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Influence of Mass Ratio on Displacement Cascades in Diatomic Solids*

E. M. BARooDY
Battelle Memoria/ Institute, Columbus, Ohio

(Received July 18, 1958)

The inQuence of mass ratio on the displacement cascade initiated when an atom of a solid of type AB
receives considerable energy is investigated for a simple model. Isotropic scattering, equal probabilities for
collisions of various pairs of atoms, and a single threshold energy for displacement are assumed. The formula-
tion of the problem is like that of Harris, but threshold energy is introduced in the manner of Kinchin and
Pease. Comparatively simple equations are obtained and solutions which are always approximately correct
have been found by the Laplace transform method.

The total number of displacements does not vary greatly with mass ratio. When the mass of the heavy
atom is more than about ten times that of the light, the difference between the numbers of A atoms and B
atoms displaced by a primary A atom increases as a fractional power of the primary energy. For smaller
mass ratios, the difference approaches a constant. To illustrate some implications of the results, the relative
numbers of A and B atoms displaced by incident monoenergetic protons are considered.

I. INTRODUCTION

OME of the high-energy radiations to which solids
are exposed produce primary knock-on atoms with

sufhcient energy to displace many additional atoms
from their normal sites. Frequently, the sharing of the
energy of the primary with other atoms is regarded as a
sequence of two-body collisions between hard spheres.
The relation of this picture to events in real solids and
the calculation of the number of displacements to be
expected have been considered by a number of authors. ' '
Although most of the theory has concerned monatomic
solids, Harris' has extended it to polyatomic solids and
reported some numerical results on the inhuence of mass
ratio in the case of compounds of type AB. The main
purpose here is to give a rather complete treatment of
this latter problem for an extremely simple model. The
formulation of the problem is similar to that of Harris,
but considerable simplification is achieved by intro-
ducing the threshold energy for displacement in the
manner of Kinchin and Pease.

II. MONATOMIC SOLIDS

It is helpful to first recall some features of the Kinchin
and Pease treatment of the monatomic case. Suppose
that an atom receives an energy T, large enough to
produce a number of displacements, but small enough so
that its only collisions are hard-sphere collisions with
other atoms. To begin with, consider the atoms as free.
After the first collision there are two moving atoms

distributed in energy according to

N(T')dT'=2dT'/T, T'&T
=0 T') T.

Next, let the binding of the atoms be introduced as
follows: after any group of collisions, atoms with
energies below a threshold E~ are regarded as not dis-
placed and are forgotten, those with energies between
E& and 2Ed, are simply counted as displaced, and, Anally,
those with energies above 2E~ are followed through
subsequent collisions.

One can already see how many atoms will be eventu-
ally displaced. Energy is removed from the cascade by
the atoms which appear with uniform probability in the
range zero to 2E~. Since these atoms have an average
energy E& and half of them are displaced, the total
number of displacements will be T/28'.

A somewhat diGerent procedure which can be readily
extended to diatomic solids leads to the same result.
Introduce y=T//Es and let g(y) represent the total
number of displacements. Then, for y&1, g(y) =0, and
for 1&y&~2, g(y) =1.For y) 2 the first collision yields
two atoms characterized by (y —y') and y', where the
probability for y' in dy' is zero for y') y, and dy'/y for
y'&y. Since g(y) may be expressed in terms of the
displacements produced by the two moving atoms, one
has

dy' 2
g(r) = Lg(r —r')+g(r')3 =- ' g(r')dr' (2)
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The solution satisfying the initial conditions is g(y)

IIL EQUATIONS FOR DIATOMIC SOLIDSs

Consider a diatomic solid of type AB in which the
threshold energy is the same for all atoms and in which

6 Since writing this section the author has recognized that the
calculation of the difference f(y)=N& ftfs raises questions no—t
encountered for the total number of displacements g y). The point
is that for X)~s the initial conditions on f(y), implied by our
method of introducing a displacement threshold and stated in
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By a similar argument one may show that Es(y) can
be expressed in terms of integrals by interchanging the
subscripts 1 and 2 in Eq. (4). That is, 1Vt(y) and /Vs(y)
satisfy a pair of coupled equations. However, one may
obtain uncoupled equations by introducing

the probabilities for collisions involving various pairs of
atoms are equal. Suppose that a primary knockon with
y) 2 is produced and let Xt(y) and cVs(y) be the num-
bers of atoms, like and unlike the primary, respectively,
which are 6nally displaced. If the first collision is with a
like atom, the contribution to Xi(y) is

f(y) =&t(y) —&s(y),

~(y) =~ (y)+~.(y).-2
X,(y')dy',

y~o These functions satisfy separate equations which may
be put in differential form:

the argument proceeding as for a monatomic solid. If the
collision is with an unlike atom, the incident atom
retains an energy y' in the range (1—X)y to y, where

f(y)=C(y)=0, 0&y&1

f(y)=g(y)=1, 1&y

2~yf'(y) =f(y) —(1—)t)f((1—) )y) —&f()ty), (5)

2)~ye'(y) =g(y) —(1—) )g((I—)t)y)+)ta()ty), (6)

and are subject to the initial conditions

Values of y' in this range are equally probable and the
contribution to Nt(y) from subsequent collisions of the (7)
incident atom is

1
Xt (y')dy'.

~y

Meanwhile, the target atom receives an energy between
zero and Xy and Anally contributes

~Ay

&s(y')~y'.
Xy ~0

IV. SOLUTIONS OF THE EQUATIONS

Good approximate solutions of Zqs. (5) and (6) may
be obtained by the Laplace transform method. Intro-
ducing Z= ln(y/2), one finds that for Z) 0, P(Z) = f(y)
and Q(Z)=g(y) satisfy

2XP'(Z) =P(Z) (1—X)P(—Z+ln(1 —X))
—XP(Z+InX), (8)

2)i 'Z = Z —1—X Z+ln 1—)I,
On combining terms, giving equal probabilities to the

two types of collisions one obtainsy

h

2XyX (y) =2K X (y')dy'+~ 1V (y')dy'
~ 0 (I—X)y

P(Z) =Q(Z) =0, Z& —In2

P(Z) =Q(Z) =1, —ln2&Z&0.

Letting p(s) and q(s) represent the Laplace transforms

(4) of P(Z) and Q(Z), one finds immediately from a
transformation of Zqs. (8) and (9):

2Xs—(1—X) '+'Lexp (sei) —1g—X~'/exp(sex) —1]
p(s) =

sL2Xs —1+(1—X)'+' —X'+'j

2Xs—(1—X)~'Lexp (set) —1)+X'+'Lexp (sex) —1$
q(s) =

s(2Xs—1+(1—X)~'—X'+')

(10)

Here ei is the smaller of —ln(1 —X) and ln2, and es the
smaller of —Ink and ln2.

The asymptotic forms of the functions P(Z) and Q(Z)

Eq. (7), are not consistent with the integral equation for f(y)
which follows from Eq. (4) and its counterpart. The reason is that
our definition of displacement threshold rules out interchange
collisions by atoms receiving energy y ~& 2 while for y=2 and X&$
the integral equations include interchange collisions. The use of
Eqs. (5) and (7) in this paper excludes these particular inter-
changes and is equivalent to adding a function of X alone to the
integral equatfon for f(y). Physical arguments for excluding the
interchanges in question could be made, but the point is actually
of little practical importance. We find in Sec. IV that f(y) is always
small for X&$, never being much greater than unity. Including all
interchanges would make it still smaller and no sigiu6cant results
would be changed.

for large Z can be inferred from a study of the singu-

larities of the Laplace transforms. For q(s) the dominant
singularity is a simple pole at s= 1. The residue A (X) at
this pole is given by

L2X+ (1—X)' ln(1 —X)—X' lnhjA (X) =. X(1+2K),

=5K—2'—1,
(12)

X~&—,'.
This indicates that for large Z, Q(Z) ='A exp(Z). That
is, for large y,

g(y) ='Ay/2.
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Fro. 1. The lines show that A and (B+C) as determined from
Eqs. (12), (18), and (19) remain near unity. This indicates that
the asymptotic forms of f(y) and g(y) are always good approxima-
tions and that the total number of displacements is insensitive to
the ratio of masses. Circles are values of A calculated by Harris
for his model.

2X+(1—)I.) ln(1 —X)+X lnX=O, (15)

that is, when X=0.3092, the only real root of Eq. (14)
is a double root at s=O. One then 6nds that for s near
zero,

s'p(s) ='0.571+1.058s.

This indicates that for large y,

(16)

f(y) =0.571 ln(y/2)+1. 058. (17)

For )I,/0. 3092, Eq. (14) has two distinct roots, one at
s=O, and a second at s=n, where 0. varies with X as
shown in Fig. 2. The corresponding residues are B(X)

VLittle effort was made to locate nonreal singular points of
either of the Laplace transforms, and certain real poles of g(s)
which lie to the left of s= —1 were ignored. Comparisons of
asymptotic solutions with numerical integrations indicated, how-
ever, that all the neglected singularities are much less important
than those considered. More consideration of this point would be
of interest. It should also be noted that Eq. (14) can be obtained
without use of the Laplace transform if a trial solution y' is
inserted in Eq. (5).

The upper curve in Fig. 1 shows A (X) as computed
from Eq. (12).The circles show corresponding results of
Harris for certain mass ratios. According to both calcu-
lations, the total number of displacements is only
slightly dependent on the mass ratio of the atoms. Some
features of the dependence which is found can be
understood in a qualitative way, but for a satisfactory
discussion results for more general assumptions are
needed.

Sufhcient information about the asymptotic form of
I'(Z) can be obtained from the behavior of p(s) near its
poles on the real axis, v determined by the real roots of

2Xs—1+(1 X)e+'+ha+' 0 (14)

When X/0 satisfies

FIG. 2. Variation with X of the exponent n in Eq. (20) as deter-
mined by Eq. (14).

and C(X), where
2X—(1—X)et —Res

B(X)=
2X+(1—X) ln(1 —'A)+X ink

(18)

aC (X)L2X+ (1—X)~+' ln(1 —X)+X~+' in')
=XL1—(2X) j,
= (1—X)(1—$2(1—X)1 ), )I &~-,'.

These results imply that for large y,

f(y) ='B(~)+C(~) (y/2) (20)

The coeScients 8 and C are unbounded at X=0.3092,
where a=0, and one can show that near this point they
can be approximated by

B= (—0.571/cr)+0.457,

C= (0.571/cr)+0.601.

This behavior makes a direct plot of the coeKcients
inconvenient. Instead, the quantities (B+C), Ba,and-
Cn have been plotted against X in Figs. 1 and 3. In
Fig. 3 only the range X&~0.5 is covered. Beyond this
interval, 8 always lies between 1.0 and 1.2, and C
between —0.2 and zero.

The main features of the asymptotic behavior of f(y)
can now be seen. For X)0.309 (mass of the heavy atom
less than 10.8 times that of the light), f(y) approaches
the constant 8 which is near unity for X~& 0.5 and be-
comes very large near A=0.309. On the other hand, for
X(0.309 (very unlike masses), f(y) grows as (y/2),
where o. is unity for X=O and drops toward zero as X

approaches 0.309.
For X=O, 0.5, 1.0, the asymptotic solutions given in

Eqs. (13) and (20) reduce to the particularly simple
forms

f(y) =f(y) =y/2, (~=0)

f(y) =1, g(y) =y/2, (X=0.5, 1.0),
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Eq. (7), but for y) 2 they satisfy

2) b—1)f'b) = (1—) )fb)+)tfb —1)
—(1—X)f((1—X)y+)i)

—) f&b—1)), (21)

2X(y—1)g'(y) = (1—X)g(y)+Kg(y —1)
—(1—X)g((1—X)y+X)

+Kg(X(y-1)). (22)

These equations appear to be essentially more diKcult
than Eqs. (5) and (6). The asymptotic solutions still
have the forms given in Eqs. (13) and (20), tr being the
same function of A, as before. The coe%cients A, 8, and
C are new functions of X, however, and the author knows
of no convenient way of determining them. Values of A
for certain X which Harris obtained by numerical solu-
tion of his form of Eq. (22) have been plotted in Fig. 1,
and do not dier significantly from those for our model.

Numerical integrations of Eq. (21) for X=0.25 and
X=0.50 were made as part of the present work and
yielded

FIG. 3. The products nC and —aB as functions of ) .

which are in fact exact solutions for all y~& 2. Moreover,
Fig. i shows that for all I, the asymptotic solutions
satisfy approximately the initial conditions at y=2.
This suggests that they are always good approximations
for all y~&2. This point is illustrated for X=0.25 in
Fig. 4 where the lines are asymptotic solutions and the
points were obtained by forward integration.

V. COMPARISONS WITH OTHER
APPROXIMATE MODELS

In most respects the results which have been obtained
are clearly consistent with general qualitative con-
sideration of how P influences the exchange of energy
between atoms. It may be a little surprising, however,
that the cases X=0.5 and A=i.0 turned out to be
precisely the same, and that masses within an order of
magnitude of each other behave so much like equal
masses. To bring out to what extent these are peculi-
arities of the model used, the further study outlined
below makes comparisons with the model of Harris and
with estimates based on the distribution of energy be-

tween A and 8 atoms in a cascade among free atoms.
The work of Harris is a generalization to polyatomic

solids of the earlier theory of Snyder and Neufeld. ' In it
the fact that most of the displacement energy E& is

expended irreversibly is emphasized through the as-

sumption that a knockon receiving the energy ad can

share, at most, only the difference (y—1)E& in its next
collision. Introducing the threshold energy in this way,
Harris obtained equations for diatomic solids which can
be readily restated in our notation. The functions f(y)
and g(y) are again subject to the initial conditions of

B(0.25) = —4.4, C(0.25) =5.1,

B(0.50)= 2.12 C(0.50) = —1.25.

Corresponding numbers may be obtained from Figs. 1
to 3 for comparison with these results, but it is more
informative to consider Es/(lVr+ )Vs) = (g—f)j2g, which
gives the fraction of the displaced atoms which are
unlike the primary. In Fig. 5 this fraction is plotted
against X for y=20 and y= l000. The solid curves are
for the model of this paper while the circles are for the
model of Harris. ' Down to X=0.25 the agreement is

3.C
g(y) =0.442 y~

2.5

2.0

l.5
~ f (y) ='2.83 ($) -l.78

l.o

0 I 2 3 4 5 6
y

7 8 9 lo

FIG. 4. Comparison for X=0.25 of the asymptotic forms of f(y)
and g(y) w th exact solutions. The lines follow from Eqs. (13) and
(20), the circles from numerical integration of Eqs. (5) and (6).
[For y~& 4, j(y) and g(y) are identical. g

Curves of this type require some consideration of the early
behavior of f(y) and g(y) as well as of their asymptotic behavior.
For our model, for example, one can see from Eqs. (5) and (6) that
the condition for 1Vs (y) &0 is y &2 for X &~0 5, and Xy & 1 for X ~&0 5.
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good for y=1000 and fair for y=20. The calculations
which led to the dashed curve are outlined in the
following paragraph.

Suppose that a cascade is started in a group of free
atoms by an atom of type A and energy T. Let Tz(p)
and Tn(p) denote the energies possessed by atoms of
types A and 8 after p groups of collisions have dis-
tributed the energy among 2" atoms. According to the
assumptions made earlier, in the next group of collisions
half of the moving A atoms will collide with A atoms
and the corresponding energy —,'Tz(p) will remain with
2 atoms. The other half of the 2 atoms will collide with
8 atoms. They will retain the energy —', (1——,')I,)T&(p)
and give the energy 4rXT~ (P) to 8 atoms. Meanwhile an
energy ~sXT&(p) will be received by A atoms from J3
atoms. Addition of terms gives, for the energy possessed
by A atoms after (p+1) groups of collisions,

T~(p+1) = (1 sg)Tg(—p)+sXTs(p). (23)

Writing a similar relation for Ts(p+1) and making a
subtraction, one finds that in each group of collisions the
difference (Tz Ts) is r—educed by the factor (1—sX).
Since the total energy is always T, the fraction of the
energy of the primary knockon which has been trans-
ferred to atoms of the other kind after p groups of
collisions is

(24)

To deal with bound atoms one may try the assumption
that when T))E&, the quantity Ns/(N, +Ns) is de-
termined mainly by the way in which the energy would
be shared by free atoms when a su%cient number had
been set in motion to reduce the average energy T/2r to
Ez. That is, one evaluates Eq. (24) for p= (lnr/ln2).
This was done for y=i000 in preparing the dashed
curve of Fig. 5.

Figure 5 shows that in an approximate sense the
equivalence of X=0.5 and X=1.0 is not a misleading
peculiarity of the simple model as long as y is above 20.
Results from the model of Harris agree that estimates
based on Eq. (24) give too gradual arise of Ns/(N&+Ns)
with X.

Generalization of the model of this paper to include
more than one displacement threshold and unequal
probabilities for collisions involving various pairs of
atoms leads to equations which are likely to be hard to
solve in detail. ' It is therefore of interest that Eq. (24)
works no worse than it does. The approach which led to
it may be useful for dealing with very general problems
concerning the disordering of polyatomic solids.
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FIG. 5. Fraction of the displaced atoms which are unlike the
primary for two primary energies. The solid curves apply to the
present model, the circles to the model of Harris. The dashed curve
actually shows the distribution of energy between atoms of two
masses when an initial primary energy has been shared among 1000
free atoms. It may be regarded as a rough estimate of Ns/(N&+Ns)
for y= 1000.

~A +B (+8 +8)/ (+A++B))

where
f
f(r)4(r)4, &= g(r)4(r)dr

(25)

and the subscripts on J and E denote the type atom for
which the integral is to be evaluated.

As an illustration, consider incident protons of energy
E. For r~&y =4ME/[(M+1)sE&j, one has from the
Rutherford scattering law

(26)

where Z and M are the charge and mass numbers of the
target atom. Using f(r) as given in Eq. (20) and taking
g(r) =r/2, one obtains

VI. APPLICATIONS

Since the objective here is a rather thorough study of
a highly restricted model, extensive discussion of appli-
cations would be out of place. It is desirable, however, to
indicate the part played by the functions f(r) and g(r)
in the determination of the relative numbers of A and 8
displacements when monoenergetic particles are inci-
dent on the solid.

Let p(r) be the differential cross section for the
production by the incident radiation of a primary
knock-on atom of a given type with energy near yE&.
The difference between the fractions of all displace-
ments which are 3 and 8 displacements, respectively,
can then be expressed as

~A ~B
(R—1)[(1+&)+C/(1—a)3

2MB
)

2MA
(27)

(R+1) ln—+ 1+in +R 1+in
Eg (Mn+1)' (M~+1)'

' If in the analysis leading to Eqs. (5) and (6) the restriction to equal probabilities for collisions between like and unlike atoms is
dropped, but all other simplifying assumptions are retained, no essential difhculties are introduced. Some work on this and related
generalizations is in progress. t See E. M. Baroody, Bull. Am. Phys. Soc. Ser. II, 3, 375 (1958).)
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where E= (Z~/Ztt) s(Mtt/M~), and it has been assumed
that (y /2)'- »1.

Taking aluminum antimonide as an example, one
finds

Fsb —Fs, t= L0.9 ln(E/Ed) —2.5j '. (28)

Evaluations for E/Ee= 10' and 10' (which might corre-
spond to E=0.2 Mev and 2.0 Mev) give Fsb/F~t=1 4
and 1.3. Among the primary knockons, Sb atoms are
about three times as numerous as Al atoms. The
equalizing eGect of the fairly„'long cascades reduces this
ratio to the quoted values.

Similar calculations for tungsten carbide show that
among the primary knock-ons tungsten atoms are about

ten times as numerous as carbon atoms, and that for
E/Ee= 10' and 10', Fw/Fo= 2.4 and 1.8. It should be
remembered, of course, that these estimates are illus-
trative. Various factors, such as the excitation of
electrons by very fast atoms, have been left out of
account.
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Nuclear Magnetic Resonance in Cerous Magnesium Nitrate at
Temperatures below 1'I*
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The nuclear resonance of the protons in cerous magnesium nitrate, CeqMg3(NOs)qs 24HsO, has been
studied in a single crystal cooled to temperatures below 1'K by partial adiabatic demagnetization and
adiabatic rotation. The area under the nuclear resonance was used as a thermometric parameter. The
area did not obey Curie's law as a result of the temperature-dependent local rf field. A T—T* relation
was derived which gave temperature ratios on adiabatic rotation which agreed within 5—10'Pz with ratios
calculated from the properties of the crystal. The lowest measured temperature was 5)&10 "K.

A study of the structure of the resonance showed that the splittings were caused by the average magnet-
ization of the cerium ions and that the protons were at least 5 A from the cerium ions.

I. INTRODUCTION

a. Adiabatic Rotational Cooling

"ANY paramagnetic crystals can be cooled to
- ~ temperatures below 1'K by the well-known

techniques of adiabatic demagnetization. ' An alter-
native process, adiabatic rotational cooling, can be
applied to crystals with an appreciable magnetic ani-
sotropy. ' "Rotational cooling achieves the necessary
reduction in the energy between the magnetic substates
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of the ion in a magnetic Geld by changing the relative
orientation of the Geld and the crystal. In adiabatic
demagnetization the energy splitting is reduced by
reducing the magnetic field applied to the crystal. In
the present experiments both techniques have been
employed, the rotational cooling being preceded by a
reduction of the magnetic Geld.

Consider an idealized paramagnetic crystal in which
the interactions of a given ion with other paramagnetic
ions and with the moment of its own nucleus are
negligible. Let us assume that there is only one type of
magnetic ion and that the crystalline electric Geld has
split the free-ion energy levels so that only a Kramers
doublet lies low enough to be appreciably populated at
temperatures near 1'K. It follows from the Boltzmann
expression for the relative populations of the two levels,
that the magnetic energy splitting of the ground doublet
divided by the absolute temperature, T, is a constant
for all isentropic processes. Hence, for isentropic

Chemistry, edited by J. R. Dillinger (University of Wisconsin
Press, Madison, 1958), p. 562.

s Estle, Hart, and Wheatley, Low Temperature Physics and
Chemistry, edited by J. R. Dillinger (University of Wisconsin
Press, Madison, 1958), p. 204."T. L. Estle, thesis, University of Illinois, 195'I (unpublished).


