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The coupled Boltzmann equations for phonons and electrons in a metal are solved simultaneously using
first-order perturbation theory. Use is made of the Kohler variational principle to put the transport coe%-
cients in terms of determinants. The final results are in the form of integrals involving the phonon-phonon
relaxation time r(e) and the electron-electron relaxation time. The details of how a finite electrical con-
ductivity exists by means of umklapp processes even when 7 (cr) —+ ~ (the Peierls equilibrium problem) is
revealed in the electrical conductivity expression. In general, the eRects may be described as "phonon
relaxation" effects, altering all the transport coefficient somewhat when (e) gets large, and "phonon-drag"
or drift effects, altering appreciably only the thermoelectric power.

I. INTRODUCTION

'HE problem of transport in metals is to a large
extent the history of how electrons and phonons

interact. We shall neglect impurity and boundary
scattering in this paper. There are three types of such
interactions involved: (1) electron-electron, (2) elec-
tron-phonon, and (3) phonon-phonon. In addition there
are external parameters which cause a change in the
distributions, namely the electric field and a tempera-
ture gradient. We shall not consider magnetic fields.
The first work on electron transport problems' ignored
(1) and (3), and regarded each collision of type (2) to
commence with the phonons in equilibrium distribu-
tions, which implied that collisions of type (3) are
frequent enough to maintain phonon equilibrium. The
possibility of the phonons not having an equilibrium
distribution was well understood, and equations were
written down showing where the nonequilibrium com-
ponent appeared. Peierls' in particular pointed out the
rather grave problem of equilibrium at low tempera-
tures, when the ignored collisions of type (3) were
shown not to be sufficient to provide equilibrium; and
other mechanisms had to be invoked, namely umklapp
(UK) processes to maintain a steady state. However
electron-phonon UK processes were thought to diminish
too fast at low temperatures to provide what was
necessary. Recent work' has shown that. the contribu-
tion of VK processes had been greatly underestimated,
and unless very low temperatures indeed were con-
templated (say 2 or 3 degrees K), there were enough
UK processes to satisfy the most skeptical.

In 1945, Gurevich' proposed that the nonequilibrium
component of the phonon distribution could not reason-
ably be neglected in the thermoelectric power of metals.

He set up the coupled Boltzmann equations for the
phonons and for the electrons, representing collisions
of type (3) by a relaxation time. He calculated out some
results, but did not attempt to solve the Boltzmann
equations simultaneously. Since then, much work' has
been done on this phonon-drag eR'ect in semiconductors.

In 1949, Kohler6 showed how a variational method
could be applied to transport properties of metals, and
how by this means a more general electron distribution
function could be employed. The electrical conductivity
so calculated could be formulated in a monotonically
increasing series.

The burden of this paper is to solve the coupled
Boltzmann equations of the phonons and electrons, and
to obtain expressions for the transport coeKcients by a
method identical to Kohler's, but applied to the more
general problem. A variety of assumptions has been
employed, chief among which are these six:

(1) The phonon-phonon collisions may be repre-
sented by a relaxation time r;(rs), a function of the
phonon wave vector e and polarization index j:

$8Xs(o')/clt)ph-ph con. (JVj IVOR)/rj (rr) ~

(2) The perturbation potential in collisions of elec-
trons with vibrating ions may be written in the form

tl V= gt Vv(r —r(l)) .n(l),

where the V'e may be a factor times the gradient of the
ion potential, or may be more complex. The index 3

represents the cell number. u(l) is the displacement of
the 1th ion.

(3) Electron-electron interactions may be repre-
sented by a relaxation time r(k), a function of the
wave vector k:

(4) First-order perturbation theory is applicable.

' For example, A. Sommerfeld and H. Bethe, in Handblch der
Physik (Verlag Julius Springer, Berlin, 1933),Vol. XXIV, Part 2.
Our displacement function Eq. (3) is identical to Bethe's, except
for where the mass factor appears.' R. E. Peierls, Ann. Physik 4, 121 (1930).

M. Bailyn, thesis, Harvard University, 1956 (unpublished); See references in J. M. Blatt, in Solid State Physics, edited by
M. Bailyn and H. Brooks, Bull. Am. Phys. Soc. Ser. II, 1, 300 F. Seitz and D. Turnbull (Academic Press, Inc. , New Vork,
(1956). See also note by M. Bailyn in Love Temperature Physics 1957), Vol. 4, p. 359.
and Chemistry LProceedings of the Fifth International Conference, e M. Kohler, Z. Physik 124, 772 (1948); 125, 679 (1949); 126,
University of Wisconsin Press, 1958j, p. 373. 495 (1949). E. H. Sondheimer, Proc. Roy. Soc. (London) A203,

'L. Gurevich, J. Phys. (U.S.S.R.) 9, 477 (1945); 10, 67 (1946). 75 (1950).
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(5) The steady-state statistical averages electron
distribution function f may be written

f.(k) =j'o(&-(k))—(~fo/~&) g (k)

g(k) = S,*pi(k) —(dT/dx) ps(k)/T,

h,*=8,+e 'df/dx,

fp=(e'+1) ',

e= (Z„(1) —i.)/. T,

where k is the reduced electron wave vector, and E„(k)
is the energy in the nth band. 8 is the electric field, and
l is the Fermi energy.

(6) The steady-state statistical-average' phonon
distribution function may be represented by an occupa-
tion number 1V,(e):

1V, (ts) =Ep, (co, (ts) )—(c)Ep,/c)hps) G; (cs),

1Vp, ——(e&—1)—',

y= hpo; (cs)/xT,

where co, (e) is the frequency of the jth vibration branch.
The Anal expressions obtained in this paper are integrals
involving r, (is) and r (k). Umklapp processes are taken
into account exactly, for if they were neglected, our
expression for the electrical conductivity would go to

We use for the displacement function

u(l)=(1V'Mj '*Q (,(a)

X(a;(e) expLitr r(l))+u;*(ts) exp( —ie r(l)$}, (3)

where Ã is the number of cells in the periodic block, M
is the ion mass, where the sum contains only one of the
two (o, —s), where a; is a destruction operator and ts;*
a creation operator, and where g;(e) is the unit dis-
placement vector for waves of wave vector e and
polarization j (j=1,2, 3). The matrix element in (2)
is then

(e'k'x'l A vl ~km)

=I» 2 (h/P&~ s(~)]}'5J(~)

X ((1V;(e)$&Q(E„(k')—E„(k)—hpo)5(k' —k —e—K)

+L1V, (o)+ 1jlQ(E„(k')—E„(k)+hto)

X8(k' —k+e+ K) }, (4)

I„x ——Ã(k n
I

Vp
l
kss) = Ip x.

infinity in the hmit of large r; (cs) K represents some reciprocal lattice vector. The elec-
tron wave functions are normalized over the whole
crystal. The k delta functions select out is and K for a

IL DERIVATION OF THE BOLTZMANN E UATIONS

The Boltzmann equation for the electron distribu- given kk' pair, since kk' and o are reduced wave vec-
tion function is tors. Thus

( c)f) drift ( c)f) coll.

= P (—P (nk —+ sp'k') f„(k)L1—f„(k')j
k'n'

0
+P(ss'k' ~ ssk)f. (k')L1 —f.(k)7}—,(1)

r(k)

where P(ssk —+ spk') is the probability per unit time of
a transition from state ssk to ss'k'. By first-order per-
turbation theory, it is

P(ssk-+ ss'k') =P h—'l (ss'k'X'lAVlmkX) l'
x

XQ(&(X')+&. (k') —~(&)—& (k)), (2)

sin(xf/2h) '
Q(x) = t7

xf/2h

where K indicates the phonon configuration. Only one
initial state X is considered. A statistical average is
later taken. The quantity Q(x) acts as a delta function.

7 By "statistical average" is meant an average over the grand
canonical ensemble as, for example, are meant the a's in (7.606)
and (7.705) of D. Ter Haar, Eiemeists of Stasistical Mechanics
(Rinehart and Company, Inc. , ¹wYork, 1954).See also (6.110).

FIG. 1. Two umklapp types of scattering, K=O, and K=K1,
axe shown schematically for the phonon wave vector e, and a
third type is indicated. Co is a curve denoting the locus of origins
of kk' pairs satisfying the delta-function condition for type K=0,
C1 for type K= K1. The angle between k and 0'+K is 6xed by the
energy delta function. The sums in the text over all possible kk'
pairs (for a given isj) satisfying the delta-function conditions LEq.
(8) for example) would reduce in this case to all kk' pairs with
origin on Cp, C&, Cs (not shown), and any other possible C„.'s.
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(Bf/Bt) coii.= p (1/N) Ck k~j
Z'n'~

X{n(E'—E—A,)b(k' —k —a—K)

XL—»(o)f(1—f')+(»(a)+1)f'(1—f)1
+Q(E' —E+Acoj)b(k' —k+e+ K)

X[—(N1 (e)+1)f(1—f')+N j(e)f'(1—f))}
—(f—fo)/r(k) (6)

C»,-—[Zh, (e)M j-i~ I„'g;(e)~o=C, .„&O. (7)

the form N„k exp(ik r) where the exponential factor
gives rise to the 6 function no matter what n is involved.

Using assumption (5), anticipating the delta-func-
tion nature of the 0, and neglecting products of small
quantities, we get

(Bf& =Z —D»'[11(—)B(—) (—G —g+g')
( Bt j coll. k j 1V

g Bfo
+11(+)B(+)(G —g+g') j+— (10)

KT Bo r(k)
If k is fixed, and k' roams over reduced space, the first
two terms [each square bracket in (6) contains two
"terms") will be nonzero for k"s different in general
from those corresponding to the last two. The reciprocal
lattice vector K is appropriately chosen so as to allow
the delta function to be nonzero, if possible.

The phonon Boltzmann equation may be written
directly from (6), for whereas the second and fourth
terms of (6) provide gains to the electron distribution,
it is the second and third which provide gains to the
phonon distribution. Similarly the first and fourth
provide losses to the phonon distribution. Hence

[BN,(e—)/Btfa„jt

BN;(a) i.ri 1
=o 2 —D»'[~~( —)~(—)(—G —g+g')

~on. &&' E
G, KVp, 1—11(+)b(+) (G —g+g')]+—— (11)
KT By r;(a)

Before having gone from (6) and (8) to (10) and (11),
we may regard a statistical average'as having been taken.
If the phonon-electron interaction and fields are turned
o8, then the average of a typica, l term, say Nf(1 f')—
is the product of the average of N and of f(1—f').
Knowing the averages of N and of f to be No and fo,
respectively, one can use the equilibrium condition to
solve for the average of ff' and show that it too is the
product of the individual averages. Then when the
electron-phonon interaction and fields are turned on, we
assume that the new average is a perturbation of
1Vofo(1—fo'), and of the form (1Vo+Ni) (fo+fi)
X (1—fo' —fi'), where now 1Vi, fi, and fi' are perturba-
tions of the statistical averages. This is what is implied
in assumptions 5 and 6.

= [BNj(e)/Bt j..i|=-,' p (Ck,k, ,/1V)
RIk1'

X {&(Ei'—Ei—Mj) &(k,'—k,—e—K)

X[—Nj( )f(1—f')+(N;( )+1)f'(1—f))
—Q(Ei' —Ei+Ato) b(ki' —ki+e+ K)

xL—(N, ( )+1)f(1—f')+N, ( )f(1—f)j}
—[N, (e)—Noj]/r j(e), (8) III. PROOF OF THE APPLICABILITY OF THE

VARIATIONAL METHOD

First we shall combine (10) and (11).Equation (11)
solved for G;(e) yields

G;(e)=

where we have introduced the relaxation by phonon-
phonon collisions in terms of a relaxation time. The
sum means for a given ej over all possible kk' pairs
satisfying the delta-function conditions. This nzeans also
over all possible UK processes for each e. (See Fig. 1.)
The factor —,

' before the kiki' sum insures that each
interaction is counted only once.

We shall introduce abbreviations here to shorten the
expressions. Let

O(a) =11(E'—Emit j)
Q, (a) =Q(E(ki') —E(ki) aiitto;),

5(a) =b(k' —k+e+K),
bi(+) b(k=1 ki'+—e+Ki)
g(k') =g',

g(ki') =g
G, (e) =G, ,

C» fo(E)fo(E')
=Dk~k&) 0. (9b)

KT le
'—e-

BN, (e) 1 1 iraqi 1—Dkiki' j
Bt - drift Fj(e) F& (a) klk1 N'

X[&i(—)4(—)—&1(+)&1(+)](gi—g,')

81V, (a) 1 2 i ji 1
1 z —~&Pi'i

Bt drift F,(e) F; (e) klkl N

Xfli( —)Bi(—) (gi —gi'), (12)
where

dip, 1 1 [n)
+ Q —Dkiki'

KT r (e) kikt'

X [&1(—)4(—)+&1(+)&1(+)$
dip, 1 1 [~] 1

+2 p —Dkiki'j
KT rj (a) klkl N

X&,(—)B,(—)& 0. (13)

The second forms for (12) and (13) arise from exchang-
ing the dummy indices ki and ki, and using (9b). It is
here that we must keep in mind that the e and K which

(9,) Fj(e)=—

Dg),

Further, we drop reference to bands. The 8-function
conditions arose from use of Bloch wave functions of
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find themselves in the delta function are the ones which
will make a nonzero value. For when we switch k and
k', the second term in (12) resembles the first, except
for the particular K vector. It must be understood,
however, that the delta function arose when k and k'
were given, and was taken to represent a selection from
all e [in the s sum of (3)] of the one s combined with
the one K which would give a nonzero value. When we
switch k and k' in (12) in the second term, the sum
over e and I will select out the ones to satisfy the
delta function, and hence the I will be the same that
gives a nonzero value in the first term. F, (»r) is always
positive since de o,/dy is negative.

Substitution of (12) into (10) gives
—(Bf//Bt)d„;i, U(k) = L—(g), (14)

which is a generalized Boltzmann equation. Here

L(g) =Li(g)+L (g)+L (g), (15)

Li(g) =2 (1/N)D»

X [Q(—)~(—)+Q(+)~(+)](—g+g'),
L,(g) =g (1/)V)Dkk, [Q(—)5(—)—Q(+)5(+)]

The second form is obtained by exchanging k and k'.
We now form

P hL2(g) = P (1/N)Dkk;

X [Q(—)S(—)—Q(+)S(y)]h(k)
fuji

X[1/F, ( )] Q (1/N)D ' Q (—)& (—)(g —
g ').

k1k1'

Interchange k and k'. When this is done the square
bracket becomes the negative of itself, with the same e.
When the reversed member k'k is calculated, it will
select out the same e, the only differences being that
it comes from the second term in the square bracket
instead of the first, and that there is a change in sign.
Thus when the original is added to the interchanged
expression, we get a factor h(k) —h(k'). Also, the
second term in the square bracket will add up to the
same quantity as the first term. (Interchange k and k'
in the second term. ) Thus

2 Q hLg(g) = Q (2/iV)Dkk, Q( —)5(—) (h —h')
kk~j

X[1/Fi(~)] 2 (1/N)»iki'i

XQ (—)~ (—)(g —
g ') (16)

g ~o
Ls(g) =

«T d» r(k)
U(k) = Q (1/N)Dkiki'j

kl 7

x[—Q ( —)&,(—)+Q, (+)&,(+)]
8Ã e

kk' j
X (—g+g') (h —h')

= 2 (2/N)D Q( —)~(—) (—g+g') (h —h'). (19)
kk'j.

()
X . (1I)R, d if»F '(ll)

In making use of the variational principle, we treat
U as a drift term, and propose to show that if h(k) is
any function, then

Qkh(k)L(g) =+kg(k)L(h),

Zkg(k) L(g) « (18)

These two conditions are the prerequisites for use of
the variation principle.

It is immediately obvious that L3 satisfies (18) since
df»/d» is negative, and r(k) is positive.

The coefficient of —g(k)+g(k') in I i is symmetrical
in k and k'. Hence, if we multiply by h(k) and sum,
and then exchange dummy indices k and k', the result
will be identical to the unexchanged form except that
h(k) has become —h(k'):
2 P hLi(g)

= 2 (1/N)D»'LQ( —)&(—)+Q(+)~(+)]

X[1/ F(e)] Q (1/lV)Dk, k, ;
k1k1'

XQi( —)~i(—)(gi—gi'). (2o)

From here, the simplest procedure is to add the I &

and L& terms, and multiply L& above and below by
F; (»r). Then we rewrite the kk' j sum as

Z=Z 2, (21)
kk'j o j kk'

1 frail [~i]
2 2 h[Li(g)+L2(g)]=K

k ~j F&(»r) kk' kzky'

dEO; 1 1 1
X Dk k ~ &Q (—)5 (—)—

dy «T r, (a) N

1
X (—g+g') (h —h')+—Dki i iQi( —)5,(—)

2
+—Dkk, Q( —)&(—) (—g+g') (h —h')

E
1 2

+—»iki'iQi (—)&i (—)—Dkk;Q (—)5 (—)
PT

X (gi —gi') (h —h') . (22)

which means that for each ej all possible kk' combina-
tions are first summed. (See Fig. 1.) The e's are summed
over the reduced zone, and the kk' sum for each e will
involve all possible UK processes associated with that
e. (21) is permissible because of the presence of the k
delta function, which in any case will allow only one o
for a given kk'. Thus



TRANSPORT IN MF TALS

Akk;(e) —= (2/E)Dkk, Q( —)b(—) &0,

6kk =g—
g ~

(23)

It is evident from this that the first of Kqs. (18) is
satisfied. To get the second, let us de6ne

First, the customary drift terms are

)Bfp~ pe&, 5 E f' —dTy Bfo=
I
—tg.*+ - —

I
~. , (»)

& at & e.ki &m m 2' dx) aZ'

The term in r, (e) in (22) will always be &0 when h= g.
We need concern ourselves only with the others. If we
call the just-mentioned term —8, then

[i' fr)
2 Q g/Li(g)+Lo(g)]= —8—+[1/2F, (e)] Q

(cj&o) d&o do~ 1 d2'
v

& at & e„n dy d~, r dx

Then we define H, (k) by

U(k) =H, (k) (dT/dx)/T.

(28)

(29)
kk' k1ki'

Using assumption (5) and the above, we get the sepa-

XAk, k, ,Akk, ,(bkk, ' bkk, bk, k, .) (24) rated equations

But it will always be true that
eh, Bfp—k, = —L(q i),
m BE

(30)

and

ltd jl [trjl

Q Akk, Akiki't(bkk —bk, k, )'&0,
kk' kIkI'

(25) Bfo
%—f')&. —&*=—L(o o). (31)

ferial

ttrA

A kk'jAklkl 9(bkk' b klkl )
kk' kIkI'

(26) Finally we define the per-unit-volume integrals (from
here on the sums are converted to integrals):

since the ranges of kk' and kiki' are the same. Thus
the kk' and kiki' sum in (24) is positive, and the whole
expression is negative. This proves the second of equa-
tions (18), and we may now employ the variational
principle.

The physical significance of the various terms are as
follows. Li(g) represents the relaxation of nonequi-
librium electrons by equilibrium phonons. Lo(g) would
represent the excitation of electrons by those non-
equilibrium phonons which themselves were excited
out of equilibrium by the nonequilibrium electrons,
provided the erst term in F is neglected. The fact that
(24) is negative states that the excitation by the above-
mentioned phonons is always slower than the relaxation
by the rest of the phonons. This must be the case, of
course, since otherwise the situation would not remain
a first-order perturbation. The first term in Ii shows
the eGect of the phonons in interacting among each
other in relaxing back to equilibrium. Its eGect on the
electrons is to make the excitation by nonequilibrium
phonons less pronounced. The second term in Ii repre-
sents the e6'ect of the electron-phonon collisions in
relaxing the phonons. The quantity U )Kq. (17)]
describes the exciting effect on the electrons, arising
from those nonequilibrium phonons which were th.m-

selves excited out of equilibrium by the temperature
gradient.

IV. THE VARIATIONAL PROCEDURE

(o A) = —„o(k)L(f)dk/4 '= (4,o) (32)

with side condition
b(Pi Fi) =0, (33)

ek t Bfp 1
(oui, oui) =— k. o i dk,

m~ BE 4w'
(34)

leads to Eq. (30); and the requirement

b(o o, o o)=0,
with side condition

(35)

h~fo 1
((p, , op,) = — — (E t)kg+&. op,

—dk, (36)
m aZ ', 4x'

leads to (31).The proof of these statements depends on
the validity of (18),and we shall be content with having
proved (18). (For more details see reference 6.)

We employ now functions of the form*

o i=2 a.(& f) "&*; o o=Z b (& 0—) "I* —(3't)
v=0

VVith this, we get

v=0

The variational principle then says that if trial func-
tions q I and p2 are chosen with adjustable parameters,
then the requirement

Although there are several treatments of the varia-
tional principle in the literature, it was thought worth
while to present here the important steps in the deriva-
tion, since the final determinants are diferent in struc-
ture from the ordinary ones.

(yi, (pi) = Q d„„a„a,)
ttt v=0

n

(op, oo)= 2 d, .b,b. ;
tt v=0

* The e„'s and b„'s are constants to be determined.

(38)

(39)
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dlvvri«riv=p nvsvv

Q d„,b„b.=Q P,b„,
v~opv 0

and the side conditions become

(40)

(41)

where d"" is the cofactor of d„„in the d matrix (whose
determinant is D). From Eqs. (51) we can form
P„„d„„a„b„in two ways, and find the relation

(54)

Now, in general, for a symmetric matrix d„„, we will
have

where

ek i Bfp 1
n„= i~ k.' (E f')" —dk,

az
(42) D„=Q p„q,dv"=—

pv=o

doo dol
dlo dll

dno dnl

don

d

Pp

Pl
(55)

p
0

f fl Bfp 1
p„=— —-- (E—f') v+'k, '+P (E—i) "k dk,

m BE 4lr'

d.,=((E-f)"k., (E-i-) k.)

It will be convenient in the future to use

(43)

(44)

Hence
Q a n„= D /D-,

Q a.y.= D„/D, —

Q b,n, =g P„a„=—De./D,

2 b.v.= —De~/D.

(56a)

(56b)

(56c)

(56d)

y„=—(h/m) (Bfp/BE)(E f')~'—k,'dk/4r' 1(45).
Whence Eqs. (48) to (50) become

o.
p
—— D„ /D, — (57)

In the ordinary theory y=P. The electric current J, Dap; ay
and the energy current m, are given by T«=+[DayZap DepDaa j/[DDaa]= v (58)

aa

J = (eA/m) k,g(k) (Bf0/BE)dk/4rro ST=De /D (59)

=Q „a~„S,* Q„b~„(dT—/dx)/T, (46)
The second form in (58) arises from use of "Sylvester's
theorem. "Even though our determinants are diferent
from Kohler's, the theorem still applies. We have

w = —(fi/m))"k, g(k)LE i+i](Bfo—/BE)dk/40r

~*I/e+Z.~.v.&.* E.b.v.(—dTldx)IT (47)

Thus the electrical conductivity with no temperature
gradient is o-o..

doo dol

dlo

dn0 dnl

don

dl

d
0!0 0,'l ' a„
70 'Yl ' Pn

no po

Pl

nn Pa
Al
A3 A4

(60)

0'0= Q v+vnv v (48)

TS=(g.b, n) Q/„a. „n.

The equations of the variational problem are

(50)

the thermal conductivity of the electrons, with no
current, is ~, where

T«= —[(Z.~.v.Z.b.n,)/Z. e.n.3+Z.b.V. ; (49)

and the thermoelectric power with no current is S,
where

where Al, A2, A3, and A4 all have the value zero. If A',
etc. , are the minors of these elements, then the theorem
states that

A'A4 —A'A'=DD p. ~. (61)

But in our previous terminology, A'=D~~, A'=D ~,
A'=D e, A'=D . The second form for (58) then
follows.

Finally we write down the first terms of (57) through
(59).

Z d«v~v
v~o

Z d"b.=P.;

0'0 =no'/doov (62)

(51) T«(n071 Vpnl) (Plnp ppnl)/

[dopnl 2dlpnpnl+no'dllgv (63)

and the solutions are
[ nlPldpp+dlp(npPl+nlPO) dllnopogTS=- —nPdop+ 2non idio —no d11

(64)

~.= (Z.n.d"")/»

b.= (Z~.d" )/D,

(52)
Many ot the terms will be very small, owing to the

(53) presence of powers of «T/i.
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V. CALCULATION OF F;(e) t EQ. (I3)g

The problem of integrating over k,k,' pairs for a
given 6 can be carried out almost completely. We
assume that Ixa. depends only on e+K. It will thus
change when we go from one type of UK to another,
but it will remain the same for all kk' combinations for
a particular UK type. So will g;(e), which does not
even dier from one UK type to another. Thus we
introduce a dimensionless parameter of order of
magnitude 10 '.

&,.;. x=(2«'/~)14(e) &» I'/Ie+KI
where a~ is the Bohr radius.

The k sum is transformed:

Li Na

0.27 0.53
8;,;,+K. 0.003 0.002

45. 130.

Rb

0.47 0.82 1.10
0.001 0.0005 0.0004

250. 820. 1400.

ts The units of ve and v' are 10» sec.

Eqs. (62) to (64) and of giving some qualitative picture
of the type and significance of any new effects on the
transport coeS.cients.

The 0,'s are the same as Kohler's n's, and the y's are
the same as Kohler's P's:

TABLE I. Numerical values for the parameters in Eq. (69). The
numbers are designed to reveal only the order of magnitude. r' is
defined in the text after Eq. (70).

&hp
A'd (cose)d io,

4es IV,EI
(66) Otp =—

khp

m' et' ~xT~'
(71)

2AAph f)
where Ap is the atomic volume, and 8 is the polar angle,
which will be the angle between k and e+K for each
K. Also

t 0(—)8(—)d(cos8) = L2ttte/(Ak I e+ K I)$

Xb(E' —E—Aro)b(k' —k ——K). (67)

The io integral is 2sr for each K. There remains only
the E integral:

~' t pxTq' ~' fs t.Tq'

2AAp~f~ 3ApA&t tI

Our p's may be written in the form

p.=v.+v',

(72)

(73)

Thus

where

(68)

dip; & 7c
F,(e) = +Z»-;.+I

dy «Tr, r;(e)
(69)

r,= (M/trt) (a&'/6p) (4eas/crppc), (70)

dE fp(E)fp(E+Apo)e'=Ato;/(e& 1). —
Jp

dip~' dc'&

xL—Il(—)&(—)+II(+)h(+)) ~ . . (74)
dy do. F;(e)

The y„"s are actually collision integrals similar to
the d„,'s but they appear in the present formalism in
the guise of drift integrals. One way of treating them is
to transform by the usual method to

where O.pp is the fine structure constant, c the velocity
of light, and u~ the Bohr radius. Thus the whole integral
has reduced to a sum over reciprocal lattice vectors
associated with a given e.

To give some idea of the numbers involved, Table I
is provided, giving values of r. for the alkali metals,
and representative values for 8 taken from reference 3.
The third row r' are values of r, (e) which will make
the first term in the square bracket of (69)f equal the
second. From Kittel's book, ' we expect r, (e) to be of
the order j.0 "or 10 "sec at 90'K or so.

~ '= (1/3~) Z(d&psld~) C~/Ps(e) 3~~s"Z(~j )

xI (E—f) k —(E'—f)"k'](I/x)

XD» t(I(-)~(-), (75)

where it is recognized that in a cubic crystal the calcu-
lation along an x, y, or s axis must yield the same value,
so that we could sum over x, y, and s and divide by
three. The reduction (21) was also used. We make use
of the sums

YI. DISCUSSION OF THE PARAMETERS

In this section we shall estimate the cr's, p's, y's, and
d„,'s to the extent of eliminating the small terms in

$ The various terms in the square bracket of (69) indicate the
relative importance of relaxing by phonon-phonon interactions
and by the various UK interactions, for a given e.

C. Kittel, Isttrodgctsots to Sofsd Stute Physics (John Wiley and
Sons, Inc. , New York, 1956), second edition, p. 139.

Q.(je)=—I:2/~ (e)j2 L(E—f) "k—(E'—f') "k'j
kk'

X(1/~)D» (I(—)b(—), (76)

Qp( je) = (p (e+ K&)Bt',.+z&}/

(L ./ ( )1+2»'.+ & (77)
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[~i7

Q, (jo) =(g (n+ K,)A~;(n)

X I AM, (Ir)/(i'' In+ Ki I '/4m)]8/. ;.+Ki}

X(Lr./r;(n)]++». ;.+Xi} '. (78)

These were evaluated by using the delta function to
sum over k', and by converting to an integral over k.
The polar axis is chosen along n+ Ki, and the 0 becomes
a delta function for the angle between k and n+Ki.
The E~'s represent possible urnklapp processes for the
given o. These can be obtained by adding Ki to n and
seeing whether or not the result is a vector smaller in

magnitude than 2kp, where kp is the electron wave
vector at the Fermi level. The sum over Ki is then a
sum over all such possible Ki's.

We find

yo' ———(1/36) Q (dNo, /dy)77, a),"Qo,
0'7

yi' ———(1/3A)g (dN o,/dy)y'7. ~,'" Qi.
0'7

In the same manner, neglecting terms in r(k), we find

(80)

doo=E(1/N)&» ~1~(—)~(—)o(n+K)

(o+K—Qo), (81)

dio=2(1/N)D» fI(—)|'(—)

x-',
I
—k(E—|.)+k'(E' —f)]L +K—Q.], (82)

xLk'(&' —t )—k(&—f )—Q,]. (83)

&o =no /doo,

Vi' Vi ni Vo Vi' ( Vi )T.= 1+ =——
I

1+—I,
dll - Yl no pl- dll E Yl )

(84)

(85)

( vi l —novidio+nipidoo vo / 'Yo )
T~=I 1+—I

+—
I 1+—

I
(86)

y, ) n, 'd„ own

VII. THE TRANSPORT COEFFICIENTS

In Eqs. (62) to (64) we shall include in the usual

fashion terms only of lowest order in (aT/1)', a very
small quantity for metals at ordinary temperatures.
The results above show that the corrections to dpp, d'py,

and d~i will not alter their orders of magnitude in this
sense. Thus we take the usual theory's results: dpp of
zero order, doi and dii of first order. LKohler's expres-
sions and our "usual theory's" diRer only in the con-

templated method of calculation (see reference 3) and
in the inclusion of UK processes. ]We find

The effects can be classified into two groups: (1) re-
laxation effects in the d„„'s, and (2) drift effects in the

I)
Pp Se

In the electrical conductivity, if r; ~ ~ and UK
processes are neglected, then O.p ~ as is well known
on general grounds' but had not previously been shown
to result from a statistical calculation. Thus when
r ~ ~, the phonons which cannot participate in UK
processes cannot contribute any resistance to the
charge Qow, but those that can participate in UK
processes can contribute both through UK and non
UK processes. With this cutoR of long-wave phonons,
the resistivity varies ultimately not as T' but
exponentially.

The details of how, in the limit 7 —+ ~, the UK
processes can produce a nonzero scattering can now be
seen. The limit r —& ~ means that the phonons cannot
dissipate energy or momentum fast enough to the
surface and outside the crystal and thus interact prin-
cipally only with the electrons. This implies a closed
electron-phonon system. If momentum were conserved,
the initial electron unbalance caused by the electric
field would remain shared between the electrons and
phonons even if the field is subsequently turned oR.
This ability to maintain the unbalance in the absence
of the Geld is described as an infinite conductivity.
Equation (81) shows that this will occur not merely
when UK processes are neglected, but also whenever
there is only one UK type of process possible for a
phonon, whether that type has K=O or not. (However,
the only cases where only one UK type is possible are
the long-wave phonons, and the type is K=O.)

To begin the description of how the infinite con-
ductivity is prevented, we find it convenient to restate
the facts upon which the phenomenon rests: (1) there
are processes which do not conserve momentum, and
(2) certain phonons may engage in more than one UK
type of collision. Peierls' original discussion of a general
nature centered on Fact i. We find it convenient to
emphasize both these aspects. (Fact 1 is necessary for
the validity of Fact 2, but not sufficient. ) Let us return
to Eqs. (19) and (20), the latter referring to the mo-
mentum change caused by the nonequilibrium com-
ponent of the phonon distribution tossing back some
of the momentum that the electrons tried to get rid of.
In the following discussion we regard the g(k) in 1.(g)
as referring to the electron distribution, with g propor-
tional to k, and k(k) as the quantity being scattered,
in this case momentum, also proportional to k, . (19)
and (20) then correspond to doo. x denotes the direction
of the electric Geld.

The right-hand side of (19) is of the form

P (k.—k,')Pay I kg —k.']. (87a)

The first k —k ' is the momentum loss associated with
the collision. P» is an intrinsic probability of collision.
The second k,—k,' arises from the diRerence in the
nonequilibrium components of the statistical average
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of the distributions of k and k'. The main points of the
argument to follow are not dependent on the assumption
g(k) k, however. We shall use the word "net-proba-
bility" to exclude that part of the transition probability
which corresponds to equilibrium behavior, and which,
when summed, cancels to zero. Specifically we denote
Pkk'[kg k,'j as the "net-probability" that the proc-
esses k ~ k' will produce excess phonons. We continue
to refer to it as a probability even though it is unnor-
malized, i.e., even though it really represents the total
number of excess phonons produced. To convince one-
self that this indeed is what is represented, one may
compare (11) with (19), it being clear in (11) that the
expressions denote changes in X;(e).

We pause here to make some remarks on the net-
probability concept. If one traces the terms in (10)
back to the terms in (6), one can show that the g and g'

in the first square bracket of (10) arise from the de-
struction and creation terms, respectively, of the first
square bracket in (6). This means that if, say, g')g,
there is a net-probability for a gain in the statistically
averaged number of phonons above the equilibrium,
which in fact is rejected in the g

—g' factor of the first
bracket in (11).If this were all that was involved, the
average number of e phonons would increase without
limit. To achieve a steady state (neglecting phonon-
phonon interactions), we say that this average excess
number is also the average excess number destroyed per
unit time. But where can we find the interactions by
which to destroy the excess' The answer is: -in inter-
actions involving the excess itself, once it is produced.
We thus envisage a cycle: by an ordinary interaction,
an excess phonon is produced; then by an extraordinary
interaction it is destroyed. The number created must
equal the number destroyed to maintain a steady state.
On this picture, then, once an excess phonon is produced,
its total probability of being destroyed is 1. The fact
that without a temperature gradient and allowing

r, (a) —+ ~, the average net rate of phonon production
through collisions is zero does not mean that the net
rate of electron momentum change through collisions
is zero. This in fact is just the Peierls paradox.

The right-hand side of (20) is of the form

Q( —(k,—k, ')Pgg (k.—k.')'UK Ay}. (87b)

The first k,—k ' has the same significance as before.
So does P~~ . However, the nonzero net-probability of
the transition here is not the direct result of the di8er-
ence between the nonequilibrium components of k and
k', but an indirect result in the form of interactions
with the nonequilibrium component of the cr phonons.
We shall refer to this component as if it corresponded to
an increase in the number, although it could, of course,
equally well correspond to a decrease. The existence of
such a nonequilibrium component for the phonons
reQects the fact stated above that there is a greater
probability for the phonon creation-destruction cycle
to proceed by first a creation and then a destruction

P (ki.—ki. )Pj i~i
X

p Pkiki'
(QQ Pkk'P+1+1

X [(k,—k.')' —(k,—k.') (ki.—ki, ')]}/P Pgg . (87c)

To make clear what is involved in there being a
nonequilibrium component to the phonon distribution
and what the significance of Facts 1 and 2 is, let us
follow the career of phonons ej which may engage in
two UK types of interaction, which we label 1 and 2.
The relative net-probability of being created in a type-1
process is P,[0,+K„j, and in a type-2 process is
P2[0 ~+K9 ].The polarization index j, strictly speak-
ing, should appear on all the P's, but for convenience
we shall avoid this encumbrance. The total net probable
change in electron momentum in creating these phonons
ls

(0 +Ei,)Pi[0,+Ei,j+ (a,+E2,)P2[o,+E2,7, (88a)

where the first a,+E represent. s the actual momentum
change per collision. Each term is nonzero because of
the deviation from equilibrium of the electron dis-
tribution function, reflected in the second factor 0,+E,. .

The expression shows the net tendency for the electron
nonequilibrium component to produce a nonequilibrium
component to the phonon distribution. In the absence
of phonon-phonon interactions, our new phonons may
be considered the deviation from equilibrium of the
phonon distribution.

The total probability for an excess phonon to be
destroyed is 1, as emphasized above. But the destruc-
tion may take place by means of a process of UK type 1
or 2 irrespective of how the excess phonon was pro-
duced. This is the crux of the matter. The relative proba-
bility that it will be destroyed in a collision of type 1 is
Pi/(P, +P2) and of type 2 is P&/(Pi+P2). The "rela-
tive net-probability" of phonons being created in a

than the other way around. Now this, component arises
through, and its magnitude depends on, a/l the UK types
of -interaction which can produce the given e, not just
on the type corresponding to the destruction collision
at hand in (87b). When referred to the electron dis-
tribution unbalances, this component will react an
average over all these types. If there is only one type
possible, then this average has no significance, with the
result that (87b) would cancel (87a). That is, even
though there is a net probability for being first created
and then destroyed, there is nevertheless a certainty
that if it is created it will be destroyed, and if it gets
created and destroyed in the same type of process, it
will give back what it took in the way of electron mo-
mentum, and we indeed get no net change in the elec-
tron momentum. When there is more than one type of
UK process available, the average becomes important,
and keeps (87b) from canceling (87a). In the limit
r ~ ~, the sum of (87a) and (87b) is then

Q Pj, g (k,—k.') —Q Pgg (k,—k, ')
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type-1 process and destroyed in a type-1 process is
Pi[0 ~+Ei~jPi/(Pi+ P2), and the corresponding net-
probable electron momentum change ie the destruction
collision of type I is

P)Pj—(o.+E,.) [o.+K,.j.
Pi+P2

The relative net-probable electron momentum change
ie the destructiou collisions of type Z, corresponding to
the death of excess phonons which were created in a
type 1 process, is

—(o,+E2 ) [o,+K„j.
Pi+P2

The sum of these last two expressions is to be added
to the change given by the first term of Eq. (88a),
(which we multiply above and below by Pi+P2), in
order to obtain the net-probable electron momentum
change associated with both the life and the death of
phonons 0- if they were created in a type-1 process:

P1P2
(Dki.)= [(o.+Ki,)'—(o.+Ei.) (o.+K2.)j.

Pi+P2

As it stands, this could be either positive or negative.
If the phonons were created in a type-2 process, the
net-probable electron momentum change is

is the net-probable momentum loss from the system,
i.e., the momentum nonconserved. Further

P1P2
(E . K,—) [o,+K,j

Pi+P2

is the corresponding loss associated with the sequence 2
followed by 1. The sum is the total net-probable loss
from the system associated with the creation and
destruction of a phonon when the electron distribution
has a nonequilibrium component, since sequences 1
followed by 1, and 2 followed by 2 give a zero loss each.
The sum referred to gives just the expression in Eq.
(88b).

The situation may be described in words as follows:
there is a stronger correlation between momentum
change and net probability of occurrence for processes
which tend to produce than for processes which tend
to reduce the phonon unbalance, and this for the reason
that once the nonequilibrium phonon is created, it
forgets how it was created, and thus loses a measure of
correlation. The relation between momentum change
and net probability is such as always to reduce the
momentum unbalance of the electron-phonon system.

If one makes a list of the possible momentum losses
E;,—E, =3K, which can occur for any phonon
(there are only a very few), and defines an effective
matrix element in the limit r —& ~:

PjP2
(Ak2, )= [(o,+K2.)'—(o,+E'i ) (o,+E2,)].

Pl+ P2

(m) 1[
i&i

Ki -Kl =AKm

This could also be positive or negative. The sum of
these two expressions gives the total net-probable
electron momentum change associated with the life
history of 0- phonons:

for each of these, then one can write dpp in a form which
parades the importance of these momentum non-
conservation processes:

(Aki.)+(Ak2.)= (Ei.—E2.)') 0. (88b)
Pi+P2

Thus the electron system will always lose momentum.
(88b) corresponds to (87c). This discussion in fact
paraphrases the argument which leads to Eqs. (22)
to (26).

The above expression (88b) may be derived more
directly still, and in a manner to emphasize the sig-
nificance of the momentum nonconservation. PiP2/
(Pi+P2) is the relative intrinsic probability of a colli-
sion of type 1 being followed by one of type 2 (or vice
versa). PiP2fo. ,+Ki,]/(P, +P,) is the relative net-.
probability that a process of type 1 because of the
electron unbalance will not average to zero and will be
followed by a process of type 2. E& —E2, is the mo-
mentum loss from the whole system in such a sequence
of interactions. Thus

P'gP2
(Ei —K2,) [o,+Ei,j'

Pi+P2

If the phonons interact among themselves, then the
phonon unbalance will be partly relaxed by transitions
which have nothing to do with the electron momentum.
In this case, r./r;(e) is to be interpreted as the proba-
bility of such interactions, relative to 8; ,. +K, the
relative probability of UK type K. When impurity
scattering of the phonons is considered, it is to be
expected that another term will be added to the de-
nominator of the Q's.

An estimate of the importance of this correction can
be obtained from Table I. Qo is of order of magnitude

koB/([r, /r, (e)j+B).

This will have the value 0.1ko when r, (e) is of the order
10~r., i.e., 10 "sec, which is the order of magnitude to
be expected at low temperatures. Thus a low-tempera-
ture correction may be anticipated.

The signi6cance of the correction to dip is similar.
But the correction to d» entails the removal of energy
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The correction to d» is small because of the energy
origin chosen in the expansions (37). The cancellation
of plus and minus contributions is very large. (If one
chose zero energy as origin, one can see that Q1 would
reveal a character analogous to Qp. ) The choice of
energy origin favors a swift convergence of the series
into which the transport coeKcients may be put.

Orders of magnitude of po' and p&' may be obtained
by neglecting UK processes. The results will be too
large, and probably of the wrong sign. But they are
useful in eliminating small quantities in the transport
coeKcients, and can be calculated easily. We take the
limit of large r, (rs) and low temperatures:

KT (T)3 ~ 1
limyp' ——P ]

—
(

3 g —,
Aa, EO, & =1s''

(KI')2 ( 2 ) 3 KQ~.

»m~, '= P i
—

~

'
—;g —, (91)

i360 L O~, ) 3220 2/2233 .=1 s'

where
K Oi =f3 (40i)mpx =AO'mpxWi.

The phOnOn VelOCity W, = 7,40, (43) iS treated aS iSO-

tropic, dispersionless, and in the direction e for the
present purpose. Thus

yp' f li'T )3 6 ~ 1

yo i KT &0;3 pr2 8=is'

yi' KO. , (T~2 9 m 1

i Apo 2/2233 &O. ;& 22r2 ~=1 S'

(92)

(93)

It is at once evident that yr'/yi will be small compared
to 1, whereas yp'/yp will not. If r; gets small, these
ratios get smaller still, since both terms in the de-
nominator of yo' and y~' are of the same sign. For
convenience, we rewrite the transport coefficients taking
advantage of the negligibility of the small terms:

TK = yl /dll| (94)

TS= L 42071~10+41171~00+41070dll]/rrp dll+Vp /&0. (95)

It was originally to understand the thermoelectric
power that Gurevich and others began to study the
"phonon-drag" eGects. Unfortunately, it is just for the
thermoelectric power that even a qualitative appraisal
of the new e8ects is hard to obtain without extensive
calculations. Certain things of very general nature may
be said, however. First, there are two effects, one the
relaxation effect in dop and d», (which makes dpo always

from the electrons during the phonon relaxation. It is
apparent that Qr corrects for this, but with the peculiar
and very small weighting factor

-f i~+K, ip

2m

smaller, but not necessarily dip), the other the effect of
a new drift term. Second, a significant e6'ect in S need
not be rejected in the conductivities.

VVhat one would like to know most of all is the sign
of the new term. The new term has an interesting char-
acteristic in this regard. All K=O interactions give a
negative value (i.e., providing a term of same sign as
the usual term), whereas all UK interactions provide a
positive value. This results from the fact that

&.40,"(43+K) =w, (3r/0. ) (43+ K)

will be positive when K=O, and from the nature of
umklapps, it will be negative when a Bragg reflection
bounces the electron back. Our experience in transport
calculations has been that UK processes dominate the
scattering. ' If this is still the case for yo', then an ex-
planation for the low-temperature anomalies in Rb and
Cs may be at hand. ' Numerical calculations are planned
by the author to answer this question.

To get some sort of order of magnitude estimate of
the additional term in the thermoelectric power, we use
10 " sec, as an order of magnitude underestimate for
r;(e) at 30'K. The contribution is then of the order of
magnitude of the measured thermoelectric power. Thus
the 7 can at the same time be small enough not to alter
the conductivities by much, and large enough to cause
an appreciable eGect in the thermoelectric power.
However the fact that UK. and non-UK processes tend
to cancel each other out will greatly diminish the eGect.
A low-temperature T' dependence (first found by
Gurevich) seems to be predicted by the present deriva-
tion, although the temperature dependence of 7 may
alter this, as will also the inRuence of T on the balance
between UK and non-UK processes.

We also note that the 1/Oip factor in the new term
more than compensates the effect of r, from (70) when
we go from Na to Cs, so that we expect the effect on
Rb and Cs to be larger than on Na and I, which seems
to be what the experiments indicate. The positive ther-
moelectric power of I i seems to escape the theory. It
could possibly enter through an unexpectedly large
UK weighting in Bj; +K.

A high-temperature correction is not to be ruled out.
A rough order-of-magnitude estimate indicated an
effect one order of magnitude smaller than the observed
values. Considering the roughness of these estimates, we
cannot eliminate such a possibility.

VIII. OTHER EFFECTS

The scattering of electrons by impurities may be
taken into account by adding a term L4(g) to L(g) in
(15) in the usual manner. It will affect the 4f„„'s only.

Additional scattering mechanisms for the phonons
would affect the F, (4r)'s and hence would aGect the

~For the experimental vrork, see MacDonald, White, and
Woods, Proc. Roy. Soc. (London) A235, 358 (1956), and D. K. C.
MacDonald and W. B.) Pearson, Proc. Roy. Soc. (London) A219,
373 (1953).
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relaxation corrections in the d„„'s and the y„"s. They
would also afFect Eq. (14) by adding another drift
term similar to U(k), and hence would afFect the P
integ rais.

The transport of energy by phonons would aGect the
thermal conductivity. It can be written down and de-
veloped using (12), assumption 5, (37), and (46),
whence

w h.„.„,——(1/g~')P de Are, (a) V'.tp;

X &
—(d&p~/A)G, (a)/~T7

where

T d f' f'( 1dTggegg
e dxT e( Tdxi

(9g)

1 dT)J.=L»'h, *+L»'l ———
l

T dxi

The "proper forces" h** and —(dT/dx)/T are the ones
appropriate to the streams J, and w, ."Our Eqs. (46),
(47), and (96) become

where

= —L«+ (1/T) (Z.a.X„)(P„b~„)/

(P„a,rr,) —(1/T) P „b„)r„7(dT/dx)

L~p+D—-e;-~/(D-T) 7

1 dT~
=Ltt'h. **+l Lts —-Ltt ll

———l,
e i ( Tdxi

(96) P 1 dT~
w =Lst'h, *+Lss'l

E Taxi

(99)

Irp=[247rsTirT7
—' P I dtrh&p, (V' o).)'

4
x(d~./d~) L./I', (-)7(d~./d. ),

)t„=
l
24s'«T7-' P ~de A~;(&.~,"0,)d&p/de= —v.'.

where

1dTq
=Lst'h. **+l Lss' —-Lst' ll

———l,
e i & Td*i'

Ko is quite negligible. The other term to a first approxi-
mation will alter (63) to the extent of replacing yp and

» by pp+Xp and pp+)it, respectively. )I.t is small com-
pared to y~, but A. o is not small compared to yo. But
every term in which po appears is so small because of
other factors that A. o will have no sizable eGect in metals.
The efFect of "electron drag" is negligible. f

IX. THE ONSAGER RELATIONS

Our results must satisfy the Onsager relations, since
we have employed detailed balancing, and have treated
the electron-phonon interaction symmetrically. To
show the verification, we rewrite the currents as

1 dT)
&*=Ltt@***+Lrs

l

———l,
E T dxi'

(97)

we=weleotron+wphonon=Lst~e +Lpsl
Tdxi

1 The last relation in (96) shows that the electron drag on
phonon heat conduction will cancel, to first order in drag quan-
tities, the phonon drag on electron heat conduction. The present
theory provides the correction second order in drag quantities,
although we have not written it down.

Ltt' ——P a„n„
Lts' ——Q b„n„=Q a,P„
L»'=2 a.l:v.—0/e)~. —) .7=2 a.P. 0/e)~. ,

—
Lss' ——Q b„(y„X„)+TKp Q—b„P„+TIr p——.

(100)
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The Onsager relation which we verify is that I.»—1.»
=0. By Eqs. (99) and (100) this is

Lts' —(f/e)Ltt' —Lst'
=E(a &. 0/e)a ~—. a.LP. —g./e)n„7—}=0,

which proves the relation.
Added vote.—Since writing this paper, the author has

become aware of recent work" on the variational prin-
ciple. None of those papers takes the same approach
as ours, however. A note by Tsuji, "on the other hand,
indicates a procedure similar to ours.


