H. Isay, Ann. Physik 13, 327 (1953).
'~ For example, concepts such as trapping would tend to be lost

in this treatment of the problem.
"As discussed a little later, it is convenient to group the work

into two papers dealing with the two principal zones of trap
energy. A second paper will describe the situations omitted here.

"A. Rose, Phys. Rev. 97, 322 (1955).

IL GENERAL DECAY EQUATIONS

Using the customary notation for Shockley-Read'
recombination via a set of recombination centers (the
symbols used are dehned in Table I, the rates at which
electrons and holes are captured are
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and

(dip ~ C„N,p~
I=—&p po+pi+( dt ) Ng j. pp+pg.

We shall choose to discuss primarily the case of a
p-type semiconductor; then in making a set of sub-
stitutions to dimensionless variables it is convenient to
use pp as the normalizing parameter. In the notation
to be used, x= (Art/po) and y= (ap/po). Further, we
denote N= (1V~/po), a= (std/po), b= (pi/po), y= (C&/C )
= (r o/rs, p), and use a dimensionless time scale
T= (t/r„p) = tC„. In this notation, x'= (dx/dT), etc.

When the appropriate substitutions are made, (4)
and (5) can be rewritten as

—Nx'= (x—y) [x+a(1+b)5+Nx/(1+b), (6)

—(N/p)y'= (y x) [y+1—+b5+1Vby/(1+b). (7)

These can be solved simultaneously to get equations
for x and y separately:

N(y" (y+1+b) —y" (1—1/v) }
+y'{y'(1+7)+y[(1+b)(1+a+27)
+N(1+2b)/(1+b) 5+[(1+b)'(a+y)+N(1+yb) 5}
+py(yo+y[(2+b+ab)+Nb/(1+b) 5

+[(1+b)(1+ab)+Nb/(1+b)5} =0, (8)

N {x"[x+a(1+0)5—x"(1—y) }
+x'{ x'(1 +p) +x[(1+b)(2a+ya+y)
+ 71V (2+b)/(1+ b) 5+a[(1+b)'(a+ &)+N (1+yb) 5}
+px(x'+ x[(1+a+ 2ab)+ N/ (1+b) 5

+a[(1+b)(1+ah)+1Vb/(1+b) 5}=0. (9)

Analytic solutions for these nonlinear diGerential
equations are known only for restrictive values of E,
b, p, and a; or when x and y are either very large or
very small. When (8) or (9) are reduced to any of the
canonical forms given by Ince," the equations either
lose their generality or else fall outside the range of
interest. Perturbation methods fail when the variables
are similar in magnitude to the normalized trap density
E: for then all terms are of comparable importance.
Accordingly, some otherwise inaccessible cases were
solved numerically on an I.B.M.-650 computer. The
more restrictive cases were dealt with by approximate
methods.

The general problem of electron and hole decay in
semiconductors following a burst of generation was
divided into two subdivisions. The first of these, Class
I, is concerned with semiconductors for which the
Fermi level and the recombination level are in the same
half of the intrinsic gap; whereas in Class II these levels
are in opposite halves of the intrinsic gap. Then, for

's E. L. Ince, Ordr'rsary Dsp'ereltial Eqttatsons (Longmano,
Green and Company, London, 1927), p. 317 G.

example, recombination via levels in the lower half of
the intrinsic gap represents a Class II process for an
rt-type semiconductor, but a Class I process for a p-type
semiconductor.

Since it is not necessary to discuss both rt- and p-type
cases (the solutions for one being derivable from the
other by inversion), we have elected to express every-
thing in the formalism of a p-type case. This paper will

deal almost exclusively with Class I. Analysis of the
Class II process will be published shortly.

In the next two sections, the forms taken by Class I
decay processes are discussed as functions of the density
and capture asymmetry of the recombination centers.
As noted previously, the terms "recombination center"
and "trap" are used interchangeably in this paper. For
except in a special case we discuss later [where
(r pp, /r~opp)=pb=15, recombination centers always
tend to trap a fraction of either excess majority carriers
or minority carriers. The relative importance of
trapping versls recombination is controlled by the
density of centers as well as their asymmetry; but the
dual roles are always coexistent.

(y &
&y= —7n0 —=7@0"

&y'&

(1+b)( +v)+y(1+v)1
1+ab+y I

& o(po+ps)+r o(io+rts)+&p(r o+& o)
(12)

po+ rto+~p

which is identical with the result of S-R for steady-state
hole lifetime when the recombination-center density is
small. Application of a similar procedure on (9) gives

III. SOME SPECIFIC SOLUTIONS

(a) N Very Small

When N is suKciently small, many terms in (8) and
(9) can be dropped to permit simple solutions for the
carrier lifetimes 7„= r„p(x/x') a—nd r„=—„r(p/yy).
How small E must be in order to remove its e8ect on
(8) and (9) depends on the relative magnitude of the
various parameters. Thus, for example, in a p-type
semiconductor all the terms involving Ã can always
be dropped if E((y, but the requirement can be much
less strict than this if a or b are large enough.

At any rate, when E is small enough for mention of
it to be safely expunged from (10), this equation
reduces to

y' (y'(1 +y)+ y(1+ b)(1+a+2')+(1+b)'(a+y)}
+yy{y'+y(2+b+ab)+(1+b)(1+ah)}=0. (10)

Now the solution is simpler than might at first appear
since a factor (y+1+b) is common to both the terms
of this equation, leaving

y'{(1+b) (a+&)+y(1+&)}+yy(1+ab+y}=0. (11)

The hole lifetime represented by this equation is the
familiar
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7 no y(1+ah)

(1+b) (~+V) ro
ln —,(13)

y(1+ab) y

where yo is the normalized excess hole density at the
origin of the time scale. This can be written in the more
usual notation as

(po —iii) (po&„o—pi7 o) po+iio+&po
ln

(pp'+n;o) po+No+~p—

(po+pi)(ipi~, o+po~.o) &po
ln

(po'+~') Ap

It is interesting to note that if a=1 or yb=i this
collapses spectacularly to t= (r„p+ r„p) In(happ/Dp). For
recombination-center energies near the center of the
gap so that both pb and a are less than unity, the decay
becomes more rapid as it proceeds; but for levels quite
near to one band or the other such that either yb or a
is larger than unity, the decay becomes slower as it
proceeds.

Our main purpose here is not to discuss these decays
for small E which are amenable to exact analytic
treatment; but to consider what happens with larger
center densities when partial or complete trapping
occurs.

We shall consider solutions appropriate for a p-type
semiconductor, ah&1, and for much of the discussion
assume ab((1. Cases where the thermal equilibrium
minority carrier density becomes important are noted
as they arise.

the expected result that the electron lifetime is also in
accordance with 5-R for any excess electron density,
large or small.

In these cases where X is small and (8) reduces to
(11), direct integration is possible to give time as a
function of hp following any disturbance of thermal
equilibrium. From (11) we have that

(1—a) (1—pb) yp+1+ab
T— ln

(b) N Very Large

When E is sufFiciently large so that both E and bX
are much larger than either x or y, Eqs. (6) and (7)
reduce to very simple linear equations with purely
exponential solutions (which of course depend on the
initial conditions) . When excess hole and electron
populations are created with a delta function pulse of
light, this initial condition is x=y=xo at T=O. Then

x=xp exp[—T/(1+b)],
y= xp exp[ y—bT/(1+b) )

(15)

(16)

Physically, we can see that when JV is very large, the
fraction of unoccupied traps remains at the thermal
equilibrium value of (1+b) ' whether optically created
electrons are pouring into the traps or not. Then, inde-
pendent of the previous history, the probability of
electron capture is always C (1+b) and of hole capture
always C„b/(1+b), as described by Eqs. (15) and (16).
The extent of trapping of electrons or holes is clearly
seen to be a strong function of how much yb deviates
from unity.

Xb (y'b )~"+
(

—
I

—(1+b)—»' —
I

— — le=0. (18)
(N) 1+b

The condition
~
Nb/(1+b) —(1+b) ~))x makes Eq. (18)

linear with constant coefficients. The solution for y is
then

1 1 1 (yGTy 1—+—exp
/

y Gyp 4X) G
(19)

where G= [1+b+sVb/(1+b) 1 and y=yp at T=o.
But when y has this form and a is very small (since

this is a necessary condition for Class I), Eq. (6)
becomes Bernoulli's equation and has the solution

(c) iNb/(1+8) —(1+&)i))x
For this apparently specialized case, if the substitu-

tion

y = —(1+b)+ cVN'/pu, (17)

is made in Eq. (7), the result is

G l"" (rp) t' (—T ~ p yo q f
qGTl-'~'—

I I +I —
~

expl I 1—
( )exp]

1 Lyo+G) EX) a p E1+b) (yp+G)
(20)

Equations (19) and (20) contain (15) and (16) as a
special case for sufFiciently large trap density. When E
is large but not infinite, (19) and (20) are important in
describing the approach towards low modulation condi-
tions. In particular, for strong minority carrier trapping
Sec. IV(d), these equations approximate the behavior
for the decay of x and y when x is dropping most steeply.

IV. THE GENERAL CLASS-I SOLUTION

(a) Numerical Solutions

In many physical situations the trap density is too
large to permit use of the simple result described in III
(a), yet the conditions of III (b) or (c) do not apply.
A more general type of solution must then be sought;
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though as previously remarked, general analytic solu-
tions to (8) and (9) are not known. Fortunately, Eqs.
(6) and (7) are of a kind easily handled by a digital
computer, and a number of representative cases were
evaluated numerically with an I.B.M.-650 machine.
The results of this computation, taken in conjunction
with the available analytic solutions, give us a clear
picture of the decay forms for either hole or electron
trapping.

The numerical solutions illustrated in the following
figures were all computed subject to the initial condition
x=y=10 at time T=O. Any other starting condition
(i.e., x=yA10, or xWy at some initial instant) would
give solutions di6erent in the initial stages of decay,
but which would rapidly coalesce with the above, apart
from a trivial change in the origin of the time scale.

(b) Trapping

For a discussion of the results shown in the 6rst few
figures it is convenient to return to Eqs. (6) and (7)
and note that under the conditions of Class I (that a
is very small) these can be written as

IO'

a4

4
I

u

O
so

C
lO
Q ip-I
s
EQ

~g
a

iO 2

200 400 560

1 x yx+u(1—+b)

x 1+b
(21a)

(21b)

Time From Beginning of Decoy in Units of ~„o

FIG. 1. Excess carrier decays illustrating majority hole trapping
are given for the following values of the parameters: a(1+5) 10 ',
b=100, y=0.05 when %=10 and N=100. Solid curves for hole
decay, dashed curves for electron decay.

and
y' yb y(y —x) y+1+b

y 1+b
(22)

' Except for the situation of strong minority carrier trapping.
Equation (21b) cannot then be used, since terms involving a must
be retained no matter how small a may be.

Note that the left side of each equation is the reciprocal
of the normalized time constant for one type of carrier.
For we have, L

—x'/x)=L —(r 0/x)(dx/d)f]= vp/r„,
where 7-„ is the quantity customarily described as the
electron lifetime for the given conditions. It is evident
from (21b) that —x'/x will be simply 1/(1+b) [i.e.,
T = r 0(1+b)= r0) whenever (1+b) (x—y)/S is small
compared with unity. This will be true at the end of a
decay, when x and y become suSciently small. "More-
over, this will be true for the initial region of any
transient decay which follows a delta function period
of illumination. For if the illumination period is suf6-
ciently short compared with the lifetime, Ae=Ap at
the start of this decay; and —x'/x=1/(1+b) for a
short period until Ae and Ap become suKciently un-
balanced to cause a diferent time dependence. It is not
so much that his and Ap become different which causes
the termination of this initial phase; it is rather that
the fraction of empty and available traps shifts from

(1+b) ' during this period. When X tends to infinity,
the initial phase is indefinitely prolonged Sec. III(b),

since the capture probability is then not afI'ected by
prior trapping.

Corresponding to this situation for the electrons, the
early stages of hole decay satisfy —y'/y=pb/(1+b).
%hen yb&1, the minority electrons are depleted the
more rapidly, i.e., minority electron trapping occurs.
Conversely, when pb&1, it is the majority holes which
become trapped while the electrons enjoy the longer
initial time constant.

(c) Majority Hole Trapping

Of the two trapping alternatives, the simpler is that
of majority hole trapping, which, as remarked above,
occurs if (~ 0pi/Tpsps) =yb) 1. It will readily be seen
from Table I that when this is so, v~&v &ro,' accord-
ingly, the hole decay becomes slower as it proceeds.

Figure 1 illustrates the decay of x and y with time
for two numerical examples of majority carrier trapping,
following an initial disturbance x()= yo= 10. The time
scales for the following figures are given in terms of the
dimensionless variable T= f/r„0. This has the effect of
eliminating diGerences between curves for diferent
trap densities which result purely from the reciprocal
dependence of ~„o and ~„o on X&. Thus consider the two
curves for electrons in Fig. 1. In terms of actual time,
the decay is speeded Np by a factor of almost 10 when

the normalized trap density is raised from X=10 to
/=100. But the 6gure plots one curve in horizontal



K. C. NOMURA AND J. S. B LAKE MORE

1+7b y(1+b) ' 1
y"+y' + +vy —+

1+b P N (1+b)'
=0, (23)

when y is suKciently small. This well-known equation

O

«I
s lQ
W

l0

D 3

oo 20 40 60
Time From Seginning of Decoy in Units of Tno

Pro. 2. Electron and hole decay shoving minority electron
trapping for the following values of the parameters: o(1+5)= 10,. ',
b= j, and y=0.05. The values of 1V are indicated on the graph.
Solid curves for hole decay, dashed curves for electron decay.

units ten times larger than for the other, to illustrate
that electron decay is slomed when many traps are
present, compared with the functional form of (13) or
(14) for very few traps. The curve for (13) with the

appropriate values of y and b does in fact lie neatly
between the two inner curves for g =10, and the figure
demonstrates the progressive departure from this
behavior as X increases. The fact that the electrons
initially have a larger time constant (r p) than the holes

(rt) leaves an indelible mark on the entire decay
scheme for both carriers (although the initial period for
which the electron lifetime is anywhere near as large
as rp is too small to show clearly in this figure).

Ultimately the ratio (x/y)=Dpi/hp becomes con-

stant, since in the final stages of the decay both carrier
populations have the same time constant. This state-
ment can be confirmed by noting from (21b) that the
electrons eventually have the lifetime r =pcs(p1+b)
again, while Eq. (8) for hole decay simplifies to

has the solution

T— y(1+b)'
y=nexpJ '+pexp yb+

I 1+bi 1+b
(24}

(d) Minority Electron Trapping

Decay for this case is rather more complicated, par-
ticularly in the Anal stages when two categories of
behavior appear; these we call weak trapping and
strong trapping. Before going deeply into this, it is
preferable to note the behavior during the earlier stages
of decay.

When the initial condition is @=y at T=O, the holes
enjoy an initial decay lifetime v& and the electrons ro
(from (21) and (22)j as in the hole trapping case; but
now since yb&1 we have 7~&~„)v-0. Electrons are
rapidly trapped from the first instant, but hole decay
is slow until the recombination centers have built up
enough negative charge to encourage more vigorous
recombination. This can be seen at the very beginning
of the curves i.n Fig. 2.

Following this initial adjustment, the hole and elec-
tron densities follow paths roughly straddling the route
of Eq. (13) if E is not unduly large. At first sight it
might appear likely that the decay of both carrier
populations would become monotonically faster until
both enjoyed the lifetime v-0. This does happen when
weak trapping is the anal result, and is exemplified by
the curves labelled /= 0.1 in Fig. 2. The Anal behavior
of the excess holes when their density becomes small is,
as remarked in the previous subsection, determined by
(23) with its solution (24). In contrast to the bole
trapping case, however, there are now possibilities of
the anal stages of decay being controlled by either the
first or the second term of (24). The dominant term
depends on the magnitude of Lyb+y(1+b)'/Ãg com-
pared with unity; the critical value of Ã being

S=y(1+b)'/(1 —yb). (26)

When E(JiT, both hole and electron populations
finally have the lifetime r p and the ratio (x/y) assumes
the definite value of Eq. (25); this ratio is now less than
unity. But for larger values of N the fina, 1 hole lifetime
is not ro but r2 and now the progression of time constant

which, for the hole trapping situation of yb&1, is
dominated by the first term at suKciently long times,
giving a lifetime equal to that of the electrons.

The ratio of excess electron to hole densities during
this final decay is found from (22) and the above result
to be

X(yb —1) E
lim

J

—
i
=1+ —1——

~P s (yJ p(1+b)'

This ratio is greater than unity in hole trapping cases
since the quantity we define as X=7(1+b)'(1—yb) is
then negative.
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during the decay is not monotonic. This is the case of
strong trapping.

It is intuitively obvious that the ratio (x/y) must
remain finite even for this situation, but such a destiny
does not appear too likely from the divergent behavior
of pairs of curves for strong trapping in Fig. 2. However,
the general electron equation (9) reduces to one with a
solution of the form (24) when the electron density
becomes so small that x«a(1+b) Wh. en this happens
the electron decay slackens to conform with a new
final lifetime T2, just as for the hole decay. This process
is illustrated in Fig. 3(a) for a semiconductor in which
a(1+b)=10 ', a not unlikely value for an extrinsic
semiconductor such as silicon at 300'K. And so the
headlong collapse of the excess electron density is
checked, but not until it has become exceedingly small
compared with the excess hole density. The final ratio
is in fact

(27)

Sandiford' remarked that both electrons and holes
decay according to (24) richen their densities are small:
but he did not remark on how small these densities
must be I:o make this form of solution valid. Certainly
so far as the minority carriers are concerned, the range
of validity for (24) is observationally inaccessible when
strong trapping occurs (except for a semiconductor
which is almost intrinsic). On the other hand, Eqs. (19)
and (20) give a good approximation to the strong
trapping decay from the moment x becomes smaller
than y.

The preceding discussion has emphasized that the
progression of time constants during a strong trapping
process is far from simple. This is amply borne out by
the curves of Fig. 3(b).
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(e) Result of Varying Trap Density

The most obvious result of varying the trap density
is that the parametels r p and r„p vary in the inverse
manner. For a case of majority hole trapping, this is
the predominant fact, and recombination speeds up
more or less in step with the center concentration. The
same holds true for cases of weak minority electron
trapping, where the final decay is characterized by the
lifetime rp. As remarked before, this gross dependence
of decay rate on E is masked by the use of T as the
abscissa in the first few figures, a variable which is
itself proportional to X.

A change occurs in the above-mentioned trend for
the strong trapping case of E&N. The final hole
lifetime is now 72 which at first decreases more slowly
than rp for increasing X. This happens since

Fro. 3. (a) Decay of holes (soHd curve) and electrons (dashed
curve) for strong trapping case of o(1+b)=10, b= 1, V=O Os~E=3, continued to show Gnal modes of decay. Curve of S-R decay
PEq. (13)j shown for comparison. (b) Variation of normalized
time constants during this decay.

Now the numerator of this expression is independent
of Ã, while only the first term of the denominator
encourages any dependence of lifetime on trap density.
This dependence will not be very marked when E erst
exceeds ¹ though as Ã further increases to become
large compared with (1+b)'/b, rs once again becomes
simply inversely proportional to 1/JV and identical with
the quantity r&. This becomes the situation described
in Sec. III(b), that for very large iV both electron and
hole decays follow simple exponentials all the way, with
time constants r~ for holes and rp for electrons. The
transition between weak trapping and. this limiting
behavior is demonstrated by the curves for X=0.3, 1, 3,
and ~ in Fig. 2.
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(f) Effects of Temperature on Excess
Carrier Decay

Any of the parameters characterizing the decay may
be a function of temperature, but as a first approach to
the problem it may be supposed that the dependence
of b is the most important in a Class I process. This
ratio is

b=Pr/Ps= P /po) exp[(e et)/kT), (29)
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Y
when the recombination level is nondegenerate, and
divers by a constant factor when there are multiple
spin choices for center occupancy.

In Fig. 4 the progression of excess carrier decay is
shown (with le=0.1 and y=0.05) as b is increased
from 0.1 to 100 (corresponding physically with rising
temperature). In the same sequence, the character
changes from strong to weak trapping of electrons to
no trapping and Anally to exceedingly mild hole
trapping. For these values of S and y the transition
from strong to weak trapping occurs at b=0.40, and
there is no trapping when b=20.

The boundary between electron and hole trapping
corresponding to the condition yb= 1 is a most inter-
esting one because this makes Eqs. (6) and (7) exactly
solvable, leading to the simple exponential solutions

x=y=ms expl —T/(1+b) j. (30)

This solution is applicable for both Class I and Class II
semiconductors at any level of modulation. Trapping is
completely absent and the solution is independent of
both u and E, except for the indirect appearance of E
in the normalizing time constant v„p.

It is interesting to note how the low-level lifetime
varies with b, and curves illustrating this are shown in
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The Ratio b=p, /po (8/p) exp f(c -chal/k)
50 Ip

Fro. 5. Low-modulation conductivity decay lifetime as a
function of b when y=0.05. The descending curves for small b
and large E all join the common curve (1+b) as b increases suf-
6ciently to make N &¹
Fig. 5. (For these curves y is set at 0.05 in order to
conform with the previous numerical decay curves, but
similar principles would of course apply for any other
value. ) When cV(~y strong trapping cannot occur no
matter how small b is: the low-modulation lifetime is
then the monotonic function rp=r s(1+b) of b But.
for any larger value of S such that Ã&p, strong
trapping will occur at the lowest temperatures when
b is small. The low-modulation decay will then be
controlled by a lifetime r2 which is larger than wp, but
which decreases as b increases. Three examples of this
kind of behavior are shown in Fig. 5. For each of these
in turn, b reaches a value appropriate for S=X, 7 2= Tp,
the behavior when b becomes still larger is set by the
curve for 7.p.

Clearly, considerations such as the above will have
an important bearing on the interpretation of photo-
conductive decay in a semiconductor. The problems of
photoconductivity are discussed in the next section.
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V. PHOTOCONDUCTIVITY

Attempts are often made to compare experimentally
determined photoconductive decay lifetimes with
theory, principally the S-R theory. ~ Now this is impos-
sible if trapping is appreciable since neither An, Ap,
nor their lifetimes can be measured. Instead a com-
posite measure of the carrier modulation is obtained
from the conductivity equation and its time constant

Ao =e(I/, .An+@,AP) = e(I/, „+p,)An, (31)

(32)

When hp and An are widely separated, as we have seen
can happen, measured values of r„- will not be very
revealing about the behavior of either the holes or the
electrons.

Fro. 4. Dependence of excess carrier on b for y=0.05 and 'TE. g. , R. L. Watters and G. W. Ludwig, J. Appl. Phys. 27,
E 0.1. Physically, increasing b corresponds to higher temper- 489 (1956); R. G. Shulman and B. J. Wyluda, Phys. Rev. 102,
atures. 1455 (1950).
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On the other hand, when AN and Ap are known
separately (e.g., from numerically computed curves
such as we have discussed above), the information on
these can be combined to demonstrate the correspond-
ing course of behavior for 7~. We have done this to
illustrate the dependence of r- on photoconductive
modulation for various types of carrier trapping. It is
not particularly necessary to do this for the case of
majority hole trapping since, except for exorbitantly
large E, the diRerences between r„, r„, and v- are
unimportant. Thus the figures discussed below relate
to the important minority electron trapping situation,
firstly for weak trapping. The coordinates for Fig. 6
are chosen such that when 1V is suKciently small Li.e.,
the behavior satisfies the S-R model of Eq. (12)), the
results should lie on a straight line with slope (1+1/7)
and intercept (1+5). This line is indicated on the
6gure, and also the behavior which occurs for two finite
values of X. One notes that the "photoconductive
lifetime" increases at first more rapidly with modu-
lation than expected from an S-R model. It is obvious
from the nature of hn that the initial slope may
approach but not exceed (1+c)(1+1/y).

Curvature of the characteristic between photocon-
ductive lifetime and modulation has been seen, in
practice"; though such curvature can arise from
causes other than pronounced weak trapping. "Obser-
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vation that the curvature becomes less prominent as
temperature increases (lowering the ratio X/E) would
be important confirmation of weak trapping as the
cause of the curvature.

The variation of 7- with modulation deviates much
more signi6cantly from the S-R behavior when X)X
and strong trapping supervenes. The results demon-
strate the need for a large-signal theory since departures
from the S-R line are still very pronounced at quite
considerable levels of modulation. Typical results are
shown in Fig. 7 for values of y, b, a, and E corre-
sponding with three cases for which decays were shown
in Fig. 2. A mobility ratio p„/p~=c=2. 6 is supposed,
which makes the form of v - strongly influenced by the
minority electrons for heavy modulation; however as
low-modulation conditions are reached the majority
holes exert an almost exclusive control over 7 -. This is
the reason for a minimum in these curves (a not very
obvious one when X=0.3) since r must approach -rs

as the minority density becomes imperceptibly small.
Once again, the propriety of associating experimental

results with a model such as this should be confirmed
from the temperature dependence. As temperature
increases, one should go from strong trapping to weak
trapping (and eventually towards hole trapping).

FIG. 6. Photoconductive lifetime as a function of bA for weak
electron trapping. y=0.05 and b=1.0, while E(g=0.210.

' E.g., M. S. Ridout, Report of the Meeting on Semzcondlctors
(The Physical Society, London, 1956), p. 33."J.S. Blakemore, Phys. Rev. 110, 1301 (1958).

VI. ACKNOWLEDGMENTS

It is a pleasure to thank J. A. Lindquist of Minne-
apolis-Honeywell Aeronautical Division, who obtained
the computed solutions,


